Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops
Abstract
:1. Introduction
2. Total Loss and Waste on Farm and at Harvest
3. Loss and Waste in Postharvest Chain
3.1. Managing Postharvest Loss and Waste for Horticultural Crops
3.1.1. Optimum Harvest Time
3.1.2. Storage Temperature and Relative Humidity
3.1.3. Storage System
3.1.4. Physiological Disorder Management
3.1.5. Managing Postharvest Pathogens
3.1.6. Fruit and Vegetable Quality in the Packing Line
3.1.7. Coating and Reducing Weight Loss during Shelf Life
3.1.8. Consumer Preference
3.2. Prediction of Loss and Waste in Postharvest Chain
4. Interaction between Total Loss and Crop Waste on the Farm and in Postharvest
5. Global Strategies to Manage Loss and Reduce Waste in the Postharvest Chain
- Connecting growers worldwide through international grower associations can educate, manage, guide, and explore new integrative technologies and markets to reduce losses and enhance economic and sustainable profitability.
- Fighting global hunger by implementing strategies to ship unharvested and unused crops from some parts of the world to other countries in need.
- Training growers and stakeholders on the latest storage technologies for every crop.
- Building an integrative prediction model to reduce loss and prevent waste for every individual crop, supporting global food security through new and existing international organizations such as the FAO.
- Educating people about food safety regulations and rules in both developed and developing countries.
- Using databases from research centers and universities worldwide to build strong and reliable estimates of actual food loss and waste globally.
6. The Effects of New Agricultural Technologies on Crop Loss and Waste on Field and in the Postharvest Chain
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011; Available online: www.fao.org/docrep/014/mb060e/mb060e00.pd (accessed on 15 May 2024).
- Dorling, D. World population prospects at the un: Our numbers are not our problem? In The Struggle for Social Sustainability; Policy Press: Bristol, UK, 2021; pp. 129–154. [Google Scholar]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.-K.; Rogelj, J. Climate Change 2021: The Physical Science Basis. Contribution of Working Group i to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf (accessed on 15 May 2024).
- Herrera, J.P.; Rabezara, J.Y.; Ravelomanantsoa, N.A.F.; Metz, M.; France, C.; Owens, A.; Pender, M.; Nunn, C.L.; Kramer, R.A. Food insecurity related to agricultural practices and household characteristics in rural communities of northeast madagascar. Food Secur. 2021, 13, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Kotykova, O.; Babych, M. Economic impact of food loss and waste. Agris Line Pap. Econ. Inform. 2019, 11, 55–71. [Google Scholar] [CrossRef]
- Galford, G.L.; Peña, O.; Sullivan, A.K.; Nash, J.; Gurwick, N.; Pirolli, G.; Richards, M.; White, J.; Wollenberg, E. Agricultural development addresses food loss and waste while reducing greenhouse gas emissions. Sci. Total Environ. 2020, 699, 134318. [Google Scholar] [CrossRef]
- Gunders, D. Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fozrk to Landfill. 2012. Available online: https://mde.maryland.gov/programs/land/RecyclingandOperationsprogram/Documents/www.mde.state.md.us/assets/document/Food%20Scraps/wasted-food-IP.pdf (accessed on 10 May 2024).
- Bigelow, D.; Borchers, A. Major Uses of Land in the United States, 2012. 2017. Available online: https://ageconsearch.umn.edu/record/263079/?v=pdf (accessed on 10 May 2024).
- Baker, G.A.; Gray, L.C.; Harwood, M.J.; Osland, T.J.; Tooley, J.B.C. On-farm food loss in northern and central california: Results of field survey measurements. Resour. Conserv. Recycl. 2019, 149, 541–549. [Google Scholar] [CrossRef]
- Mitchell, K. Here’s Why Michigan Orchards Are Leaving Apples on Trees 2023: FOX59. Available online: https://fox59.com/news/national-world/heres-why-michigan-orchards-are-leaving-apples-on-trees/ (accessed on 10 May 2024).
- Jinich, A. Millions of U.S. Apples Were Almost Left to Rot. Now, They’ll Go to Hungry Families. 2023. NPR. Available online: https://www.npr.org/2023/11/27/1215477759/millions-of-u-s-apples-were-almost-left-to-rot-now-theyll-go-to-hungry-families (accessed on 10 May 2024).
- Van Der Vorst, J.G.; Beulens, A.J. Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 2002, 32, 409–430. [Google Scholar] [CrossRef]
- Murthy, D.S.; Gajanana, T.; Sudha, M.; Dakshinamoorthy, V. Marketing and post-harvest losses in fruits: Its implications on availability and economy. Indian J. Agric. Econ. 2009, 64, 259–275. [Google Scholar]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste—Why are we losing and wasting food? Foods 2019, 8, 297. [Google Scholar] [CrossRef]
- UNEP. Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Ninama, N.; Gangal, L.; Khayum, A.; SB, H.; HM, S.; Singh, A. Post-harvest biotechnology or genetic engineering solutions: Extending shelf life and reducing food waste. J. Adv. Biol. Biotechnol. 2024, 27, 1–26. [Google Scholar] [CrossRef]
- Dolan, C.; Humphrey, J.F.; Harris-Pascal, C. Horticulture Commodity Chains: The Impact of the UK Market on the African Fresh Vegetable Industry; Working Paper 96; Institute of Develop Studies, University of Sussex: Brighton, UK, 1999. [Google Scholar]
- Johnson, L.K.; Dunning, R.D.; Bloom, J.D.; Gunter, C.C.; Boyette, M.D.; Creamer, N.G. Estimating on-farm food loss at the field level: A methodology and applied case study on a north carolina farm. Resour. Conserv. Recycl. 2018, 137, 243–250. [Google Scholar] [CrossRef]
- Johnson, L.K.; Dunning, R.D.; Gunter, C.C.; Bloom, J.D.; Boyette, M.D.; Creamer, N.G. Field measurement in vegetable crops indicates need for reevaluation of on-farm food loss estimates in north america. Agric. Syst. 2018, 167, 136–142. [Google Scholar] [CrossRef]
- Nassar, L.; Okwuchi, I.E.; Saad, M.; Karray, F.; Ponnambalam, K. Deep learning based approach for fresh produce market price prediction. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Noboa, S.; Solís, E.; Cuenca, E. Ecuador agricultural product price forecast: A comparative study of deep learning models. In Proceedings of the Conference on Information and Communication Technologies, Manta, Ecuador, 12–14 October 2022; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Kader, A.A. Postharvest technology of horticultural crops-an overview from farm to fork. Ethiop. J. Appl. Sci. Technol. 2013, 1–8. [Google Scholar]
- Anand, S.; Barua, M. Modeling the key factors leading to post-harvest loss and waste of fruits and vegetables in the agri-fresh produce supply chain. Comput. Electron. Agric. 2022, 198, 106936. [Google Scholar] [CrossRef]
- Matar, C.; Guillard, V.; Gauche, K.; Costa, S.; Gontard, N.; Guilbert, S.; Gaucel, S. Consumer behaviour in the prediction of postharvest losses reduction for fresh strawberries packed in modified atmosphere packaging. Postharvest Biol. Technol. 2020, 163, 111119. [Google Scholar] [CrossRef]
- Matar, C.; Gaucel, S.; Gontard, N.; Guilbert, S.; Guillard, V. Predicting shelf life gain of fresh strawberries ‘Charlotte cv’ in modified atmosphere packaging. Postharvest Biol. Technol. 2018, 142, 28–38. [Google Scholar] [CrossRef]
- EPA. Wasted Food Scale 2023; United States Environmental Protection Agency. Available online: https://www.epa.gov/sustainable-management-food/wasted-food-scale (accessed on 5 May 2024).
- Neff, R.A.; Spiker, M.L.; Truant, P.L. Wasted food: Us consumers’ reported awareness, attitudes, and behaviors. PLoS ONE 2015, 10, e0127881. [Google Scholar] [CrossRef]
- Broćić, Z.; Dolijanović, Ž.; Poštić, D.; Milošević, D.; Savić, J. Yield, tuber quality and weight losses during storage of ten potato cultivars grown at three sites in serbia. Potato Res. 2016, 59, 21–34. [Google Scholar] [CrossRef]
- Watkins, C.B.; Mattheis, J.P. Postharvest physiological disorders in fruits and vegetables. In Apples; de Freitas, S.T., Pareek, S., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Al Shoffe, Y.; Watkins, C.B.; Basedow, M. Common storage disorders of apple fruit. Tree Fruit News 2021, 9, 1–5. [Google Scholar]
- Al Shoffe, Y. Susceptibility and expression of chilling injury. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wang, W.; Hu, W.; Ding, T.; Ye, X.; Liu, D. Shelf-life prediction of strawberry at different temperatures during storage using kinetic analysis and model development. J. Food Process. Preserv. 2018, 42, e13693. [Google Scholar] [CrossRef]
- Gil, M.I.; Beaudry, R.M. Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Mditshwa, A.; Fawole, O.A.; Opara, U.L. Recent developments on dynamic controlled atmosphere storage of apples—A review. Food Packag. Shelf Life 2018, 16, 59–68. [Google Scholar] [CrossRef]
- Kawhena, T.G.; Fawole, O.A.; Opara, U.L. Application of dynamic controlled atmosphere technologies to reduce incidence of physiological disorders and maintain quality of ‘granny smith’apples. Agriculture 2021, 11, 491. [Google Scholar] [CrossRef]
- Nock, J.; Doerflinger, F.; Sutanto, G.; Al-Shoffe, Y.; Gunes, N.; Zhang, Y.; Wright, A.; DeLong, J.; Watkins, C. Managing stem-end flesh browning, a physiological disorder of ‘gala’ apples. Acta Hortic. 2019, 1256, 163–168. [Google Scholar] [CrossRef]
- Zanella, A.; Cazzanelli, P.; Panarese, A.; Coser, M.; Chistè, C.; Zeni, F. Fruit fluorescence response to low oxygen stress: Modern storage technologies compared to 1-mcp treatment of apple. Acta Hortic. 2005, 682, 1535–1542. [Google Scholar] [CrossRef]
- Saltveit, M.E. Biological basis for CA and MA. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–22. [Google Scholar]
- Huang, C.-L.; Liao, W.C.; Chan, C.-F.; Lai, Y.-C. Storage performance of taiwanese sweet potato cultivars. J. Food Sci. Technol. 2014, 51, 4019–4025. [Google Scholar] [CrossRef]
- Gikundi, E.N.; Buzera, A.; Orina, I.; Sila, D. Impact of the temperature reconditioning of cold-stored potatoes on the color of potato chips and french fries. Foods 2024, 13, 652. [Google Scholar] [CrossRef]
- United States Department of Agriculture Marketing Service. Report Results for Retail; USDA: Hutchinson, KS, USA, 2022. [Google Scholar]
- Mudau, A.R.; Soundy, P.; Araya, H.T.; Mudau, F.N. Influence of modified atmosphere packaging on postharvest quality of baby spinach (Spinacia oleracea L.) leaves. HortScience 2018, 53, 224–230. [Google Scholar] [CrossRef]
- Follett, E. Effect of Crop Load, Conditioning, Gradual Cooling, and Storage Temperature on the Development of Multiple Physiological Disorders in three Norwegian Apple Cultivars. Master’s Thesis, Norwegian University of Life Science, Trondheim, Norway, 2023; p. 86. [Google Scholar]
- Al Shoffe, Y.; Nock, J.F.; Zhang, Y.; Zhu, L.-W.; Watkins, C.B. Comparisons of mineral and non-mineral prediction methods for bitter pit in ‘honeycrisp’apples. Sci. Hortic. 2019, 254, 116–123. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S.; Gullino, M.L. Postharvest Pathology: Next Generation Solutions to Reducing Losses and Enhancing Safety; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 11. [Google Scholar]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Adaskaveg, J.E.; Förster, H.; Prusky, D.B. Postharvest Pathology of Fruit and Nut Crops: Principles, Concepts, and Management Practices; American Phytopathological Society: St. Paul, MN, USA, 2022. [Google Scholar]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Beckerman, J.; Palmer, C.; Tedford, E.; Ypema, H. Fifty years of fungicide development, deployment, and future use. Phytopathology 2023, 113, 694–706. [Google Scholar] [CrossRef]
- Norelli, J.L.; Wisniewski, M.; Fazio, G.; Burchard, E.; Gutierrez, B.; Levin, E.; Droby, S. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to penicillium expansum in malus sieversii. PLoS ONE 2017, 12, e0172949. [Google Scholar] [CrossRef]
- Wang, Y.; Rosen, B.; Scoffield, J.; Egnin, M.; Mortley, D.; Steiner, S.; Cook, D.; He, G. Isolation and analysis of resistance gene homologues in sweetpotato. Plant Breed. 2010, 129, 519–525. [Google Scholar] [CrossRef]
- Tian, S.; Torres, R.; Ballester, A.; Li, B.; Vilanova, L.; González-Candelas, L. Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biol. Technol. 2016, 122, 11–21. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Malacrinò, A.; Wisniewski, M.; Cacciola, S.O.; Schena, L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control. 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Zhang, H.; Boateng, N.A.S.; Ngea, G.L.N.; Shi, Y.; Lin, H.; Yang, Q.; Wang, K.; Zhang, X.; Zhao, L.; Droby, S. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4906–4930. [Google Scholar] [CrossRef]
- Wisniewski, M.E.; Wilson, C.L. Biological control of postharvest diseases of fruits and vegetables: Recent advances. HortScience 1992, 27, 94–98. [Google Scholar] [CrossRef]
- Nunes, C.A. Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol. 2012, 133, 181–196. [Google Scholar] [CrossRef]
- Ait-Oubahou, A.; Brecht, J.K.; Yahia, E.M. Packing operations. In Postharvest Technology of Perishable Horticultural Commodities; Elsevier: Amsterdam, The Netherlands, 2019; pp. 311–351. [Google Scholar]
- Guilbert, S.; Gontard, N.; Gorris, L.G. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT-Food Sci. Technol. 1996, 29, 10–17. [Google Scholar] [CrossRef]
- McHugh, T.; Senesi, E. Apple wraps: A novel method to improve the quality and extend the shelf life of fresh-cut apples. J. Food Sci. 2000, 65, 480–485. [Google Scholar] [CrossRef]
- Dhall, R. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Park, H.; Chinnan, M.; Shewfelt, R. Edible corn-zein film coatings to extend storage life of tomatoes. J. Food Process. Preserv. 1994, 18, 317–331. [Google Scholar] [CrossRef]
- Shah, S.U.; Hashmi, M.S.; Khan, M.R.; Ahmad, A.; Riaz, A.; Al Shoffe, Y.; Wahab, S.; Ayub, M.; Ippolito, A. Integration of chitosan coating and short-term hypobaric treatment extends postharvest life and upregulates defense-related enzymes in apple fruit. Eur. J. Plant Pathol. 2024, 168, 231–247. [Google Scholar] [CrossRef]
- Ribeiro, C.; Vicente, A.A.; Teixeira, J.A.; Miranda, C. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol. Technol. 2007, 44, 63–70. [Google Scholar] [CrossRef]
- Li, X.-y.; Du, X.l.; Liu, Y.; Tong, L.-J.; Wang, Q.; Li, J.-L. Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Sci. Hortic. 2019, 257, 108685. [Google Scholar] [CrossRef]
- Cruz, V.; Rojas, R.; Saucedo-Pompa, S.; Martínez, D.G.; Aguilera-Carbó, A.F.; Alvarez, O.B.; Rodríguez, R.; Ruiz, J.; Aguilar, C.N. Improvement of shelf life and sensory quality of pears using a specialized edible coating. J. Chem. 2015, 2015, 138707. [Google Scholar] [CrossRef]
- Craig, H. What’s food loss and waste got to do with climate change. J. Advert. Res. 2015, 35, 19–34. [Google Scholar]
- Huang, W.-S.; Kuo, H.-Y.; Tung, S.-Y.; Chen, H.-S. Assessing consumer preferences for suboptimal food: Application of a choice experiment in citrus fruit retail. Foods 2020, 10, 15. [Google Scholar] [CrossRef]
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef]
- Salehi, F. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. Int. J. Fruit Sci. 2020, 20, 506–520. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of date fruit quality attributes during cold storage based on their electrical properties using artificial neural networks models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef]
- Nordey, T.; Davrieux, F.; Léchaudel, M. Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol. Technol. 2019, 153, 52–60. [Google Scholar] [CrossRef]
- Spotts, R.A.; Serdani, M.; Wallis, K.M.; Walter, M.; Harris-Virgin, T.; Spotts, K.; Sugar, D.; Xiao, C.L.; Qu, A. At-harvest prediction of grey mould risk in pear fruit in long-term cold storage. Crop Prot. 2009, 28, 414–420. [Google Scholar] [CrossRef]
- Al Shoffe, Y.; Nock, J.F.; Baugher, T.A.; Marini, R.P.; Watkins, C.B. Bitter pit and soft scald development during storage of unconditioned and conditioned ‘honeycrisp’apples in relation to mineral contents and harvest indices. Postharvest Biol. Technol. 2020, 160, 111044. [Google Scholar] [CrossRef]
- Visse-Mansiaux, M.; Soyeurt, H.; Herrera, J.M.; Torche, J.-M.; Vanderschuren, H.; Dupuis, B. Prediction of potato sprouting during storage. Field Crops Res. 2022, 278, 08396. [Google Scholar] [CrossRef]
- Hertog, M.; Boerrigter, H.; Van den Boogaard, G.; Tijskens, L.; Van Schaik, A. Predicting keeping quality of strawberries (cv. ‘Elsanta’) packed under modified atmospheres: An integrated model approach. Postharvest Biol. Technol. 1999, 15, 1–12. [Google Scholar] [CrossRef]
- Heltoft, P.; Wold, A.-B.; Molteberg, E.L. Maturity indicators for prediction of potato (Solanum tuberosum L.) quality during storage. Postharvest Biol. Technol. 2017, 129, 97–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Nock, J.F.; Al Shoffe, Y.; Watkins, C.B. Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy. Postharvest Biol. Technol. 2019, 151, 111–118. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Nagle, M.; Khuwijitjaru, P.; Müller, J. Robust nirs models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol. Technol. 2016, 111, 31–40. [Google Scholar] [CrossRef]
- Pérez-Marín, D.; Sánchez, M.-T.; Paz, P.; Soriano, M.-A.; Guerrero, J.-E.; Garrido-Varo, A. Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage. Postharvest Biol. Technol. 2009, 52, 180–188. [Google Scholar] [CrossRef]
- Cakmak, H. Assessment of fresh fruit and vegetable quality with non-destructive methods. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–331. [Google Scholar]
- Magwaza, L.S.; Tesfay, S.Z. A review of destructive and non-destructive methods for determining avocado fruit maturity. Food Bioprocess Technol. 2015, 8, 1995–2011. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Ekramirad, N.; Rady, A.; Hamidisepehr, A.; Donohue, K.D.; Villanueva, R.T.; Parrish, C.A.; Li, M. Non-destructive technologies for detecting insect infestation in fruits and vegetables under postharvest conditions: A critical review. Foods 2020, 9, 927. [Google Scholar] [CrossRef] [PubMed]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Opara, I.K.; Opara, U.L.; Okolie, J.A.; Fawole, O.A. Machine learning application in horticulture and prospects for predicting fresh produce losses and waste: A review. Plants 2024, 13, 1200. [Google Scholar] [CrossRef] [PubMed]
- Carola, F.; Alicia, E.; Mingione, M.; Lasinio, G.J. Methodological proposal for monitoring sdg target 12.3. Sub-indicator 12.3. 1. A the food loss index design, data collection methods and challenges. In FAO Statistics Working Paper Series; FAO: Rome, Italy, 2018. [Google Scholar]
- Damerum, A.; Chapman, M.A.; Taylor, G. Innovative breeding technologies in lettuce for improved post-harvest quality. Postharvest Biol. Technol. 2020, 168, 111266. [Google Scholar] [CrossRef]
- Cocetta, G.; Natalini, A. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. Front. Plant Sci. 2022, 13, 968315. [Google Scholar] [CrossRef]
- Kenis, K.; Keulemans, J.; Davey, M.W. Identification and stability of qtls for fruit quality traits in apple. Tree Genet. Genomes 2008, 4, 647–661. [Google Scholar] [CrossRef]
- Shipman, E.N.; Yu, J.; Zhou, J.; Albornoz, K.; Beckles, D.M. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Hortic. Res. 2021, 8, 1. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative technologies in digital agriculture: Leveraging internet of things, remote sensing, and artificial intelligence for smart crop management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E. What can artificial intelligence approaches bring to an improved and efficient harvesting and postharvest handling of date fruit (Phoenix dactylifera L.)? A review. Postharvest Biol. Technol. 2024, 213, 112926. [Google Scholar] [CrossRef]
- Gabriëls, S.H.; Mishra, P.; Mensink, M.G.; Spoelstra, P.; Woltering, E.J. Non-destructive measurement of internal browning in mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis. Postharvest Biol. Technol. 2020, 166, 111206. [Google Scholar] [CrossRef]
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 2021, 7, e08539. [Google Scholar] [CrossRef] [PubMed]
- Benyam, A.A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Satya, R.; Ismayana, A. A digital business modelling for post-harvest loses and quality classification of potato agroindustry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
Fruit | Main Causes of Postharvest Loss |
---|---|
Apple | High respiration rate, high storage temperature, physiological disorders, softening |
Pear | Physiological disorders, softening, CO2 injury, O2 injury during CA storage |
Peaches, nectarines, plums, apricots | Physiological disorders, chilling injury, softening |
Sweet cherries | Water loss, shriveling, pitting, stem browning, softening |
Strawberries | Bruise, decay, water loss |
Raspberries, blackberries, blueberries | Bruise, decay, water loss, shriveling |
Table grapes | Berry shatter, water loss, decay, rachis, peduncle browning |
Bananas | Physiological disorders, delay ripening, rapid ripening, decay |
Mangoes | Chilling injury, delay ripening, decay |
Papayas | Mechanical injury, chilling injury, decay |
Pineapples | Mechanical injury, translucency, chilling injury, postharvest diseases |
Avocados | Fruit ripening, water loss, storage temperature, decay |
Cherimoyas | Chilling injury, mechanical damage, splitting, decay |
Citrus | Chilling injury, physiological disorders, water loss, decay |
Dates | Sunburn, fruit maturity, chilling injury, water loss |
Figs | Decay, mechanical damage, weight loss |
Guavas | Rapid ripening, water loss, mechanical damage, chilling injury, decay |
Kiwifruit | Physical damage, physiological disorders, decay |
Melons | Chilling injury, mechanical damage, decay |
Persimmons | Chilling injury, flesh discoloration, decay, softening |
Prickly pear | Water loss, pericarp thickness, maturity, decay |
Pomegranates | Chilling injury, fruit cracking, physiological disorders, sunburn, water loss, aril browning, decay |
Fresh-cut fruits: apples and pears | Browning, water loss, microbial growth |
Fresh-cut fruits: mangoes | Browning, water loss, microbial growth |
Fresh-cut fruits: melons | Microbial growth, water loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shoffe, Y.; Johnson, L.K. Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops. Sustainability 2024, 16, 7803. https://doi.org/10.3390/su16177803
Al Shoffe Y, Johnson LK. Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops. Sustainability. 2024; 16(17):7803. https://doi.org/10.3390/su16177803
Chicago/Turabian StyleAl Shoffe, Yosef, and Lisa K. Johnson. 2024. "Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops" Sustainability 16, no. 17: 7803. https://doi.org/10.3390/su16177803
APA StyleAl Shoffe, Y., & Johnson, L. K. (2024). Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops. Sustainability, 16(17), 7803. https://doi.org/10.3390/su16177803