Challenges and Solutions for Sustainable ICT: The Role of File Storage
Abstract
:1. Introduction
2. Background Literature Review
2.1. Conceptualization
2.2. Technological Issues
2.2.1. Data Processing
2.2.2. Data Transmission
2.2.3. Data Storage
2.3. Business Issues
2.3.1. Adoption and Acceptance of Cloud Storage
2.3.2. The Problem with Data Hoarding
2.3.3. Measurement of the Environmental Impact of Data
2.3.4. Regulatory Compliance
2.4. Application Domains
2.4.1. Knowledge Management
2.4.2. e-Science
2.4.3. e-Health
2.4.4. IoT and Mobile Computing
2.5. Emerging Challenges
3. Addressing Challenges: Multiple Perspectives from Leading Experts
3.1. Contribution 1—The Importance of Educational Campaigns and Awareness of Sustainability
3.2. Contribution 2—Energy-Aware Data Management Strategies
3.3. Contribution 3—The Role of Simplification and Standardization of the Processes Related to Reporting Carbon Emissions from ICT Services
3.4. Contribution 4—The Role of Regulatory Interventions in Promoting Sustainable ICT Practices
3.5. Contribution 5—The Role of Inter-Organizational Collaborative Projects Focused on Specific Application Domains
3.5.1. Public–Private Partnership: The Case of the Digital Innovation Zone
3.5.2. Academic/Industry Research on Sustainable Energy Consumption in Wireless Communication in the Telecommunication Sector
3.5.3. Academia/Industry Research within European-Funded Projects
4. Discussion and Recommendations for Future Research
4.1. Interpretation of the Results
4.2. Implications
4.3. Limitations
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, N. Intelligent MANET Optimisation System. Ph.D. Thesis, Brunel University School of Engineering and Design, Uxbridge, UK, 2011. [Google Scholar]
- Saeed, N.; Urbonaviciusa, A. IoT leak detection system for building hydronic pipes. Int. J. Eng. Manuf. (IJEM) 2019, 9, 1–21. [Google Scholar]
- OECD. OECD Digital Economy Outlook 2020; OECD Library: Paris, France, 2020. [Google Scholar] [CrossRef]
- Fouladfar, M.H.; Saeed, N.; Marzband, M.; Franchini, G. Home-microgrid energy management strategy considering EV’s participation in DR. Energies 2021, 14, 5971. [Google Scholar] [CrossRef]
- World Economic Forum & PwC. Harnessing Technology for the Global Goals: A Framework for Government Action. 2021. Available online: https://assets.2030vision.com/files/resources/wef-harnessing-technology-for-the-global-goals-2021.pdf (accessed on 2 May 2024).
- Oleiwi, H.W.; Saeed, N.; Al-Taie, H.L.; Mhawi, D.N. An Enhanced Interface Selectivity Technique to Improve the QoS for the Multi-homed Node. Eng. Technol. J. 2022, 40, 101–109. [Google Scholar] [CrossRef]
- Santarius, T.; Dencik, L.; Diez, T.; Ferreboeuf, H.; Jankowski, P.; Hankey, S.; Hilbeck, A.; Hilty, L.; Höjer, M.; Kleine, D.; et al. Digitalization and sustainability: A call for a digital green deal. Environ. Sci. Policy 2023, 147, 11–14. [Google Scholar] [CrossRef]
- Holzmann, P.; Gregori, P. The promise of digital technologies for sustainable entrepreneurship: A systematic literature review and research agenda. Int. J. Inf. Manag. 2023, 68, 102593. [Google Scholar] [CrossRef]
- Guandalini, I. Sustainability through digital transformation: A systematic literature review for research guidance. J. Bus. Res. 2022, 148, 456–471. [Google Scholar] [CrossRef]
- Pan, S.L.; Carter, L.; Tim, Y.; Sandeep, M.S. Digital sustainability, climate change, and information systems solutions: Opportunities for future research. Int. J. Inf. Manag. 2022, 63, 102444. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- European Parliament; Directorate General for Parliamentary Research Services; IDATE; ECORYS; Fraunhofer Fokus. Key Enabling Technologies for Europe’s Technological Sovereignty; Publications Office: Brussels, Belgium, 2021; Available online: https://data.europa.eu/doi/10.2861/24482 (accessed on 2 May 2024).
- Schwab, K.; The Fourth Industrial Revolution. World Economic Forum. 2015. Available online: https://www.weforum.org/about/the-fourth-industrial-revolution-by-klaus-schwab/ (accessed on 2 May 2024).
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D.; et al. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Truong, T.C. The impact of digital transformation on environmental sustainability. Adv. Multimed. 2022, 2022, 6324325. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Shehabi, A.; Marston, L. The environmental footprint of data centers in the United States. Environ. Res. Lett. 2021, 16, 064017. [Google Scholar] [CrossRef]
- Manganelli, M.; Soldati, A.; Martirano, L.; Ramakrishna, S. Strategies for improving the sustainability of data centers via energy mix, energy conservation, and circular energy. Sustainability 2021, 13, 6114. [Google Scholar] [CrossRef]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Koomey, J. Growth in data center electricity use 2005 to 2010. Rep. Anal. Press Complet. Req. N. Y. Times 2011, 9, 161. [Google Scholar]
- Rong, H.; Zhang, H.; Xiao, S.; Li, C.; Hu, C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016, 58, 674–691. [Google Scholar] [CrossRef]
- Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating global data center energy-use estimates. Science 2020, 367, 984–986. [Google Scholar] [CrossRef]
- Mytton, D. Assessing the suitability of the Greenhouse Gas Protocol for calculation of emissions from public cloud computing workloads. J. Cloud Comput. 2020, 9, 1–10. [Google Scholar]
- IEA. Data Centres and Data Transmission Networks. IEA. 2023. Available online: https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (accessed on 2 May 2024).
- Climatiq. Measuring Greenhouse Gas Emissions in Data Centres: The Environmental Impact of Cloud Computing. 2022. Available online: https://www.climatiq.io/blog/measure-greenhouse-gas-emissions-carbon-data-centres-cloud-computing (accessed on 10 May 2024).
- Dissanayake, D.; Kuruppu, S.; Qian, W.; Tilt, C. Barriers for sustainability reporting: Evidence from Indo-Pacific region. Meditari Account. Res. 2020, 29, 264–293. [Google Scholar] [CrossRef]
- Amendola, C.; Savastano, M.; Gorelova, I. Green cloud computing for sustainable energy management: A comparison of innovative strategies for implementing the green economy. Int. J. Environ. Policy Decis. Mak. 2021, 3, 77–96. [Google Scholar] [CrossRef]
- Kumar, S.; Buyya, R. Green cloud computing and environmental sustainability. In Harnessing Green IT: Principles and Practices; Wiley-IEEE Press: Hoboken, NJ, USA, 2012; pp. 315–339. [Google Scholar]
- Bagale, G.S.; Vandadi, V.R.; Singh, D.; Sharma, D.K.; Garlapati, D.V.K.; Bommisetti, R.K.; Gupta, R.K.; Setiawan, R. Small and Medium-Sized Enterprises’ Contribution in Digital Technology. Ph.D. Thesis, Petra Christian University, Jawa Timur, Indonesia, 2021. [Google Scholar]
- IDC & Statista. Volume of Data/Information Created, Captured, Copied, and Consumed Worldwide from 2010 to 2020, with Forecasts from 2021 to 2025. 2023. Available online: https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed on 10 April 2024).
- Veritas Technologies LLC. The Databerg: See What Others Don’t. 2015. Available online: https://www.northdoor.co.uk/wp-content/uploads/2018/10/Veritas-Global-Databerg-Infographic.pdf (accessed on 2 May 2024).
- Omdia. The Unseen Environmental Cost of Data. 2023. Available online: https://services.global.ntt/en-us/campaigns/the-unseen-environmental-cost-of-data (accessed on 15 May 2024).
- Whitehead, B.; Andrews, D.; Shah, A.; Maidment, G. Assessing the environmental impact of data centres part 1: Background, energy use and metrics. Build. Environ. 2014, 82, 151–159. [Google Scholar] [CrossRef]
- Haug, N.; Dan, S.; Mergel, I. Digitally induced change in the public sector: A systematic review and research agenda. Public Manag. Rev. 2023, 26, 1963–1987. [Google Scholar] [CrossRef]
- Glassmire, J.; Bitaraf, H.; Papadakis, S.; Oudalov, A. Accelerating data center decarbonization and maximizing renewable usage with grid edge solutions. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 288–293. [Google Scholar]
- Rostirolla, G.; Grange, L.; Minh-Thuyen, T.; Stolf, P.; Pierson, J.; Da Costa, G.; Baudic, G.; Haddad, M.; Kassab, A.; Nicod, J.; et al. A survey of challenges and solutions for the integration of renewable energy in datacenters. Renew. Sustain. Energy Rev. 2022, 155, 111787. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Bai, L.; Gao, J.; Tao, J.; Bond, R.R.; Mulvenna, M.D. Reinforcement learning based task scheduling for environmentally sustainable federated cloud computing. J. Cloud Comput. 2023, 12, 174. [Google Scholar] [CrossRef]
- Jackson, T.; Hodgkinson, I.R. Is there a role for knowledge management in saving the planet from too much data? Knowl. Manag. Res. Pract. 2023, 21, 427–435. [Google Scholar] [CrossRef]
- Veritas Technologies LLC. The Data Hoarding Report. 2018. Available online: https://www.veritas.com/content/dam/Veritas/docs/reports/Veritas-Data-Hoarders-Report-US.pdf (accessed on 2 May 2024).
- Yang, H.; Tate, M. A descriptive literature review and classification of cloud computing research. Commun. Assoc. Inf. Syst. 2012, 31, 2. [Google Scholar] [CrossRef]
- Senyo, P.K.; Addae, E.; Boateng, R. Cloud computing research: A review of research themes, frameworks, methods and future research directions. Int. J. Inf. Manag. 2018, 38, 128–139. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group, T. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Mersy, G.; Krishnan, S. Toward a Life Cycle Assessment for the Carbon Footprint of Data. In Proceedings of the 2nd Workshop on Sustainable Computer Systems, Boston, MA, USA, 9 July 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Pazienza, A.; Baselli, G.; Vinci, D.C.; Trussoni, M.V. A holistic approach to environmentally sustainable computing. Innov. Syst. Softw. Eng. 2024, 20, 347–371. [Google Scholar] [CrossRef]
- Karuppasamy, M.; Balakannan, S.P. Energy saving from cloud resources for a sustainable green cloud computing environment. J. Cyber Secur. Mobil. 2018, 7, 95–108. [Google Scholar]
- Gill, S.S.; Buyya, R. A taxonomy and future directions for sustainable cloud computing: 360 degree view. ACM Comput. Surv. CSUR 2018, 51, 1–33. [Google Scholar] [CrossRef]
- Dougherty, B.; White, J.; Schmidt, D.C. Model-driven auto-scaling of green cloud computing infrastructure. Future Gener. Comput. Syst. 2012, 28, 371–378. [Google Scholar] [CrossRef]
- Larumbe, F.; Sanso, B. A tabu search algorithm for the location of data centers and software components in green cloud computing networks. IEEE Trans. Cloud Comput. 2013, 1, 22–35. [Google Scholar] [CrossRef]
- Cui, X.; Mills, B.; Znati, T.; Melhem, R. Shadow replication: An energy-aware, faulttolerant computational model for green cloud computing. Energies 2014, 7, 5151–5176. [Google Scholar] [CrossRef]
- Khalil, M.I.K.; Ahmad, I.; Shah, S.A.A.; Jan, S.; Khan, F.Q. Energy cost minimization for sustainable cloud computing using option pricing. Sustain. Cities Soc. 2020, 63, 102440. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Zhou, A.; Xu, J.; Yang, F. SLA-driven container consolidation with usage prediction for green cloud computing. Front. Comput. Sci. 2020, 14, 42–52. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, R.A.; Khan, S.U.; Alwageed, H.S.; Al-Atawi, A.A.; Lee, Y. Green cloud computing adoption challenges and practices: A client’s perspective-based empirical investigation. Cogn. Technol. Work 2023, 25, 427–446. [Google Scholar] [CrossRef]
- Itani, W.; Ghali, C.; Kayssi, A.; Chehab, A.; Elhajj, I. G-Route: An energy-aware service routing protocol for green cloud computing. Clust. Comput. 2015, 18, 889–908. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S.; Jafarian, A. Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing. Evol. Intell. 2021, 14, 1997–2025. [Google Scholar] [CrossRef]
- Khaleel, M.I. Synergies between resource sustainability and energy performance of cloud servers: The role of virtual machine repacking approach. Comput. Electr. Eng. 2023, 106, 108568. [Google Scholar] [CrossRef]
- Almutairi, L.; Aslam, S.M. A Novel Energy and Communication Aware Scheduling on Green Cloud Computing. Comput. Mater. Contin. 2023, 77, 2791–2811. [Google Scholar] [CrossRef]
- Cao, M.; Li, Y.; Wen, X.; Zhao, Y.; Zhu, J. Energy-aware intelligent scheduling for deadline-constrained workflows in sustainable cloud computing. Egypt. Inform. J. 2023, 24, 277–290. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, N. An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 2021, 22 (Suppl. 1), 513–520. [Google Scholar] [CrossRef]
- Mishra, S.K.; Puthal, D.; Sahoo, B.; Jena, S.K.; Obaidat, M.S. An adaptive task allocation technique for green cloud computing. J. Supercomput. 2018, 74, 370–385. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Wo, T.; Hu, C.; Huai, J.; Liu, L.; Lam, K.P. CyberGuarder: A virtualization security assurance architecture for green cloud computing. Future Gener. Comput. Syst. 2012, 28, 379–390. [Google Scholar] [CrossRef]
- Stergiou, C.; Psannis, K.E.; Gupta, B.B.; Ishibashi, Y. Security, privacy & efficiency of sustainable Cloud Computing for Big Data & IoT. Sustain. Comput. Inform. Syst. 2018, 19, 174–184. [Google Scholar] [CrossRef]
- Baliga, J.; Ayre, R.; Hinton, K.; Tucker, R.S. Energy consumption in wired and wireless access networks. IEEE Commun. Mag. 2011, 49, 70–77. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Wu, L.; Wang, J. A novel smart meter data compression method via stacked convolutional sparse auto-encoder. Int. J. Electr. Power Energy Syst. 2020, 118, 105761. [Google Scholar] [CrossRef]
- Al Kez, D.; Foley, A.M.; Laverty, D.; Del Rio, D.F.; Sovacool, B. Exploring the sustainability challenges facing digitalization and internet data centers. J. Clean. Prod. 2022, 371, 133633. [Google Scholar] [CrossRef]
- Avgerinou, M.; Bertoldi, P.; Castellazzi, L. Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency. Energies 2017, 10, 1470. [Google Scholar] [CrossRef]
- You, X.; Lv, X.; Zhao, Z.; Han, J.; Ren, X. A survey and taxonomy on Energy-aware data management strategies in Cloud environment. IEEE Access 2020, 8, 94279–94293. [Google Scholar] [CrossRef]
- Ray, P.P. The green grid saga-a green initiative to data centers: A review. arXiv 2012, arXiv:1208.0593. [Google Scholar]
- Elzeiny, A.; Elfetouh, A.A.; Riad, A. Cloud storage: A survey. Int. J. Emerg. Trends Technol. Comput. Sci. IJETTCS 2013, 2, 342–349. [Google Scholar]
- Nguyen, G.T.; Liaw, S.Y. Understanding the factors affecting the small and medium enterprises adoption of cloud computing: A literature review. Int. J. Bus. Manag. Econ. 2022, 3, 149–162. [Google Scholar] [CrossRef]
- Eurostat. Cloud Computing—Statistics on the Use by Enterprises. 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises (accessed on 10 May 2024).
- Maresova, P.; Kacetl, J. Cloud computing in the public sector–Case study in educational institution. Procedia-Soc. Behav. Sci. 2015, 182, 341–348. [Google Scholar] [CrossRef]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef]
- Jackson, T.W.; Hodgkinson, I.R. Keeping a lower profile: How firms can reduce their digital carbon footprints. J. Bus. Strategy 2023, 44, 363–370. [Google Scholar] [CrossRef]
- Pańkowska, M.; Pyszny, K.; Strzelecki, A. Users’ adoption of sustainable cloud computing solutions. Sustainability 2020, 12, 9930. [Google Scholar] [CrossRef]
- Wamuyu, P.K. Use of cloud computing services in micro and small enterprises: A fit perspective. Int. J. Inf. Syst. Proj. Manag. 2022, 5, 59–81. [Google Scholar] [CrossRef]
- Dinca, V.M.; Dima, A.M.; Rozsa, Z. Determinants of cloud computing adoption by Romanian SMEs in the digital economy. J. Bus. Econ. Manag. 2019, 20, 798–820. [Google Scholar] [CrossRef]
- Gartner. Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach $679 Billion in 2024. 2023. Available online: https://www.enterprisetechprovider.com/multicloud/research-review-gartner-forecasts-public-cloud-end-user-spending-to-reach-679b-in-2024 (accessed on 2 May 2024).
- Obringer, R.; Rachunok, B.; Maia-Silva, D.; Arbabzadeh, M.; Nateghi, R.; Madani, K. The overlooked environmental footprint of increasing Internet use. Resour. Conserv. Recycl. 2021, 167, 105393. [Google Scholar] [CrossRef]
- Schien, D.; Shabajee, P.; Wickenden, J.; Picket, W.; Roberts, G.; Preist, C. The DIMPACT Tool for Environmental Assessment of Digital Services. In Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies, Seattle, WA, USA, 29 June–1 July 2022; pp. 701–703. [Google Scholar]
- Philip, K.; Burkel, J.; Grunwald, S. Measure and Track Cloud Efficiency with Sustainability Proxy Metrics, Part II: Establish a Metrics Pipeline. 2023. Available online: https://aws.amazon.com/blogs/aws-cloudfinancial-management/measure-and-track-cloud-efficiency-with-sustainability-proxy-metrics-part-iiestablish-a-metrics-pipeline/ (accessed on 2 May 2024).
- Jisc. Exploring Digital Carbon Footprints. 2023. Available online: https://repository.jisc.ac.uk/8782/1/exploring-digital-carbon-footprints-report.pdf (accessed on 2 May 2024).
- Lannelongue, L.; Grealey, J.; Inouye, M. Green algorithms: Quantifying the carbon footprint of computation. Adv. Sci. 2021, 8, 2100707. [Google Scholar] [CrossRef] [PubMed]
- Green Web Foundation. CO2.JS. 2022. Available online: https://www.thegreenwebfoundation.org/co2-js/ (accessed on 2 May 2024).
- Barisits, M.; Beermann, T.; Berghaus, F.; Bockelman, B.; Bogado, J.; Cameron, D.; Christidis, D.; Ciangottini, D.; Dimitrov, G.; Elsing, M.; et al. Rucio: Scientific Data Management. Comput. Softw. Big Sci. 2019, 3, 11. [Google Scholar] [CrossRef]
- Mariette, J.; Blanchard, O.; Berné, O.; Aumont, O.; Carrey, J.; Ligozat, A.; Lellouch, E.; Roche, P.-E.; Guennebaud, G.; Thanwerdas, J.; et al. An open-source tool to assess the carbon footprint of research. Environ. Res. Infrastruct. Sustain. 2022, 2, 035008. [Google Scholar] [CrossRef]
- Wilkinson, R.; Mleczko, M.M.; Brewin, R.J.W.; Gaston, K.J.; Mueller, M.; Shutler, J.D.; Yan, X.; Anderson, K. Environmental impacts of earth observation data in the constellation and cloud computing era. Sci. Total Environ. 2024, 909, 168584. [Google Scholar] [CrossRef]
- Al-Issa, Y.; Ottom, M.A.; Tamrawi, A. eHealth Cloud Security Challenges: A Survey. J. Healthc. Eng. 2019, 2019, 7516035. [Google Scholar] [CrossRef]
- Tahir, A.; Chen, F.; Khan, H.U.; Ming, Z.; Ahmad, A.; Nazir, S.; Shafiq, M. A systematic review on cloud storage mechanisms concerning e-healthcare systems. Sensors 2020, 20, 5392. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, J.; Shin, M.; Kim, M. A Blockchain-Based Trust Model for Supporting Collaborative Healthcare Data Management. Comput. Syst. Sci. Eng. 2023, 46, 3403–3421. [Google Scholar] [CrossRef]
- Diene, B.; Rodrigues, J.J.P.C.; Diallo, O.; Ndoye, E.H.M.; Korotaev, V.V. Data management techniques for Internet of Things. Mech. Syst. Signal Process. 2020, 138, 106564. [Google Scholar] [CrossRef]
- Peñalvo, F.J.G.; Sharma, A.; Chhabra, A.; Singh, S.K.; Kumar, S.; Arya, V.; Gaurav, A. Mobile Cloud Computing and Sustainable Development: Opportunities, Challenges, and Future Directions. Int. J. Cloud Appl. Comput. 2022, 12, 1–20. [Google Scholar] [CrossRef]
- Boukerche, A.; Guan, S.; Grande, R.E.D. Sustainable Offloading in Mobile Cloud Computing: Algorithmic Design and Implementation. ACM Comput. Surv. 2020, 52, 1–37. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar]
- Haneem, F.; Kama, N.; Taskin, N.; Pauleen, D.; Bakar, N.A.A. Determinants of master data management adoption by local government organizations: An empirical study. Int. J. Inf. Manag. 2019, 45, 25–43. [Google Scholar] [CrossRef]
- Chofreh, A.G.; Goni, F.A.; Shaharoun, A.M.; Ismail, S.; Klemeš, J.J. Sustainable enterprise resource planning: Imperatives and research directions. J. Clean. Prod. 2014, 71, 139–147. [Google Scholar] [CrossRef]
- DHCC. The Digital Humanities Climate Coalition Toolkit. 2024. Available online: https://sas-dhrh.github.io/dhcc-toolkit/ (accessed on 20 May 2024).
- The Open Group. The TOGAF® Standard, 10th ed. 2022. Available online: https://www.opengroup.org/togaf (accessed on 2 May 2024).
- The Open Group. The Open Footprint® Data Model Standard, Version 1.0, Snapshot 1. 2024. Available online: https://publications.opengroup.org/standards/s242 (accessed on 2 May 2024).
- Kamaludin, K.; Sundarasen, S. COVID-19 and online distance learning in Malaysia: A blessing or a curse? Front. Educ. 2023, 8, 1062219. [Google Scholar] [CrossRef]
Theme | Sub-Theme |
---|---|
Conceptualization | Foundational themes |
Technology Issues | Service and resource management |
Business issues | Cloud computing adoption, acceptance and implementation, compliance and regulatory issues |
Domains and Applications | e-science, e-health, mobile computing, IoT, knowledge management |
Search Query | Results | Date Range |
---|---|---|
(“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND (“sustainab*” OR “environm*”) (Topic) | 28,133 | 1993–2024 |
A. (“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND “sustainab*” (title) | 130 | 2009–2024 |
B. (“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND “carbon footprint” (title) | 6 | 2014–2022 |
C. (“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND “carbon emission*” (title) | 3 | 2019–2023 |
D. (“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND “Co2*” (title) | 5 | 2013–2023 |
E. (“cloud comp*” OR “cloud serv*” OR “cloud platf*”) AND “environmental impact” (title) | 3 | 2020–2024 |
F. (“green cloud comp*” OR “green cloud serv*” OR “green cloud platf*”) (title) | 108 | 2011–2023 |
G. (“LCA” OR “life cycle assessment” OR “lifecycle assessment”) AND “Data” (title) | 6 | 2014–2024 |
H. “Data transfer” (title) | 69 | 2011–2024 |
I. “Data management” (title) | 251 | 2009–2024 |
J. “data” AND “networking” (title) | 60 | 2014–2024 |
K. “Data storage” AND “environment*” (title) | 43 | 2012–2024 |
L. “Data” AND “carbon footprint” (title) | 4 | 2017–2024 |
Expert ID | Topic | Expert Affiliation | Country |
---|---|---|---|
Expert A | Definition of Standards and Guidelines for Sustainability in ICT | Industry | United Kingdom |
Expert B | Towards Sustainable Energy Consumption in Wireless Communication | Academia | United Kingdom |
Expert C | Energy-aware ICT Metering solutions | Academia | United Kingdom |
Expert D | Case study | Public–private partnership organization | United Kingdom |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mersico, L.; Abroshan, H.; Sanchez-Velazquez, E.; Saheer, L.B.; Simandjuntak, S.; Dhar-Bhattacharjee, S.; Al-Haddad, R.; Saeed, N.; Saxena, A. Challenges and Solutions for Sustainable ICT: The Role of File Storage. Sustainability 2024, 16, 8043. https://doi.org/10.3390/su16188043
Mersico L, Abroshan H, Sanchez-Velazquez E, Saheer LB, Simandjuntak S, Dhar-Bhattacharjee S, Al-Haddad R, Saeed N, Saxena A. Challenges and Solutions for Sustainable ICT: The Role of File Storage. Sustainability. 2024; 16(18):8043. https://doi.org/10.3390/su16188043
Chicago/Turabian StyleMersico, Luigi, Hossein Abroshan, Erika Sanchez-Velazquez, Lakshmi Babu Saheer, Sarinova Simandjuntak, Sunrita Dhar-Bhattacharjee, Ronak Al-Haddad, Nagham Saeed, and Anisha Saxena. 2024. "Challenges and Solutions for Sustainable ICT: The Role of File Storage" Sustainability 16, no. 18: 8043. https://doi.org/10.3390/su16188043
APA StyleMersico, L., Abroshan, H., Sanchez-Velazquez, E., Saheer, L. B., Simandjuntak, S., Dhar-Bhattacharjee, S., Al-Haddad, R., Saeed, N., & Saxena, A. (2024). Challenges and Solutions for Sustainable ICT: The Role of File Storage. Sustainability, 16(18), 8043. https://doi.org/10.3390/su16188043