Mapping the Landscape of Climate-Smart Agriculture and Food Loss: A Bibliometric and Bibliographic Analysis
Abstract
:1. Introduction
- How do the identified collaborative networks and thematic patterns influence the development and implementation of comprehensive strategies aimed at enhancing agricultural sustainability and food security amidst climate change?
- What are the key issues and trends emerging now in interdisciplinary research on CSA and food loss?
- How do the clusters identified in the bibliometric analysis, and the keyword co-occurrence, reflect the evolving approaches from the interdisciplinary standpoint and emerging trends in CSA and food loss research?
2. Literature Review
3. Materials and Methods
Database and Search Strategy
4. Results and Discussion
4.1. An Examination of Scientific Publications in the Domain of CSA and Food Loss through Bibliometric and Bibliographic Analysis
4.2. Analysis of the Most Prolific Institutions in the Field of CSA and Food Loss through Bibliometric and Bibliographic Methods
4.3. Analysis of Publications in the CSA and Food Loss Domain Using Bibliometric and Bibliographic Methods
4.4. Analysis of the Most Productive Countries in the Domain of CSA and Food Loss through Bibliometric and Bibliographic Methods
4.5. Keyword Co-Occurrence Analysis in CSA and Food Loss
5. Conclusions
- Implications of Collaborative Networks and Thematic Patterns: Thematic analysis reveals the importance of interdisciplinary collaboration and knowledge exchange in enhancing agricultural sustainability and food security amidst climate change. Collaborative networks identified within the research landscape serve as vital platforms for sharing best practices, facilitating technology transfer, and fostering partnerships to address complex challenges in agriculture. One of the prominent thematic patterns to emerge is the emphasis on climate change adaptation. As the adverse effects of climate change become increasingly apparent, there is a pressing need for agricultural practices that can withstand and adapt to these changes. This includes the development of drought-resistant crop varieties, the implementation of water-saving irrigation techniques, and the adoption of farming methods that increase soil carbon sequestration. Sustainable agricultural practices are another key theme that has surfaced. These practices are not just about maintaining the health of the environment; they are also crucial for the long-term viability of the agricultural sector. By promoting biodiversity, reducing chemical inputs, and encouraging agroecological approaches, sustainable farming can enhance the resilience of the food system, provide livelihoods for farmers, and contribute to the overall health of the ecosystem. Food security is inextricably linked to both climate change adaptation and sustainable agricultural practices. The thematic patterns that have emerged from our analysis highlight the need for a holistic approach to address the interconnected challenges of food production, environmental sustainability, and socio-economic development. This holistic approach is essential for designing and implementing targeted interventions and policy frameworks that can effectively promote sustainable agricultural practices, enhance the resilience of the food system, and ensure food security for vulnerable populations.
- Prevailing Themes and Emerging Trends: Themes such as climate change adaptation, sustainable agricultural practices, and CSA systems intensification emerge as focal points of interdisciplinary inquiry. These themes reflect the interconnectedness between climate dynamics, agricultural practices, and food security concerns, highlighting the need for comprehensive solutions. Emerging trends, such as the integration of innovative technologies, policy frameworks, and community-based approaches, underscore the evolving nature of research in this domain. Interdisciplinary research plays a crucial role in bridging gaps between disciplines, fostering collaboration, and generating comprehensive solutions to address the complex challenges facing agriculture.
- Insights from Bibliometric and Keyword Co-occurrence Analyses: The bibliometric analysis provided insights into the geographic distribution of research output, the prominence of certain journals and institutions, and the collaborative networks shaping the field. Meanwhile, the keyword co-occurrence analysis revealed clusters of related terms, highlighting the interconnectedness of topics such as food security, climate change adaptation, CSA practices, and agricultural sustainability. These analyses shed light on the evolving interdisciplinary approaches and emerging trends in CSA and food loss research, guiding future research directions and policy interventions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- El Bilali, H.; Bassole, I.H.N.; Dambo, L.; Berjan, S. Climate Change and Food Security. Agric. For./Poljopr. I Sumar. 2020, 66, 197–210. [Google Scholar] [CrossRef]
- Morkunas, M.; Balezentis, T. Is agricultural revitalization possible through the climate-smart agriculture: A systematic review and citation-based analysis. Manag. Environ. Qual. Int. J. 2021, 33, 257–280. [Google Scholar] [CrossRef]
- Hussain, S.; Amin, A.; Mubeen, M.; Khaliq, T.; Shahid, M.; Hammad, H.M.; Sultana, S.R.; Awais, M.; Murtaza, B.; Amjad, M.; et al. Climate Smart Agriculture (CSA) Technologies. In Building Climate Resilience in Agriculture; Springer: Cham, Switzerland, 2021; pp. 319–338. [Google Scholar] [CrossRef]
- Wunderlich, S.M.; Martinez, N.M. Conserving natural resources through food loss reduction: Production and consumption stages of the food supply chain. Int. Soil Water Conserv. Res. 2018, 6, 331–339. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insects Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Corrigendum to “Mitigation of emerging implications of climate change on food production systems” [Food Res. Int. 134 (2020) 109256]. Food Res. Int. 2020, 134, 109554. [Google Scholar] [CrossRef]
- Neglo, K.A.W.; Gebrekidan, T.; Lyu, K. The Role of Agriculture and Non-Farm Economy in Addressing Food Insecurity in Ethiopia: A Review. Sustainability 2021, 13, 3874. [Google Scholar] [CrossRef]
- Ngcamu, B.S.; Chari, F. Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef] [PubMed]
- Loboguerrero, A.M.; Campbell, B.; Cooper, P.; Hansen, J.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef]
- Volkov, A.; Morkunas, M.; Balezentis, T.; Streimikiene, D. Are agricultural sustainability and resilience complementary notions? Evidence from the North European agriculture. Land Use Policy 2022, 112, 105791. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Dar, A.H. Precision Farming for Resource Use Efficiency. In Resources Use Efficiency in Agriculture; Springer: Singapore, 2020; pp. 109–135. [Google Scholar] [CrossRef]
- Debebe, S. Post-harvest losses of crops and its determinants in Ethiopia: Tobit model analysis. Agric. Food Secur. 2022, 11, 13. [Google Scholar] [CrossRef]
- Mezgebe, A.; Kerie Terefe, Z.; Bosha, T.; Muchie, T.; Teklegiorgis, Y. Post-harvest losses and handling practices of durable and perishable crops produced in relation with food security of households in Ethiopia: Secondary data analysis. J. Stored Prod. Postharvest Res. 2016, 7, 45–52. [Google Scholar] [CrossRef]
- Abdulahi Mohamed, A. Food Security Situation in Ethiopia: A Review Study. Int. J. Health Econ. Policy 2017, 2, 86. [Google Scholar] [CrossRef]
- Stuch, B.; Alcamo, J.; Schaldach, R. Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in Sub-Saharan Africa. Clim. Dev. 2021, 13, 268–282. [Google Scholar] [CrossRef]
- Ndjiondjop, M.N.; Machocho Weru, W.; Jean Rodrigue, S.; Karlin, G. The effects of drought on rice cultivation in sub-Saharan Africa and its mitigation: A review. Afr. J. Agric. Res. 2018, 13, 1257–1271. [Google Scholar] [CrossRef]
- Kombat, R.; Sarfatti, P.; Fatunbi, O.A. A Review of Climate-Smart Agriculture Technology Adoption by Farming Households in Sub-Saharan Africa. Sustainability 2021, 13, 12130. [Google Scholar] [CrossRef]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy 2019, 88, 104113. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Rahman, A.; Joshi, R.; Park, E.; Cho, B.-K. Postharvest technologies for fruits and vegetables in South Asian countries: A review. Korean J. Agric. Sci. 2018, 45, 325–353. [Google Scholar] [CrossRef]
- Gunasekera, D.; Parsons, H.; Smith, M. Post-harvest loss reduction in Asia-Pacific developing economies. J. Agribus. Dev. Emerg. Econ. 2017, 7, 303–317. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef]
- Dougill, A.J.; Hermans, T.D.G.; Eze, S.; Antwi-Agyei, P.; Sallu, S.M. Evaluating Climate-Smart Agriculture as Route to Building Climate Resilience in African Food Systems. Sustainability 2021, 13, 9909. [Google Scholar] [CrossRef]
- Birkby, J. Vertical farming. ATTRA Sustain. Agric. 2016, 2, 1–12. Available online: https://attra.ncat.org/wp-content/uploads/2019/05/verticalfarming.pdf (accessed on 10 April 2024).
- Yata, V.K.; Tiwari, B.C.; Ahmad, I. Nanoscience in food and agriculture: Research, industries and patents. Environ. Chem. Lett. 2018, 16, 79–84. [Google Scholar] [CrossRef]
- Matteoli, F.; Schnetzer, J.; Jacobs, H. Climate-Smart Agriculture (CSA): An Integrated Approach for Climate Change Management in the Agriculture Sector. In Handbook of Climate Change Management: Research, Leadership, Transformation; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Parimi, S.; Chakraborty, S. Factors Affecting the Post-Harvesting Wastage of Fruits and Vegetables Along the Food Supply Chain: An Empirical Study—ProQuest. Acad. Mark. Stud. J. 2022, 26, 1–17. [Google Scholar]
- McNeill, D. The Contested Discourse of Sustainable Agriculture. Glob. Policy 2019, 10, 16–27. [Google Scholar] [CrossRef]
- Hurduzeu, G.; Pânzaru, R.L.; Medelete, D.M.; Ciobanu, A.; Enea, C. The Development of Sustainable Agriculture in EU Countries and the Potential Achievement of Sustainable Development Goals Specific Targets (SDG 2). Sustainability 2022, 14, 15798. [Google Scholar] [CrossRef]
- Farooq, M. Conservation agriculture and sustainable development goals. Pak. J. Agric. Sci. 2023, 60, 291–298. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, A.; Ferdousee, S. Crop Diversification, Sustainable Production, and Consumption (SDG-12) in Rural Bangladesh: Insights from the Northern Region of the Country. Circ. Agric. Syst. 2024, 4, e006. [Google Scholar] [CrossRef]
- Singh, S.; Srivastava, S.K. Decision support framework for integrating triple bottom line (TBL) sustainability in agriculture supply chain. Sustain. Account. Manag. Policy J. 2022, 13, 387–413. [Google Scholar] [CrossRef]
- Wood, J.; Wong, C.; Paturi, S. Vertical Farming: An Assessment of Singapore City. Etropic Electron. J. Stud. Trop. 2020, 19, 228–248. [Google Scholar] [CrossRef]
- Beacham, A.M.; Vickers, L.H.; Monaghan, J.M. Vertical farming: A summary of approaches to growing skywards. J. Hortic. Sci. Biotechnol. 2019, 94, 277–283. [Google Scholar] [CrossRef]
- Sandison, F.; Yeluripati, J.; Stewart, D. Does green vertical farming offer a sustainable alternative to conventional methods of production?: A case study from Scotland. Food Energy Secur. 2022, 12, e438. [Google Scholar] [CrossRef]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef]
- Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 2017, 3, 17102. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Hassan, M.K.; Paltrinieri, A.; Dreassi, A.; Bahoo, S. A bibliometric review of takaful literature. Int. Rev. Econ. Financ. 2020, 69, 389–405. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Jarvis, A.; Ramirez-Villegas, J.; Campo, B.V.H.; Navarro-Racines, C. Is Cassava the Answer to African Climate Change Adaptation? Trop. Plant Biol. 2012, 5, 9–29. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A. Adoption and intensity of adoption of conservation farming practices in Zambia. Agric. Ecosyst. Environ. 2014, 187, 72–86. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Purakayastha, T.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Praveen, B.; Sharma, P. A review of literature on climate change and its impacts on agriculture productivity. J. Public Aff. 2019, 19, e1960. [Google Scholar] [CrossRef]
- Simelton, E.; Fraser, E.D.G.; Termansen, M.; Forster, P.M.; Dougill, A.J. Typologies of crop-drought vulnerability: An empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environ. Sci. Policy 2009, 12, 438–452. [Google Scholar] [CrossRef]
- Chiaka, J.C.; Zhen, L.; Yunfeng, H.; Xiao, Y.; Muhirwa, F.; Lang, T. Smallholder Farmers Contribution to Food Production in Nigeria. Front. Nutr. 2022, 9, 916678. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, W.; Zheng, H.; Li, J.; Zhu, H. Promoting banana farmers’ adoption of climate-smart agricultural practices: The role of agricultural cooperatives. Clim. Dev. 2024, 16, 301–310. [Google Scholar] [CrossRef]
- Gurung, S.; Mamidi, S.; Bonman, J.M.; Xiong, M.; Brown-Guedira, G.; Adhikari, T.B. Genome-Wide Association Study Reveals Novel Quantitative Trait Loci Associated with Resistance to Multiple Leaf Spot Diseases of Spring Wheat. PLoS ONE 2014, 9, e108179. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Martellozzo, F.; Amato, F.; Murgante, B.; Clarke, K. Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 2018, 91, 156–167. [Google Scholar] [CrossRef]
- Hammond, J.; Fraval, S.; van Etten, J.; Suchini, J.G.; Mercado, L.; Pagella, T.; Frelat, R.; Lannerstad, M.; Douxchamps, S.; Teufel, N.; et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central America. Agric. Syst. 2017, 151, 225–233. [Google Scholar] [CrossRef]
- Webb, N.P.; A Marshall, N.; Stringer, L.C.; Reed, M.S.; Chappell, A.; Herrick, J.E. Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ. 2017, 15, 450–459. [Google Scholar] [CrossRef]
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Trop. Conserv. Sci. 2017, 10, 1–6. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Jarvis, A.; Campbell, B.M.; Zougmoré, R.B.; Khatri-Chhetri, A.; Vermeulen, S.J.; Loboguerrero, A.M.; Sebastian, L.S.; Kinyangi, J.; Bonilla-Findji, O.; et al. The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol. Soc. 2018, 23, 14. [Google Scholar] [CrossRef]
- Douxchamps, S.; Van Wijk, M.; Silvestri, S.; Moussa, A.S.; Quiros, C.; Ndour, N.Y.B.; Buah, S.; Somé, L.; Herrero, M.; Kristjanson, P.; et al. Linking agricultural adaptation strategies, food security and vulnerability: Evidence from West Africa. Reg. Environ. Chang. 2015, 16, 1305–1317. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.; Liu, S.; Qi, J.; Wang, X.; Pu, C.; Li, S.; Zhang, X.; Yang, X.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2020, 31, 694–709. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D.B.; Martre, P.; Ruane, A.C.; Wallach, D.; Jones, J.W.; et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Chang. 2016, 6, 1130–1136. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Farhana, S.; Hasan, M.A.U.; Pavel, M.I.; Faruk, O.; Rahman, M.; Mahmood, A. An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus 2023, 9, 100179. [Google Scholar] [CrossRef]
- Selbonne, S.; Guindé, L.; Causeret, F.; Bajazet, T.; Desfontaines, L.; Duval, M.; Sierra, J.; Solvar, F.; Tournebize, R.; Blazy, J.-M. Co-Design and Experimentation of a Prototype of Agroecological Micro-Farm Meeting the Objectives Set by Climate-Smart Agriculture. Agriculture 2023, 13, 159. [Google Scholar] [CrossRef]
- Vatsa, P.; Ma, W.; Zheng, H.; Li, J. Climate-smart agricultural practices for promoting sustainable agrifood production: Yield impacts and implications for food security. Food Policy 2023, 121, 102551. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Straffelini, E.; Tarolli, P. Climate change-induced aridity is affecting agriculture in Northeast Italy. Agric. Syst. 2023, 208, 103647. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Atta-Aidoo, J.; Asare-Nuamah, P.; Stringer, L.C.; Antwi, K. Trade-offs, synergies and acceptability of climate smart agricultural practices by smallholder farmers in rural Ghana. Int. J. Agric. Sustain. 2023, 21, 2193439. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Corrigendum to “Building Information Modeling (BIM) for existing buildings—Literature review and future needs” [Autom. Constr. 38 (March 2014) 109–127]. Autom. Constr. 2014, 43, 204. [Google Scholar] [CrossRef]
- Kleminski, R.; Kazienko, P.; Kajdanowicz, T. Analysis of direct citation, co-citation and bibliographic coupling in scientific topic identification. J. Inf. Sci. 2020, 48, 349–373. [Google Scholar] [CrossRef]
- Biscaro, C.; Giupponi, C. Co-Authorship and Bibliographic Coupling Network Effects on Citations. PLoS ONE 2014, 9, e99502. [Google Scholar] [CrossRef]
- Margiana, R.; Pakpahan, C.; Pangestu, M. A systematic review of retinoic acid in the journey of spermatogonium to spermatozoa: From basic to clinical application. F1000Research 2022, 11, 552. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Canton, H. The Europa Directory of International Organizations, 23rd ed.; Routledge: London, UK, 2021; pp. 1–9. [Google Scholar]
- Mekouar, M.A. 15. Food and Agriculture Organization (FAO). Yearb. Int. Environ. Law 2013, 24, 587–602. [Google Scholar] [CrossRef]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef]
- Peskett, L.; Grist, N.; Hedger, M.; Lennartz-Walker, T.; Scholz, I. Climate Change Challenges for EU Development Co-Operation: Emerging Issues. 2020. Available online: http://edc2020.eu/fileadmin/Textdateien/EDC2020_WP03_ClimateChange_online.pdf (accessed on 15 April 2024).
- Bowman, M.; Minas, S. Resilience through interlinkage: The green climate fund and climate finance governance. Clim. Policy 2018, 19, 342–353. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130089. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Ali Babar, M.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2018, 25, 155–173. [Google Scholar] [CrossRef]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. SpringerPlus 2016, 5, 1135. [Google Scholar] [CrossRef] [PubMed]
- Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 2013, 8, 014040. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- DeFries, R.; Mondal, P.; Singh, D.; Agrawal, I.; Fanzo, J.; Remans, R.; Wood, S. Synergies and trade-offs for sustainable agriculture: Nutritional yields and climate-resilience for cereal crops in Central India. Glob. Food Secur. 2016, 11, 44–53. [Google Scholar] [CrossRef]
- Blagus, R.; Leskošek, B.L.; Stare, J. Comparison of bibliometric measures for assessing relative importance of researchers. Scientometrics 2015, 105, 1743–1762. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1313–1326. [Google Scholar] [CrossRef]
- Hassan, S.-U.; Aljohani, N.R.; Shabbir, M.; Ali, U.; Iqbal, S.; Sarwar, R.; Martínez-Cámara, E.; Ventura, S.; Herrera, F. Tweet Coupling: A social media methodology for clustering scientific publications. Scientometrics 2020, 124, 973–991. [Google Scholar] [CrossRef]
- Ma, C.; Xu, Q.; Li, B. Comparative study on intelligent education research among countries based on bibliographic coupling analysis. Libr. Hi Tech 2022, 40, 786–804. [Google Scholar] [CrossRef]
- Guerrero-Bote, V.P.; Chinchilla-Rodríguez, Z.; Mendoza, A.; de Moya-Anegón, F. Comparative Analysis of the Bibliographic Data Sources Dimensions and Scopus: An Approach at the Country and Institutional Levels. Front. Res. Metr. Anal. 2021, 5, 593494. [Google Scholar] [CrossRef]
- Guerrero, M.; Liñán, F.; Cáceres-Carrasco, F.R. The influence of ecosystems on the entrepreneurship process: A comparison across developed and developing economies. Small Bus. Econ. 2021, 57, 1733–1759. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Totobesola, M.; Delve, R.; Nkundimana, J.d.; Cini, L.; Gianfelici, F.; Mvumi, B.; Gaiani, S.; Pani, A.; Barraza, A.S.; Rolle, R.S. A holistic approach to food loss reduction in Africa: Food loss analysis, integrated capacity development and policy implications. Food Secur. 2022, 14, 1401–1415. [Google Scholar] [CrossRef]
- Blasiak, R.; Spijkers, J.; Tokunaga, K.; Pittman, J.; Yagi, N.; Österblom, H. Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS ONE 2017, 12, e0179632. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al Zayed, I.S.; Saad, S.A.G.; Mahmood, M.I.; Basheer, M.; Fink, A.H. Debilitating floods in the Sahel are becoming frequent. J. Hydrol. 2021, 599, 126362. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Nath, P.K.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2010, 13, 141–162. [Google Scholar] [CrossRef]
- Mbow, C.; Halle, M.; El Fadel, R.; Thiaw, I. Land resources opportunities for a growing prosperity in the Sahel. Curr. Opin. Environ. Sustain. 2021, 48, 85–92. [Google Scholar] [CrossRef]
- Yobom, O. Climate change and variability: Empirical evidence for countries and agroecological zones of the Sahel. Clim. Chang. 2020, 159, 365–384. [Google Scholar] [CrossRef]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A Review of Climate-Smart Agriculture Research and Applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Beattie, S.; Sallu, S. How Does Nutrition Feature in Climate-Smart Agricultural Policy in Southern Africa? A Systematic Policy Review. Sustainability 2021, 13, 2785. [Google Scholar] [CrossRef]
- Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. Rethinking resilient agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Lynam, J.; Beintema, N.; Roseboom, J.; Badiane, O. Agricultural Research in Africa. Investing in Future Harvests; International Food Policy Research Institute: Washington, DC, USA, 2016; pp. 31–56. Available online: https://www.asti.cgiar.org/sites/default/files/pdf/africa-future-harvests-full.pdf#page=70 (accessed on 12 April 2024).
- Main, D.; Mullan, S. A new era of UK leadership in farm animal welfare. Veter. Rec. 2017, 181, 49–50. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Holmes, J. Impulses towards a multifunctional transition in rural Australia: Gaps in the research agenda. J. Rural Stud. 2006, 22, 142–160. [Google Scholar] [CrossRef]
- Alemu, T.; Mengistu, A. Impacts of Climate Change on Food Security in Ethiopia: Adaptation and Mitigation Options: A Review. In Climate Change Management; Springer: Cham, Switzerland, 2019; pp. 397–412. [Google Scholar] [CrossRef]
- Kumar, M. Agriculture: Status, Challenges, Policies and Strategies for India. Int. J. Eng. Res. Technol. 2019, 8, 1–5. [Google Scholar]
- Molieleng, L.; Fourie, P.; Nwafor, I. Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa. Sustainability 2021, 13, 10468. [Google Scholar] [CrossRef]
- Klarin, A. How to conduct a bibliometric content analysis: Guidelines and contributions of content co-occurrence or co-word literature reviews. Int. J. Consum. Stud. 2024, 48, e13031. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Treiblmaier, H. Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information 2023, 14, 356. [Google Scholar] [CrossRef]
- McDonald, B.A.; Stukenbrock, E.H. Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160026. [Google Scholar] [CrossRef]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
Authors | Source Title | Times Cited | Average per Year |
---|---|---|---|
Hanjra and Qureshi [77] | Food Policy | 854 | 61 |
Lowry et al. [37] | Nature Nanotechnology | 503 | 101 |
Liu et al. [60] | Nature Climate Change | 354 | 44 |
Harvey et al. [78] | Philosophical Transactions of The Royal Society B-Biological Sciences | 349 | 35 |
Frison et al. [40] | Sustainability | 325 | 25 |
Cairns et al. [79] | Food Security | 287 | 26 |
Asseng et al. [80] | Global Change Biology | 271 | 54 |
Jarvis et al. [41] | Tropical Plant Biology | 239 | 20 |
Wang et al. [38] | Nature Plants | 227 | 32 |
Navarro-Racines et al. [42] | Scientific Data | 212 | 53 |
Arslan et al. [43] | Agriculture Ecosystems and Environment | 201 | 20 |
Purakayastha et al. [45] | Chemosphere | 197 | 39 |
Wang et al. [44] | Nature Nanotechnology | 197 | 99 |
Simelton et al. [47] | Environmental Science and Policy | 194 | 13 |
Makate et al. [81] | Springerplus | 190 | 24 |
Sultan et al. [82] | Environmental Research Letters | 189 | 17 |
Gurung et al. [51] | PLoS One | 142 | 14 |
Makate et al. [83] | Journal Of Environmental Management | 141 | 28 |
Huang et al. [84] | Agriculture Ecosystems and Environment | 134 | 22 |
Lajoie-O’Malley et al. [52] | Ecosystem Services | 132 | 33 |
Institution | Documents | Citations | % of Total Publications |
---|---|---|---|
The International Center for Tropical Agriculture | 40 | 1552 | 4.3% |
International Maize and Wheat Improvement Center | 39 | 1208 | 4.2% |
Wageningen University | 34 | 939 | 3.6% |
ICRISAT | 33 | 1008 | 3.5% |
University of Leeds | 29 | 1217 | 3.1% |
Wageningen University and Research | 26 | 411 | 2.8% |
Addis Ababa University | 18 | 151 | 1.9% |
Kwame Nkrumah University of Science and Technology | 18 | 179 | 1.9% |
CGIAR Research Program on Climate Change, Agriculture and Food Security | 17 | 543 | 1.8% |
Chinese Academy of Sciences | 17 | 222 | 1.8% |
Université de Montpellier | 17 | 308 | 1.8% |
International Center for Tropical Agriculture | 16 | 802 | 1.7% |
University of Agriculture Faisalabad | 16 | 123 | 1.7% |
International Livestock Research Institute | 15 | 898 | 1.6% |
The International Center for Agricultural Research in the Dry Areas | 15 | 137 | 1.6% |
Total | 350 | 9698 | 37.5% |
Source | Documents | % of Total Publications | IF 2022 | H5-Index |
---|---|---|---|---|
Frontiers in Sustainable Food Systems | 56 | 6.00% | 4.7 | 62 |
Sustainability | 48 | 5.14% | 3.9 | 185 |
Agricultural Systems | 39 | 4.18% | 6.6 | 77 |
Agriculture-Basel | 18 | 1.93% | 3.6 | 52 |
Global Food Security-Agriculture Policy Economics and Environment | 17 | 1.82% | 8.9 | 73 |
Food Security | 16 | 1.71% | 6.7 | 53 |
Agronomy-Basel | 13 | 1.39% | 3.7 | 67 |
Climate and Development | 13 | 1.39% | 4.3 | 48 |
Environment Development and Sustainability | 11 | 1.18% | 4.9 | 73 |
PLoS ONE | 11 | 1.18% | 3.7 | 212 |
Regional Environmental Change | 11 | 1.18% | 4.2 | 56 |
Field Crops Research | 10 | 1.07% | 5.8 | 69 |
Heliyon | 10 | 1.07% | 4.0 | 105 |
International Journal of Agricultural Sustainability | 10 | 1.07% | 3.4 | 31 |
Land Use Policy | 10 | 1.07% | 7.1 | 1.3 |
Total | 293 | 31.40% |
Country/Region | Documents | % of Total Publications |
---|---|---|
USA | 61 | 6.54% |
India | 52 | 5.57% |
Ethiopia | 19 | 2.04% |
Germany | 18 | 1.93% |
People’s Republic of China | 18 | 1.93% |
South Africa | 17 | 1.82% |
England | 13 | 1.39% |
Canada | 12 | 1.29% |
Kenya | 12 | 1.29% |
Australia | 11 | 1.18% |
Total | 233 | 24.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Morkūnas, M.; Wei, J. Mapping the Landscape of Climate-Smart Agriculture and Food Loss: A Bibliometric and Bibliographic Analysis. Sustainability 2024, 16, 7742. https://doi.org/10.3390/su16177742
Wang Y, Morkūnas M, Wei J. Mapping the Landscape of Climate-Smart Agriculture and Food Loss: A Bibliometric and Bibliographic Analysis. Sustainability. 2024; 16(17):7742. https://doi.org/10.3390/su16177742
Chicago/Turabian StyleWang, Yufei, Mangirdas Morkūnas, and Jinzhao Wei. 2024. "Mapping the Landscape of Climate-Smart Agriculture and Food Loss: A Bibliometric and Bibliographic Analysis" Sustainability 16, no. 17: 7742. https://doi.org/10.3390/su16177742
APA StyleWang, Y., Morkūnas, M., & Wei, J. (2024). Mapping the Landscape of Climate-Smart Agriculture and Food Loss: A Bibliometric and Bibliographic Analysis. Sustainability, 16(17), 7742. https://doi.org/10.3390/su16177742