Sustainable Solutions for Energy Production from Biomass Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bórawski, P.; Wyszomierski, R.; Bełdycka-Bórawska, A.; Mickiewicz, B.; Kalinowska, B.; Dunn, J.W.; Rokicki, T. Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy. Energies 2022, 15, 1545. [Google Scholar] [CrossRef]
- Dudek, M.; Bashynska, I.; Filyppova, S.; Yermak, S.; Cichoń, D. Methodology for assessment of inclusive social responsibility of the energy industry enterprises. J. Clean. Prod. 2023, 394, 136317. [Google Scholar] [CrossRef]
- Ministry of Energy. Integrated Energy and Climate Plan of the Republic of Bulgaria 2021–2030. Available online: https://energy.ec.europa.eu/system/files/2020-06/bg_final_necp_main_en_0.pdf (accessed on 1 August 2024).
- Yu, L.; Sun, J.; Liu, W.; Zhang, W.; Sun, L.; Wu, J. Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example. Systems 2023, 11, 343. [Google Scholar] [CrossRef]
- Musiał, W.; Zioło, M.; Luty, L.; Musiał, K. Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development. Energies 2021, 14, 2864. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Karpavicius, T.; Streimikiene, D.; Balezentis, T. The Achievements of Climate Change and Energy Policy in the European Union. Energies 2022, 15, 5128. [Google Scholar] [CrossRef]
- Bąk, I.; Wawrzyniak, K.; Oesterreich, M. Competitiveness of the Regions of the European Union in a Sustainable Knowledge-Based Economy. Sustainability 2022, 14, 3788. [Google Scholar] [CrossRef]
- Wisniewski, R.; Nowakowska-Krystman, A.; Kownacki, T.; Daniluk, P. The Impact of the Rule of Law on Energy Policy in European Union Member States. Energies 2024, 17, 739. [Google Scholar] [CrossRef]
- Lokenberg, S.; Cretti, G.; van Schaik, L. A tale of two dependencies: European Strategic Autonomy in the field of energy. Eur. Foreign Aff. Rev. 2023, 28, 417–438. [Google Scholar]
- Tsiantikoudis, S.; Zafeiriou, E.; Kyriakopoulos, G.; Arabatzis, G. Revising the Environmental Kuznets Curve for Deforestation: An Empirical Study for Bulgaria. Sustainability 2019, 11, 4364. [Google Scholar] [CrossRef]
- Man, O.R.; Radu, R.I.; Mihai, I.O.; Enache, C.M.; David, S.; Moisescu, F.; Ibinceanu, M.C.O.; Zlati, M.L. Approaches to a New Regional Energy Security Model in the Perspective of the European Transition to Green Energy. Economies 2024, 12, 61. [Google Scholar] [CrossRef]
- Joița, D.; Panait, M.; Dobrotă, C.-E.; Diniță, A.; Neacșa, A.; Naghi, L.E. The European dilemma—Energy security or green transition. Energies 2023, 16, 3849. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Assessing the Energy and Climate Sustainability of European Union Member States: An MCDM-Based Approach. Smart Cities 2023, 6, 339–367. [Google Scholar] [CrossRef]
- Aszódi, A.; Biró, B.; Adorján, L.; Dobos, Á.C.; Illés, G.; Tóth, N.K.; Zagyi, D.; Zsiborás, Z.T. Comparative analysis of national energy strategies of 19 European countries in light of the green deal’s objectives. Energy Convers. Manag. 2021, 12, 100136. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Forest Contribution to Climate Change Mitigation: Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Jiang, C.; Yao, R.T.; Xue, J.; Bai, Y.; Wang, H.; Jiang, C.; Wang, S.; Zhong, Y.; et al. Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests 2022, 13, 1087. [Google Scholar] [CrossRef]
- Tampekis, S.; Kantartzis, A.; Arabatzis, G.; Sakellariou, S.; Kolkos, G.; Malesios, C. Conceptualizing Forest Operations Planning and Management Using Principles of Functional Complex Systems Science to Increase the Forest’s Ability to Withstand Climate Change. Land 2024, 13, 217. [Google Scholar] [CrossRef]
- Georgescu, I.; Kinnunen, J.; Nica, I. Assessing Forest Conservation for Finland: An ARDL-Based Evaluation. Sustainability 2024, 16, 612. [Google Scholar] [CrossRef]
- Rădulescu, C.V.; Bran, F.; Ciuvăț, A.L.; Bodislav, D.A.; Buzoianu, O.C.; Ștefănescu, M.; Burlacu, S. Decoupling the Economic Development from Resource Consumption: Implications and Challenges in Assessing the Evolution of Forest Area in Romania. Land 2022, 11, 1097. [Google Scholar] [CrossRef]
- Angelstam, P.; Bush, T.; Manton, M. Challenges and Solutions for Forest Biodiversity Conservation in Sweden: Assessment of Policy, Implementation Outputs, and Consequences. Land 2023, 12, 1098. [Google Scholar] [CrossRef]
- Santoro, A.; Piras, F.; Fiore, B.; Bazzurro, A.; Agnoletti, M. Forest-Cover Changes in European Natura 2000 Sites in the Period 2012–2018. Forests 2024, 15, 232. [Google Scholar] [CrossRef]
- Geoland. Getting Familiar with NATURA 2000 in Bulgaria. Available online: https://www.geolandproject.eu/2022/01/20/getting-familiar-with-natura-2000-in-bulgaria (accessed on 2 August 2024).
- Cheng, X. A Review of Empirical Studies of Cultural Ecosystem Services in National Parks: Current Status and Future Research. Land 2023, 12, 1912. [Google Scholar] [CrossRef]
- Saviano, M.; Di Nauta, P.; Montella, M.M.; Sciarelli, F. The cultural value of protected areas as models of sustainable development. Sustainability 2018, 10, 1567. [Google Scholar] [CrossRef]
- Gordeeva, E.; Weber, N.; Wolfslehner, B. The New EU Forest Strategy for 2030—An Analysis of Major Interests. Forests 2022, 13, 1503. [Google Scholar] [CrossRef]
- Lier, M.; Köhl, M.; Korhonen, K.T.; Linser, S.; Prins, K.; Talarczyk, A. The New EU Forest Strategy for 2030: A New Understanding of Sustainable Forest Management? Forests 2022, 13, 245. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D.; Ferreira, A.J.D. Forest Resources Management and Sustainability: The Specific Case of European Union Countries. Sustainability 2021, 13, 58. [Google Scholar] [CrossRef]
- Linser, S.; Wolfslehner, B. National Implementation of the Forest Europe Indicators for Sustainable Forest Management. Forests 2022, 13, 191. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Słupińska, K.; Wieruszewski, M.; Szczypa, P.; Kożuch, A.; Adamowicz, K. Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet. Energies 2022, 15, 6888. [Google Scholar] [CrossRef]
- Krzywanski, J.; Kijo-Kleczkowska, A.; Nowak, W.; De Souza-Santos, M.L. Technological and Modelling Progress in Green Engineering and Sustainable Development: Advancements in Energy and Materials Engineering. Materials 2022, 16, 7238. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kiełbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Górna, A. Forest Biomass in Bioenergy Production in the Changing Geopolitical Environment of the EU. Energies 2024, 17, 554. [Google Scholar] [CrossRef]
- Janiszewska, D.; Ossowska, L. The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries. Energies 2022, 15, 6756. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources 2022, 11, 57. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
- Hsiao, C.-J.; Hu, J.-L. Biomass and Circular Economy: Now and the Future. Biomass 2024, 4, 720–739. [Google Scholar] [CrossRef]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Hassan, M.; Usman, N.; Hussain, M.; Yousaf, A.; Khattak, M.A.; Yousaf, S.; Mishr, R.S.; Ahmad, S.; Rehman, F.; Rashedi, A. Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan. Sustainability 2023, 15, 12089. [Google Scholar] [CrossRef]
- Rupasinghe, R.L.; Perera, P.; Bandara, R.; Amarasekera, H.; Vlosky, R. Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis. Energies 2024, 17, 54. [Google Scholar] [CrossRef]
- Greinert, A.; Mrówczyńska, M.; Grech, R.; Szefner, W. The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces. Energies 2020, 13, 463. [Google Scholar] [CrossRef]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of Pellets from Three Forest Species: From Raw Material to End Use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Sadaghiani, S.; Mafakheri, F.; Chen, Z. Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada. Energies 2023, 16, 5697. [Google Scholar] [CrossRef]
- Puttha, R.; Venkatachalam, K.; Hanpakdeesakul, S.; Wongsa, J.; Parametthanuwat, T.; Srean, P.; Pakeechai, K.; Charoenphun, N. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae 2023, 9, 1079. [Google Scholar] [CrossRef]
- Giannini, V.; Maucieri, C.; Vamerali, T.; Zanin, G.; Schiavon, S.; Pettenella, D.M.; Bona, S.; Borin, M. Sunflower: From Cortuso’s Description (1585) to Current Agronomy, Uses and Perspectives. Agriculture 2022, 12, 1978. [Google Scholar] [CrossRef]
- Qi, L.L.; Foley, M.E.; Cai, X.W.; Gulya, T.J. Genetics and mapping of a novel downy mildew resistance gene, Pl 18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2016, 129, 741–752. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Seyyedi, S.M.; Bybordi, A.; Damalas, C.A. Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agric. Water Manag. 2019, 218, 149–157. [Google Scholar] [CrossRef]
- Debaeke, P.; Casadebaig, P.; Langlade, N. New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL Oilseeds Fats Crops Lipids 2021, 28, 29. [Google Scholar] [CrossRef]
- European Commission. EU Agricultural Outlook for Markets, 2023–2035. Available online: https://agriculture.ec.europa.eu/data-and-analysis/markets/outlook/medium-term_en (accessed on 3 August 2024).
- Ministry of Agriculture. Annual Report on the State and Development of Agriculture (Agricultural Report 2022). Available online: https://www.mzh.government.bg/media/filer_public/2023/01/26/ad_2022_en.pdf (accessed on 3 August 2024).
- Seedea. Sunflower Market Update—May 2024. Available online: https://seedea.pl/sunflower-market-update-may-2024/ (accessed on 3 August 2024).
- Bibi, F.; Rahman, A. An Overview of Climate Change Impacts on Agriculture and Their Mitigation Strategies. Agriculture 2023, 13, 1508. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Pawłowska, M.; Harasim, E.; Pawłowski, L. Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review. Energies 2023, 16, 4225. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Havrysh, V.; Kalinichenko, A.; Pysarenko, P.; Samojlik, M. Sunflower Residues-Based Biorefinery: Circular Economy Indicators. Processes 2023, 11, 630. [Google Scholar] [CrossRef]
- Linseis. Simultaneous Thermal Analyzer TGA-DSC > STA PT 1600. Available online: https://www.linseis.com/en/products/simultaneous-thermal-analyzer-tga-dsc/sta-pt-1600 (accessed on 3 August 2024).
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- Choiński, B.; Szatyłowicz, E.; Zgłobicka, I.; Joka Ylidiz, M. A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO2 Emission. Energies 2023, 16, 250. [Google Scholar] [CrossRef]
- Islamova, S.; Tartygasheva, A.; Karaeva, J.; Panchenko, V.; Litti, Y. A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method. Agriculture 2023, 13, 840. [Google Scholar] [CrossRef]
- Fraga, L.G.; Silva, J.; Teixeira, S.; Soares, D.; Ferreira, M.; Teixeira, J. Thermal Conversion of Pine Wood and Kinetic Analysis under Oxidative and Non-Oxidative Environments at Low Heating Rate. Proceedings 2020, 58, 23. [Google Scholar] [CrossRef]
- Lunguleasa, A.; Olarescu, A.; Spirchez, C. Pellets Obtained from the Husks of Sunflower Seeds and Beech Sawdust for Comparison. Forests 2024, 15, 902. [Google Scholar] [CrossRef]
- Teh, J.S.; Teoh, Y.H.; How, H.G.; Sher, F. Thermal Analysis Technologies for Biomass Feedstocks: A State-of-the-Art Review. Processes 2021, 9, 1610. [Google Scholar] [CrossRef]
- Silva, J.; Teixeira, S.; Teixeira, J. A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective. Energies 2023, 16, 6705. [Google Scholar] [CrossRef]
Type of Study | Challenges/Limitations | Description |
---|---|---|
TG analysis (SW and HW) | Incomplete decomposition at lower temperatures. Complete decomposition at high temperatures. | It is necessary to reach a temperature (around 750 °C) for complete decomposition of the organic components in the pellets. |
TG analysis (SH) | Influence of the atmosphere (inert or oxidizing). | The different atmospheric conditions change the decomposition and oxidation behavior of the samples. |
DSC analysis (SW and HW) | Difficulties distinguishing thermal effects. | Difficulties in distinguishing exothermic and endothermic processes in multicomponent pellets. |
DSC analysis (SH) | Influence of heating rate. | Faster heating leads to missing important thermal effects and false conclusions. |
Material composition | Differences in thermal properties between wood and sunflower pellets. | Sunflower husks contain more inorganic residues, which affects the combustion behavior. |
Samples homogeneity | Variations in pellet structure and composition. | Inhomogeneous material leads to different results in the thermal analysis and complicates the interpretation of the results. |
Samples | Pellet 1 | Pellet 2 | Pellet 3 | Pellet 4 | Pellet 5 |
---|---|---|---|---|---|
type | wood | wood | wood and sunflower | Sunflower 1 | Sunflower 2 |
material | 60% SW + 40% HW | 70% SW + 30% HW | 70% SW + 30% SH | 100% SH1 | 100% SH2 |
Drying | Combustion | Post-Combustion | |
---|---|---|---|
Pellet 1 | 20–218 * | 218–400.5 * | 401–750 * |
20–227 ** | 227–406 ** | 406–750 ** | |
Pellet 2 | 20–216 * | 216–407 * | 407–750 * |
20–225 ** | 225–412 ** | 412–750 ** | |
Pellet 3 | 20–218 * | 218–406 * | 406–750 * |
20–230 ** | 230–413 ** | 413–750 ** | |
Pellet 4 | 20–215 * | 215–401 * | 401–750 * |
20–220 ** | 220–414 ** | 414–750 ** | |
Pellet 5 | 20–215 * | 215–407 * | 395–750 * |
20–218 ** | 218–410 ** | 410–750 ** |
5 °C/min | 10 °C/min | |
---|---|---|
Pellet 1 | 0.87%/°C at 314 °C | 0.79%/°C at 319 °C |
Pellet 2 | 1.19%/°C at 309 °C | 1.01%/°C at 319 °C |
Pellet 3 | 1.01%/°C at 312 °C | 0.86%/°C at 323 °C |
Pellet 4 | 0.75%/°C at 290 °C | 0.88%/°C at 284 °C |
Pellet 5 | 0.65%/°C at 277 °C | 0.68 %/°C at 286 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlateva, P.; Terziev, A.; Mileva, N.M. Sustainable Solutions for Energy Production from Biomass Materials. Sustainability 2024, 16, 7732. https://doi.org/10.3390/su16177732
Zlateva P, Terziev A, Mileva NM. Sustainable Solutions for Energy Production from Biomass Materials. Sustainability. 2024; 16(17):7732. https://doi.org/10.3390/su16177732
Chicago/Turabian StyleZlateva, Penka, Angel Terziev, and Nevena Milcheva Mileva. 2024. "Sustainable Solutions for Energy Production from Biomass Materials" Sustainability 16, no. 17: 7732. https://doi.org/10.3390/su16177732
APA StyleZlateva, P., Terziev, A., & Mileva, N. M. (2024). Sustainable Solutions for Energy Production from Biomass Materials. Sustainability, 16(17), 7732. https://doi.org/10.3390/su16177732