Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis
Abstract
:1. Introduction
2. Methodology
2.1. LCA Methodology
2.1.1. Objectives and Parameters of This Study
Limits in the System
2.1.2. Life Cycle Inventory
2.1.3. Life Cycle Impact Assessment (LCIA)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, K.; Loreau, M. A model of Sustainable Development Goals: Challenges and opportunities in promoting human well-being and environmental sustainability. Ecol. Model. 2023, 475, 110164. [Google Scholar] [CrossRef]
- Asiri, A.M. (Ed.) Applications of Nanotechnology for Green Synthesis; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISSN 2523-8035. [Google Scholar]
- Singh, P.; Mijakovic, I. Strong antimicrobial activity of silver nanoparticles obtained by the green synthesis in Viridibacillus sp. extracts. Front. Microbiol. 2022, 13, 820048. [Google Scholar] [CrossRef] [PubMed]
- Tsekhmistrenko, S.I.; Bityutskyy, V.S.; Tsekhmistrenko, O.S.; Horalskyi, L.P.; Tymoshok, N.O.; Spivak, M.Y. Bacterial synthesis of nanoparticles: A green approach. Biosyst. Divers. 2020, 28, 9–17. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Sheikh, H.I.; Sarkar, T.; Edinur, H.A.; Pati, S.; Ray, R.R. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front. Microbiol. 2021, 12, 636588. [Google Scholar] [CrossRef] [PubMed]
- Thajuddin, N.; Dhanasekaran, D. (Eds.) Algae: Organisms for Imminent Biotechnology; BoD–Books on Demand: Norderstedt, Germany, 2016. [Google Scholar]
- Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-friendly greener synthesis of nanoparticles. Adv. Pharm. Bull. 2020, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Bahri, S.S.; Harun, Z.; Hubadillah, S.K.; Salleh, W.N.W.; Rosman, N.; Kamaruddin, N.H.; Azhar, F.H.; Sazali, N.; Ahmad, R.A.R.; Basri, H. Review on recent advance biosynthesis of TiO2 nanoparticles from plant-mediated materials: Characterization, mechanism and application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1142, 012005. [Google Scholar] [CrossRef]
- Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process. Synth. 2020, 9, 171–181. [Google Scholar] [CrossRef]
- Niluxsshun MC, D.; Masilamani, K.; Mathiventhan, U. Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorg. Chem. Appl. 2021, 2021, 6695734. [Google Scholar] [CrossRef]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of nanomaterials: Tools and challenges. In Nanomaterials for Food Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313–353. [Google Scholar]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of green synthesized metal nanoparticles—A review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef]
- Dabirian, E.; Hajipour, A.; Mehrizi, A.A.; Karaman, C.; Karimi, F.; Loke-Show, P.; Karaman, O. Nanoparticles application on fuel production from biological resources: A review. Fuel 2023, 331, 125682. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T. Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2019, 43, 1387–1410. [Google Scholar] [CrossRef]
- Dharma, H.N.C.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.D.; Rahman, M.A.; Jafri, N.N.M.; Suhaimin, N.S.; Nasir, A.M.; et al. A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef]
- Al Malki, J.S.; Hussien, N.A.; Akkad, L.M.; Al Thurmani, S.O.; Al Motiri, A.E. Green Synthesis of Silver and Titanium Oxide Nanoparticles Using Tea and Eggshell Wastes, Their Characterization, and Biocompatibility Evaluation. Sustainability 2023, 15, 11858. [Google Scholar] [CrossRef]
- Dai, Y.; Dong, H.; Sun, L.; Li, J.; Zhang, T.; Geng, Y.; Liu, Z. Life cycle environmental impact assessment of titanium dioxide production in China. Environ. Impact Assess. Rev. 2024, 105, 107412. [Google Scholar] [CrossRef]
- Middlemas, S.; Fang, Z.Z.; Fan, P. Life cycle assessment comparison of emerging and traditional Titanium dioxide manufacturing processes. J. Clean. Prod. 2015, 89, 137–147. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 2019, 231, 1200–1217. [Google Scholar] [CrossRef]
- Grubb, G.F.; Bakshi, B.R. Life cycle of titanium dioxide nanoparticle production: Impact of emissions and use of resources. J. Ind. Ecol. 2011, 15, 81–95. [Google Scholar] [CrossRef]
- Saad, A.F.; Selim, Y.A.; Hamada, M.; Elywa, M. Green Synthesis of Titanium Dioxide Nanoparticles Using Ethanolic Extract of Green Tea and Their Antioxidant Activities. J. Appl. Spectrosc. 2023, 90, 1142–1148. [Google Scholar] [CrossRef]
- Joseph, S.; Nallaswamy, D.; Kumar, S.R.; Dathan, P.; Ismail, S.; Rasheed, N.; Munnuswamy, T.; Jose, L. Preparation and Characterization of Titanium Oxide, Zinc Oxide based Nanocomposite Material using Green Tea Extract. Trends Biomater. Artif. Organs 2024, 38, 14–22. [Google Scholar]
- Nabi, G.; Ain, Q.U.; Tahir, M.B.; Nadeem Riaz, K.; Iqbal, T.; Rafique, M.; Hussain, S.; Raza, W.; Aslam, I.; Rizwan, M. Green synthesis of TiO2 nanoparticles using lemon peel extract: Their optical and photocatalytic properties. Int. J. Environ. Anal. Chem. 2022, 102, 434–442. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vidhya, E.; Anand, G.C.; Nilavukkarasi, M.; Punitha, V.N.; Sakthivel, B. Eco friendly synthesis of TiO2 nanoparticles using aqueous Ocimum americanum L. leaf extracts and their antimicrobial, anti-proliferative and photocatalytic activities. Vegetos 2020, 33, 805–810. [Google Scholar] [CrossRef]
- Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 2018, 336, 386–396. [Google Scholar] [CrossRef]
- Sengupta, A.; Sarkar, A. Synthesis and characterization of nanoparticles from neem leaves and banana peels: A green prospect for dye degradation in wastewater. Ecotoxicology 2022, 31, 537–548. [Google Scholar] [CrossRef]
- Haque AN, M.A.; Remadevi, R.; Naebe, M. Lemongrass (Cymbopogon): A review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477. [Google Scholar] [CrossRef]
- Nimenibo-Uadia, R.; Nwosu, E.O. Phytochemical, proximate and mineral elements composition of lemongrass (cymbopogon citratus (DC) stapf) grown in ekosodin, Benin city, Nigeria. Niger. J. Pharm. Appl. Sci. Res. 2020, 9, 52–56. [Google Scholar]
- Ajayi, E.; Afolayan, A. Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015017. [Google Scholar] [CrossRef]
- Patiño-Ruiz, D.; Sánchez-Botero, L.; Tejeda-Benitez, L.; Hinestroza, J.; Herrera, A. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100377. [Google Scholar] [CrossRef]
- Cherian, T.; Ali, K.; Saquib, Q.; Faisal, M.; Wahab, R.; Musarrat, J. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Sidik DA, B.; Hairom NH, H.; Ahmad, M.K.; Madon, R.H.; Mohammad, A.W. Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Saf. Environ. Prot. 2020, 143, 273–284. [Google Scholar] [CrossRef]
- Saavedra, A.; Correa, S.; Nuñez, B.; Patiño, E.; Herrera, A. Improvement of titanium dioxide nanoparticle synthesis with green chemistry methods using lemongrass (Cymbopogon citratus) extract. Mater. Tehnol. 2020, 54, 755–759. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Fahlman, B.D. What is “materials chemistry”? In Materials Chemistry; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–30. [Google Scholar]
- Nyakudya, P.; Madushele, N.; Madyira, D.M. A Review of Industrial Symbiosis in Influencing Green Manufacturing. In Proceedings of the 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 25–27 May 2022; pp. 80–84. [Google Scholar]
- Pamu, Y.; Alugubelli, S. A comparative study of environmental impacts due to conventional and sustainable concrete. Mater. Today Proc. 2023, 92, 112–120. [Google Scholar] [CrossRef]
- Tragnone, B.M.; Serreli, M.; Arzoumanidis, I.; Pelino, C.A.; Petti, L. Using the product social impact life cycle assessment (PSILCA) database for product comparison: Confetti case study. Int. J. Life Cycle Assess. 2023, 28, 1031–1053. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Gray, E.M. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Miranda-Martínez, E. Degradación Fotocatalítica de Cefalexina, Mediante el uso de Nanopartículas de TiO2 Soportadas en un Biopolímero. Master’s Thesis, Universidad Politécnica del Estado de Morelos, Jiutepec, Mexico, 2023. [Google Scholar]
- Babaizadeh, H.; Hassan, M. Life cycle assessment of nano-sized titanium dioxide coating on residential windows. Constr. Build. Mater. 2013, 40, 314–321. [Google Scholar] [CrossRef]
- Shah SN, A.; Shah, Z.; Hussain, M.; Khan, M. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg. Chem. Appl. 2017, 2017, 4101735. [Google Scholar] [CrossRef]
- Di Noi, C.; Ciroth, A.; Srocka, M. openLCA 1.7 Comprehensive User Manual; GreenDeLTa: Berlin, Germany, 2017. [Google Scholar]
- Lokesh, K.; Matharu, A.S.; Kookos, I.K.; Ladakis, D.; Koutinas, A.; Morone, P.; Clark, J. Hybridised sustainability metrics for use in life cycle assessment of bio-based products: Resource efficiency and circularity. Green Chem. 2020, 22, 803–813. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.; Ferlin, F.; Vaccaro, L.; Hessel, V. Life cycle assessment of multistep benzoxazole synthesis: From batch to waste-minimised continuous flow systems. Green Chem. 2022, 24, 325–337. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Z.; Hicks, A.L. Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ. Sci. Technol. 2019, 53, 4078–4087. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Q.; Wang, W.; Wang, Y.; Lu, D. Characterization of Waste Biomass Fuel Prepared from Coffee and Tea Production: Its Properties, Combustion, and Emissions. Sustainability 2024, 16, 7246. [Google Scholar] [CrossRef]
- Roy, A.; Bhandari, S.; Sen, T. Room-Temperature Processable TiO2 Solar Paint for Dye-Sensitized Solar Cells. Sustainability 2023, 15, 16610. [Google Scholar] [CrossRef]
Chloride Route | Green Synthesis | |
---|---|---|
Feedstock | Natorsynrut/slag | Lemongrass leaves |
Process type | Pyrolysis | Biosynthesis |
Process temp | Chlor: 900–1000 °C Oxid: >1500 °C | Digest: 70–100 °C Calc: 550 °C |
Particle formation | TiCl4 oxidation | C12H28O4Ti |
Reagent type | Cl2 GAS | Aqueous extract of lemongrass |
Impurity removal | Distillation | Crystallization |
Green Synthesis | Chloride Route | |
---|---|---|
Raw material | Green synthesis uses more environmentally friendly precursors since it uses water and does not generate hazardous waste, unlike hydrochloric acid, which is corrosive, and ethanol, which emits volatile compounds. | The traditional route uses hydrochloric acid, which is highly corrosive and generates hazardous waste that requires specialized treatment to avoid impacting the environment. |
Synthesis process | It is performed at lower temperatures in aqueous media, which reduces the need for high energies and minimizes hazardous emissions. | It requires high temperatures and generates hazardous by-products such as HCl, which needs to be neutralized and disposed of properly. |
Energy and resource consumption | Lemongrass leaves are a natural and renewable source of reducing and stabilizing compounds, eliminating the need for chemical and synthetic agents. Synthesis is performed at low temperatures (70–100 °C), reducing energy use. | It uses high temperatures (800–1400 °C) and requires large amounts of energy to generate heat through electricity and fossil fuels. |
Waste and emissions | In green synthesis, waste and emissions are minimal:
| It generates large amounts of HCl, CO2, and other toxic by-products, which contribute to climate change and environmental pollution. |
Inputs | Outputs | |
---|---|---|
Biosynthesis |
|
|
Environmental Impact | Green Synthesis | Conventional Synthesis |
---|---|---|
Acidification and eutrophication | 0.00644 | 0.0266 |
Ecotoxicity | 9.34 × 10−6 | 4.78 × 10−8 |
Carcinogenics | 0 | 3.92 × 10−10 |
Climate change | 5.27 × 10−8 | 7.69 × 10−7 |
Ozone layer depletion | 0 | 1.50 × 10−11 |
Respiratory effects caused by inorganic substances | 1.37 × 10−7 | 1.20 × 10−6 |
Respiratory effects caused by organic substances | 1.65 × 10−7 | 8.26 × 10−7 |
Minerals | 0.00166 | 0.00112 |
Parameter | Green Synthesis | Chloride Route |
---|---|---|
Efficiency % | 92 | 74 |
Purity % | 100 | 100 |
Reaction time (h) | 3 | 3.25 |
Quantity of waste | No se generan | No se generan |
Costs | 83.6 | 88.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rojas, M.d.P.; Bustos-Terrones, V.; Díaz-Cárdenas, M.Y.; Vázquez-Vélez, E.; Martínez, H. Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis. Sustainability 2024, 16, 7751. https://doi.org/10.3390/su16177751
Rodríguez-Rojas MdP, Bustos-Terrones V, Díaz-Cárdenas MY, Vázquez-Vélez E, Martínez H. Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis. Sustainability. 2024; 16(17):7751. https://doi.org/10.3390/su16177751
Chicago/Turabian StyleRodríguez-Rojas, María del Pilar, Victoria Bustos-Terrones, María Yesenia Díaz-Cárdenas, Edna Vázquez-Vélez, and Horacio Martínez. 2024. "Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis" Sustainability 16, no. 17: 7751. https://doi.org/10.3390/su16177751
APA StyleRodríguez-Rojas, M. d. P., Bustos-Terrones, V., Díaz-Cárdenas, M. Y., Vázquez-Vélez, E., & Martínez, H. (2024). Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis. Sustainability, 16(17), 7751. https://doi.org/10.3390/su16177751