Economic Impacts of the Electric Road System Implementation on the Rotterdam–Antwerp Corridor
Abstract
:1. Introduction
2. Methodology
2.1. Research Questions
- First, on the potential demand: what are the potential ERS traffic volumes that could use the Antwerp–Rotterdam corridor if it were developed? Are those sufficient to justify ERS implementation?
- Second, on the infrastructure investment and operation: what is the required investment, and can the break-even point for profitability be reached for this corridor in isolation, or is a wider electrified network required? Would this be a good investment at this scale?
- Third, on the best corridor route selection: with alternative road links available between Rotterdam and Antwerp, which route is best suited to be electrified from an economic perspective?
- Finally, from the point of view of the users—road freight transport operators: what do the economics look like, and could trucks be operated on ERS profitably in this corridor setting? Is this similar for all ERS technologies, or are there substantial differences due to which a specific ERS technology should be preferred?
2.2. Approach
3. Modelling Inputs
3.1. Technology Definition
3.2. Vehicles
3.2.1. Cost and Energy Performance
3.2.2. Energy Cost and Price
3.3. Infrastructure Cost
3.4. Geography
3.5. Traffic Data
3.6. Identification of Alternative Routes
3.7. Scenario Definition
4. Findings
4.1. Infrastructure Investment
4.2. Profitability of Infrastructure Operator
4.3. Economic Performance of Road Freight Transport Operators
4.4. Potential Demand
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wietschel, M.; Gnann, T.; Kühn, A.; Plötz, P.; Moll, C.; Speth, D.; Buch, J.; Boßmann, T.; Stütz, S.; Schellert, M.; et al. Machbarkeitsstudie zur Ermittlung der Potentiale des Hybrid-Oberleitungs-Lkw; Fraunhofer Institut für System und Innovationsforschung (ISI): Karlsruhe, Germany, 2017. [Google Scholar]
- Wietschel, M.; Gnann, T.; Plötz, P.; Doll, C. Electric Trolley Trucks—A Techno-Economic Assessment for Germany. World Electr. Veh. J. 2019, 10, 86. [Google Scholar] [CrossRef]
- Gnann, T.; Plötz, P.; Kühn, A.; Wietschel, M. How to Decarbonise Heavy Road Transport? ECEEE Summer Study Proc. 2017, 16, 2020. [Google Scholar]
- Jöhrens, J.; Rücker, J.; Kräck, J.; Allekotte, M.; Helms, H.; Biemann, K.; Schillinger, M.; Waßmuth, V.; Paufler-Mann, D.; Frischmuth, F.; et al. Roadmap OH-Lkw: Einführungsszenarien 2020–2030; Institut für Energie- und Umweltforschung: Heidelberg, Germany, 2020. [Google Scholar]
- Hacker, F.; Blanck, R.; Görz, W.; Bernecker, T.; Speiser, J.; Heilbronn, H.; Röckle, F.; Schubert, M.; Nebauer, G. Bewertung und Einführungsstrategien für Oberleitungsgebundene Schwere Nutzfahrzeuge; Fraunhofer-Institut für Arbeitswirtschaft und Organisation (IAO): Berlin, Germany, 2020. [Google Scholar]
- Plötz, P.; Speth, D.; Gnann, T.; Scherrer, A.; Burghard, U.; Hacker, F.; Jöhrens, J. Infrastruktur für Elektro-Lkw im Fernverkehr: Hochleistungsschnelllader und Oberleitung im Vergleich; Fraunhofer-Institut für System- und Innovationsforschung ISI: Karlsruhe, Germany; Berlin, Heidelberg, 2021. [Google Scholar]
- Nylander, J. ELVÄG—E16, DELRAPPORT 8P; Projekt ELVÄG—E16; Region Gavlegorg. 2018. Available online: https://web.archive.org/web/20220119165901/https://www.trafikverket.se/globalassets/dokument/elvagsdokument/reg-gavle_e16_rapport.pdf (accessed on 30 March 2022).
- Berglund, B.; Hörnfeldt, S.; Granzell, N.; Asplund, G.; Dahlström, H.; Wrede, F.; Hellgren, M.; Honeth, N. eRoad Arlanda: Sammanfattning Av Erfarenheter Hittills; Arlanda: Sigtuna, Sweden, 2018. [Google Scholar]
- Jelica, D.; Taljegard, M.; Thorson, L.; Johnsson, F. Hourly Electricity Demand from an Electric Road System—A Swedish Case Study. Appl. Energy 2018, 228, 141–148. [Google Scholar] [CrossRef]
- Rogstadius, J.; Alfredsson, H.; Sällberg, H.; Faxén, K.-F. Electric Road Systems: A No-Regret Investment with Policy Support. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Gustavsson, M.; Lindgren, M. Maturity of Power Transfer Technologies for Electric Road Systems. In Proceedings of the Transport Research Arena 2020, Helsinki, Finland, 27–30 April 2020. [Google Scholar]
- Ainalis, D.T.; Thorne, C.; Cebon, D. White Paper: Decarbonising the UK’s Long-Haul Road Freight at Minimum Economic Cost; SRF: Cambridge, UK, 2020. [Google Scholar]
- Kayser-Bril, C.; Ba, R.; Whitmore, J.; Kinjarapu, A. Decarbonization of Long-Haul Trucking in Eastern Canada: Simulation of the e-Highway Technology; CPCS Canada: Ottawa, ON, Canada, 2021; p. 26. [Google Scholar]
- Aronietis, R.; Vanelslander, T. Economic Impacts of the Catenary Electric Road System Implementation in Flanders, Logibat Project WP2 for VIL. Int. J. Sustain. Transp. 2024, 18, 46–61. [Google Scholar] [CrossRef]
- Movares. Verkenning Electric Road Systems; Movares: Utrecht, The Netherlands, 2020. [Google Scholar]
- Decisio; EV Consult; Sweco. Analyse Kosteneffectiviteit Electric Road Systems (ERS) Voor Nederland; Decisio: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Advanced Propulsion Centre UK For Pack Level Battery Costs, OEMs Are Converging around $100/kWh in 2025 and $80/kWh in 2030. 2021. Available online: https://www.apcuk.co.uk/wp-content/uploads/2021/12/Cost-Floor_Li-ion_Sources_2021.pdf (accessed on 6 September 2023).
- Transport & Environment. Comparing Hydrogen and Battery Electric Trucks; Transport & Environment: London, UK, 2020. [Google Scholar]
- Smajla, I.; Karasalihović Sedlar, D.; Drljača, B.; Jukić, L. Fuel Switch to LNG in Heavy Truck Traffic. Energies 2019, 12, 515. [Google Scholar] [CrossRef]
- Mottschall, M.; Kasten, P.; Rodríguez, F. Decarbonization of On-Road Freight Transport and the Role of LNG from a German Perspective; International Council on Clean Transportation: Berlin, Germany, 2020. [Google Scholar]
- Eurostat Electricity Prices for Non-Household Consumers. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en (accessed on 14 September 2023).
- GlobalPetrolPrices Diesel Prices around the World. Available online: https://www.globalpetrolprices.com/diesel_prices/ (accessed on 14 September 2023).
- UPTR Professionele Diesel. Available online: https://uptr.be/nl/informatie/professionele-diesel/ (accessed on 14 September 2023).
- Carbu.com Prix Des Carburants, Bornes de Recharge Pour Voitures Électriques, Additif Diesel AdBlue. Available online: https://carbu.com/belgique//liste-stations-service/HYDROG/Woluwe-Saint-Pierre/1150/BE_bx_50 (accessed on 14 September 2023).
- PitPoint Prijzen 2023. Available online: https://web.archive.org/web/20231003035232/https://pitpointlng.com/nl/prijzen (accessed on 14 September 2023).
- Strande, R.; Johnsson, T. Energy & Marine. 2013. Available online: https://www.wartsila.com/docs/default-source/product-files/ogi/lng-solutions/article-id-2013-01-lng-value-chain.pdf (accessed on 14 September 2023).
- Stuyts, M. Verkeerscentrum WMS Service Info. Available online: https://wms.michelstuyts.be/service.php?id=346&lang=nl (accessed on 18 November 2021).
- Rijkswaterstaat INtensiteit WEgVAkken (INWEVA). Available online: https://nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/f58eacc9-ca69-487a-a53b-11efad0bbba0 (accessed on 25 April 2023).
- GADM GADM. Available online: https://gadm.org/download_country_v2.html (accessed on 25 April 2023).
- Vlaams Verkeerscentrum Verkeerscentrum WMS Service. Available online: http://indicatoren.verkeerscentrum.be/geoserver/ows (accessed on 25 April 2023).
- Centraal Bureau voor de Statistiek Bedrijfsvoertuigen Actief; Voertuigkenmerken, Regio’s, 1 Januari. Available online: https://www.cbs.nl/nl-nl/cijfers/detail/85239NED (accessed on 9 July 2023).
- Statbel Voertuigenpark. Available online: https://statbel.fgov.be/nl/themas/mobiliteit/verkeer/voertuigenpark (accessed on 7 September 2023).
- Speth, D.; Sauter, V.; Plötz, P.; Signer, T. Synthetic European Road Freight Transport Flow Data. Data Brief 2022, 40, 107786. [Google Scholar] [CrossRef] [PubMed]
Vehicle Type | Energy | Investment, EUR | Energy Consumption 1 | Operation and Maintenance 1 | |||
---|---|---|---|---|---|---|---|
Long Distance | Regional | Long Distance, kWh/km | Regional, kWh/km | Long Distance, EUR/km | Regional, EUR/km | ||
D | D | D | 129,000 1 | 2.46 1 | 2.46 1 | 0.143 | 0.143 |
LNG | LNG | LNG | 174,000 1,5,6 | 2.78 1 | 2.78 1 | 0.143 | 0.143 |
FCEV | H2 | H2 | 324,000 3 | 2.25 1 | 2.25 1 | 0.137 | 0.137 |
BEV800 | GEL | GEL | 163,600 2 | 1.42 4 | 1.42 4 | 0.126 | 0.126 |
BEV1200 | GEL | GEL | 190,400 2 | 1.42 4 | 1.42 4 | 0.126 | 0.126 |
CAT-D | CAT | D | 152,000 1,2 | 1.51 4 | 2.46 1 | 0.107 | 0.143 |
CAT-LNG | CAT | LNG | 197,000 1,2,5&6 | 1.51 4 | 2.78 1 | 0.107 | 0.143 |
CAT-FCEV | CAT | H2 | 347,000 1,2,3 | 1.51 4 | 2.25 1 | 0.107 | 0.137 |
CAT-B400 | CAT | CATEL | 159,800 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
CAT-B200 | CAT | CATEL | 146,400 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
CAT-B100 | CAT | CATEL | 139,700 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCE-D | GCE | D | 144,000 1,2 | 1.51 4 | 2.46 1 | 0.107 | 0.143 |
GCE-LNG | GCE | LNG | 189,000 1,2,5&6 | 1.51 4 | 2.78 1 | 0.107 | 0.143 |
GCE-FCEV | GCE | H2 | 339,000 1,2,3 | 1.51 4 | 2.25 1 | 0.107 | 0.137 |
GCE-B400 | GCE | GCEEL | 151,800 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCE-B200 | GCE | GCEEL | 138,400 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCE-B100 | GCE | GCEEL | 131,700 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCA-D | GCA | D | 150,000 1,2 | 1.51 4 | 2.46 1 | 0.107 | 0.143 |
GCA-LNG | GCA | LNG | 195,000 1,2,5&6 | 1.51 4 | 2.78 1 | 0.107 | 0.143 |
GCA-FCEV | GCA | H2 | 345,000 1,2,3 | 1.51 4 | 2.25 1 | 0.107 | 0.137 |
GCA-B400 | GCA | GCAEL | 157,800 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCA-B200 | GCA | GCAEL | 144,400 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
GCA-B100 | GCA | GCAEL | 137,700 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
IND-D | IND | D | 137,000 1,2 | 1.51 4 | 2.46 1 | 0.107 | 0.143 |
IND-LNG | IND | LNG | 182,000 1,2,5&6 | 1.51 4 | 2.78 1 | 0.107 | 0.143 |
IND-FCEV | IND | H2 | 332,000 1,2,3 | 1.51 4 | 2.25 1 | 0.107 | 0.137 |
IND-B400 | IND | INDEL | 144,800 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
IND-B200 | IND | INDEL | 131,400 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
IND-B100 | IND | INDEL | 124,700 2 | 1.51 4 | 1.42 4 | 0.107 | 0.126 |
Energy | Cost | Price |
---|---|---|
D | - | 0.149 |
LNG | - | 0.082 |
H2 | - | 0.248 |
GEL | - | 0.20 |
[ERS] | 0.08 | 0.22 |
[ERS]EL | 0.08 | 0.22 |
Daily ERS Traffic Volume | Power per Electrified km, kW | ERS Cost per km in One Lane, Million EUR | |||
---|---|---|---|---|---|
CAT | GCE | GCA | IND | ||
<2000 | 500 | 0.96 | 0.67 | 0.70 | 1.01 |
<6000 | 1250 | 0.96 | 0.72 | 1.00 | 1.03 |
<12,000 | 2500 | 1.04 | 0.92 | 1.33 | 1.04 |
<20,000 | 4000 | 1.12 | 1.19 | 1.42 | 1.06 |
ERS coverage | 80% | 80% | 40% | 100% |
Scenarios | Technology Adoption Shares | ||||
---|---|---|---|---|---|
D | LNG | FCEV | BEV- | CAT-, GCE-, GCA-, IND- | |
800, 1200 | D, LNG, FCEV, B400, B200, B100 | ||||
BASE | 99.76% | 0.22% | 0% | 0.03% | 0% |
Single-technology scenarios | 100% for simulated technology | ||||
Introduction mix scenarios | 99.76 − x% | 0.22% | 0% | 0.03% | x = 5%, 10%, 15%, 20%, 30%, 40%, 50% |
Route | ERS Technology | Optimal Coverage | Investment Cost Range | |
---|---|---|---|---|
Route 1 | CAT | 80% | 167.2–167.8 mEUR | |
GCE | 80% | 117.4–120.3 mEUR | ||
GCA | 40% | 122.3–133.4 mEUR | ||
IND | 100% | 176.3–177.0 mEUR | ||
Route 2 | CAT | 80% | 180.5–181.6 mEUR | |
GCE | 80% | 126.8–131.0 mEUR | ||
GCA | 40% | 132.0–145.8 mEUR | ||
IND | 100% | 190.3–191.1 mEUR | ||
Route 3 | CAT | 80% | 172.7–174.8 mEUR | |
GCE | 80% | 121.3–128.0 mEUR | ||
GCA | 40% | 126.3–143.7 mEUR | ||
IND | 100% | 182.0–183.0 mEUR |
Investment Cost | Profitability |
---|---|
According to technology providers | |
+25% | |
+50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aronietis, R.; Vanelslander, T. Economic Impacts of the Electric Road System Implementation on the Rotterdam–Antwerp Corridor. Sustainability 2024, 16, 8029. https://doi.org/10.3390/su16188029
Aronietis R, Vanelslander T. Economic Impacts of the Electric Road System Implementation on the Rotterdam–Antwerp Corridor. Sustainability. 2024; 16(18):8029. https://doi.org/10.3390/su16188029
Chicago/Turabian StyleAronietis, Raimonds, and Thierry Vanelslander. 2024. "Economic Impacts of the Electric Road System Implementation on the Rotterdam–Antwerp Corridor" Sustainability 16, no. 18: 8029. https://doi.org/10.3390/su16188029
APA StyleAronietis, R., & Vanelslander, T. (2024). Economic Impacts of the Electric Road System Implementation on the Rotterdam–Antwerp Corridor. Sustainability, 16(18), 8029. https://doi.org/10.3390/su16188029