Impact of Foreign Direct Investment on Green Total Factor Productivity: New Evidence from Yangtze River Delta in China
Abstract
:1. Introduction
1.1. Calculation of Green Total Factor Productivity (GTFP)
1.2. Environmental Impacts of Foreign Direct Investment (FDI)
1.3. FDI’s Effects on TFP and GTFP
2. Methodology and Data
2.1. Measurement of GTFP of Cities in Yangtze River Delta
2.1.1. Measurement Method and Model Setting
2.1.2. Variable Selection and Data Sources
2.2. Empirical Analysis of FDI’s Effects on GTFP
2.2.1. Linear Regression Model
2.2.2. Nonlinear Regression Model
2.3. Variable Selection and Data Processing
2.3.1. Explained Variable
2.3.2. Explanatory Variables
2.3.3. Control Variables and Threshold Variables
3. Results and Discussion
3.1. Calculation Results and Analysis
3.2. Regression Results and Analysis
3.2.1. Linear Regression Analysis
3.2.2. Nonlinear Regression Analysis
4. Conclusions and Recommendations
4.1. Conclusions
4.2. Policy Recommendations
4.2.1. Comprehensively Improving Trade Openness for Foreign Investment and Its Quality
4.2.2. Introducing Foreign Investment Based on Local Conditions
4.2.3. Implementing Moderate Environmental Regulation and Applying Prudent Government Intervention
4.2.4. Intensify the Construction of Network Infrastructure
4.3. Study Limitations and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellili, N.O.D.; Nobanee, H. Impact of economic, environmental, and corporate social responsibility reporting on financial performance of UAE banks. Environ. Dev. Sustain. 2023, 25, 3967–3983. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.H. International Production and the Multinational Enterprise; George Allen and Unwin Ltd.: Crows Nest, Australia, 1981. [Google Scholar]
- Abramovitz, M. Resource and output trends in the United States since 1870. Am. Econ. Rev. 1956, 46, 5–23. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Grossman, S.J.; Wang, J. Trading volume and serial correlation in stock returns. Q. J. Econ. 1993, 108, 905–939. [Google Scholar] [CrossRef]
- Bing, L.; Tiong, R.L.-K.; Fan, W.W.; Chew, D.A.-S. Risk management in international construction joint ventures. Constr. Manag. 1999, 125, 277–284. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1979, 2, 429–444. [Google Scholar] [CrossRef]
- De Bondt, W.F.M.; Thaler, R.H. Further evidence on investor overreaction and stock market seasonality. J. Financ. 1987, 42, 557–581. [Google Scholar] [CrossRef]
- Fisher, I. The Rate of Interest: Its Nature, Determination and Relation to Economic Phenomena; The Macmillan Co.: New York, NY, USA, 1907. [Google Scholar]
- Bacidone, J.M.; Boquist, J.A.; Milbourn, T.T.; Thakor, A.V. The search for the best financial performance measure. Financ. Anal. 1997, 53, 11–20. [Google Scholar] [CrossRef]
- Jensen, M.C. Random walks: Reality or myth-comment. Financ. Anal. J. 1967, 23, 77–85. [Google Scholar] [CrossRef]
- Joseph, S. Financial markets, public policy, and the east Asian miracle. World Bank Res. Obs. 1996, 11, 249–276. [Google Scholar] [CrossRef]
- Koller, T.; Geodhart, M.; Wessls, D. Valuation: Measuring and Managing the Value of Companies, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kuosmanen, T. Weak disposability in nonparametric production analysis with undesirable outputs. Am. J. Agric. Econ. 2005, 87, 1077–1082. [Google Scholar] [CrossRef]
- Li, K.; Liu, C. Construction of Carbon Finance System and Promotion of Environmental Finance Innovation in China. Energy Procedia 2011, 5, 1065–1072. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z. Low carbon finance: Present situation and future development in China. Energy Procedia 2011, 5, 214–218. [Google Scholar] [CrossRef]
- Domazlicky, B.R.; Weber, W.L. Does environmental protection lead to slower productivity growth in the chemical industry? Environ. Resour. Econ. 2004, 28, 301–324. [Google Scholar] [CrossRef]
- Nanere, M.; Fraser, I.; Quazi, A.; D’souza, C. Environmentally adjusted productivity measurement: An Australian case study. J. Environ. Manag. 2007, 85, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, P.A. The pure Theory of Public Expenditure. Rev. Econ. Stat. 1954, 36, 387–389. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Myers, S.C. Determinants of Corporate Borrowing. J. Financ. Econ. 1977, 5, 147–176. [Google Scholar] [CrossRef]
- Aigner, D.J.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Suillivan, R.; Timinennaim, A.; White, H. Data-snooping, technical trading rule performance, and the bootstrap. J. Financ. 1999, 54, 1647–1691. [Google Scholar] [CrossRef]
- Arnold, C.M. Timing the Market: How to Profit in Bull and Bear Markets with Technical Analysis; Probus Publishing: Chicago, IL, USA, 1986. [Google Scholar]
- Alford, A.W. The effect of the set of comparable firms on the accuracy of the price-earnings valuation method. J. Account. Res. 1992, 30, 94–108. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Buckley, R.J.; Casson, M.C. The Future of Multinational Enterprises; Macmillan Co.: New York, NY, USA, 1976. [Google Scholar]
- Antzoulatos, A.A. Consumer credit and consumption forecasts. Int. J. Forecast. 1996, 12, 439–453. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Fukuyama, H.; Margeeitis, D. DEA and endogenous technological change. Eur. J. Oper. Res. 2011, 210, 457–458. [Google Scholar] [CrossRef]
- Walter, I.; Ugelow, J.L. Environmental policies in developing countries. Technol. Dev. Environ. Impact 1979, 8, 102–109. [Google Scholar] [CrossRef]
- Hymer, S.H. The International Operation of National Firms: A Study of Direct Foreign Investment; The MIT Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, H.-F.; Bai, L.; Zhou, P. Does foreign direct investment drive environmental degradation in China? An empirical study based on air quality index from a spatial perspective. J. Clean. Prod. 2018, 176, 864–872. [Google Scholar] [CrossRef]
- Zarsky, L. Havens, halos and spaghetti: Untangling the evidence about foreign direct investment and the environment. In Foreign Direct Investment and the Environment; OECD Publishing: Paris, France, 1999; Volume 8, pp. 47–74. [Google Scholar]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- Abdouli, M.; Hammami, S. Investigating the causality links between environmental quality, foreign direct investment and economic growth in MENA countries. Int. Bus. Rev. 2017, 26, 264–278. [Google Scholar] [CrossRef]
- Kerchner, C.D.; Keeton, W.S. California’s regulatory forest carbon market: Viability for northeast landowners. For. Policy Econ. 2015, 50, 70–81. [Google Scholar] [CrossRef]
- Ahmed, E.M. Are the FDI inflow spillover effects on Malaysia’s economic growth input driven? Econ. Model. 2012, 29, 1498–1504. [Google Scholar] [CrossRef]
- Kukulski, J.; Ryan, M. Investment history and market orientation effects in the TFP-FDI relationship. World Econ. 2011, 34, 546–567. [Google Scholar] [CrossRef]
- Orlic, E.; Hashi, I.; Hisarciklilar, M. Cross sectoral FDI spillovers and their impact on manufacturing productivity. Int. Bus. Rev. 2018, 27, 777–796. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Y.; Bi, J. Tracking the implementation of green credit policy in China: Top-down perspective and bottom-up reform. J. Environ. Manag. 2011, 92, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Carraro, C.; Favero, A.; Massetti, E. Investments and public finance in a green, low carbon, economy. Energy Econ. 2012, 34, 15–28. [Google Scholar] [CrossRef]
- Daddi, T.; Testa, F. Cluster approach and eco-innovation in four industrial clusters of tuscany region (Italy). Environ. Econ. 2012, 3, 26–34. [Google Scholar]
- Yoon, S.; Nadvi, K. Industrial clusters and industrial ecology: Building ‘eco-collective efficiency’ in a south Korean cluster. Geoforum 2018, 90, 159–173. [Google Scholar] [CrossRef]
- Khanna, N.; Fridley, D.; Hong, L. China’s pilot low-carbon city initiative: A comparative assessment of national goals and local plans. Sustain. Cities Soc. 2014, 12, 110–121. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Rafindadi, A.; Muye, I.M.; Kaita, R.A. The effects of FDI and energy consumption on environmental pollution in predominantly resource-based economies of the GCC. Sustain. Energy Technol. Assess. 2018, 25, 126–137. [Google Scholar] [CrossRef]
- Wang, N.; Chang, Y.-C. The development of policy instruments in supporting low-carbon governance in China. Renew. Sustain. Energy Rev. 2014, 35, 126–135. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Li, Z.-W.; Xia, B. The impact of the CDM (clean development mechanism) on the cost price of wind power electricity: A China study. Energy 2014, 1, 179–185. [Google Scholar] [CrossRef]
- Lv, W.; Feng, J.; Li, B. Does more voluntary environmental information disclosure cut down the cost of equity: Heavy pollution industries in China. Environ. Sci. Pollut. Res. 2022, 29, 62913–62940. [Google Scholar] [CrossRef]
- Aizawa, M.; Yang, C. Green credit, green stimulus, green revolution? China’s mobilization of banks for environmental cleanup. J. Environ. Dev. 2010, 19, 119–144. [Google Scholar] [CrossRef]
- Lei, C.; Zhang, Q.; Liu, H. Digital finance innovation in green manufacturing: A bibliometric approach. Environ. Sci. Pollut. Res. 2023, 30, 61340–61368. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, Z.; Zhang, X. The role of green finance in reducing agricultural non-point source pollution-An empirical analysis from China. Front. Sustain. Food Syst. 2023, 7, 1199417. [Google Scholar] [CrossRef]
- Vernon, R. International investment and international trade in the product cycle. Q. J. Econ. 1966, 80, 190–207. [Google Scholar] [CrossRef]
- Xi, L.; Zhao, H.; Pei, X. Technical issues in financing and managing risk of large-scale Oxyfuel CO2 capture power plant in China. Energy Procedia 2014, 63, 7234–7241. [Google Scholar] [CrossRef]
- Yue, S.; Yang, Y.; Hu, Y. Does foreign direct investment affect green growth? Evidence from China’s experience. Sustainability 2016, 8, 158. [Google Scholar] [CrossRef]
- Omri, A.; Kahouli, B. Causal relationships between energy consumption, foreign direct investment and economic growth: Fresh evidence from dynamic simultaneous-equations models. Energy Policy 2014, 67, 913–922. [Google Scholar] [CrossRef]
- Watts, D.; Albornoz, C.; Watson, A. Clean Development Mechanism (CDM) after the first commitment period: Assessment of the world’s portfolio and the role of Latin America. Renew. Sustain. Energy Rev. 2015, 41, 1176–1189. [Google Scholar] [CrossRef]
- Zeng, L.; Jiang, X. ESG and Corporate Performance: Evidence from Agriculture and Forestry Listed Companies. Sustainability 2023, 15, 6723. [Google Scholar] [CrossRef]
- Shan, H. Reestimating the Capital Stock of China: 1952~2006. J. Quantit. Techn. Econ. 2008, 10, 17–31. (In Chinese) [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, P. Study on Urban Green Total Factor Productivity Measurement in China. Ecol. Econ. 2021, 37, 43–52. (In Chinese) [Google Scholar]
Indicator Type | Variable Name | Unit | Observed Value | Average | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|---|
Labor input | 10,000 | 432 | 91.96 | 109.78 | 6.38 | 730.46 | |
Input indicator | Capital stock | 100 million yuan | 432 | 8700.05 | 7993.41 | 179.69 | 42,129.12 |
Energy consumption | 100 million kWh | 432 | 301.18 | 311.94 | 11.43 | 1568.58 | |
Expected output | Real GDP | 100 million yuan | 432 | 1641.74 | 1804.69 | 92.43 | 10,785.16 |
SO2 emissions | 1 million tons | 432 | 574.67 | 607.44 | 13.84 | 4963.77 | |
Unexpected output | Soot emissions | 100 tons | 432 | 264.33 | 205.63 | 7.92 | 1314.33 |
Wastewater discharge | 100 tons | 432 | 158.08 | 166.63 | 4.86 | 857.35 |
Variables | Observations | Average | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
GTFP | 432 | 0.950 | 0.310 | 0.158 | 2.709 |
FDI | 432 | 1.383 | 1.909 | 0.005 | 13.162 |
FDIQ | 432 | 0.329 | 0.482 | 0.007 | 3.716 |
EVO | 432 | 0.830 | 0.188 | 0.052 | 0.998 |
GOV | 432 | 0.124 | 0.049 | 0.050 | 0.280 |
EDU | 432 | 0.505 | 0.925 | 0.052 | 2.542 |
ECO | 432 | 3.140 | 2.288 | 0.590 | 19.880 |
NET | 432 | 0.722 | 0.557 | 0.030 | 3.134 |
IND | 432 | 0.510 | 0.078 | 0.270 | 0.750 |
OPEN | 432 | 0.661 | 1.764 | 0.162 | 1.044 |
Year | GEC | GTC | GML |
---|---|---|---|
2004–2005 | 0.977 | 0.973 | 0.950 |
2005–2006 | 1.059 | 0.968 | 1.025 |
2006–2007 | 1.161 | 0.826 | 0.959 |
2007–2008 | 0.914 | 1.135 | 1.037 |
2008–2009 | 1.235 | 0.768 | 0.954 |
2009–2010 | 1.043 | 0.931 | 0.970 |
2010–2011 | 1.000 | 0.957 | 0.959 |
2011–2012 | 1.010 | 0.967 | 0.977 |
2012–2013 | 0.968 | 0.942 | 0.919 |
2013–2014 | 1.016 | 0.933 | 0.951 |
2014–2015 | 1.003 | 0.992 | 0.995 |
2015–2016 | 0.988 | 1.146 | 1.132 |
2016–2017 | 0.969 | 1.129 | 1.095 |
2017–2018 | 0.969 | 1.049 | 1.016 |
2018–2019 | 1.068 | 0.967 | 1.032 |
Average | 1.022 | 0.975 | 0.997 |
Rank | City | GEC | GTC | GML |
---|---|---|---|---|
1 | Shanghai | 1.023 | 1.070 | 1.068 |
2 | Hangzhou | 1.026 | 1.023 | 1.050 |
3 | Wenzhou | 1.022 | 1.015 | 1.038 |
4 | Hefei | 1.036 | 0.993 | 1.028 |
5 | Shaoxing | 1.023 | 1.002 | 1.026 |
6 | Nantong | 1.025 | 1.001 | 1.025 |
7 | Jiaxing | 1.034 | 0.986 | 1.020 |
8 | Chizhou | 1.037 | 0.978 | 1.015 |
9 | Nanjing | 1.035 | 0.976 | 1.011 |
10 | Yancheng | 1.035 | 0.974 | 1.007 |
11 | Ningbo | 1.029 | 0.977 | 1.005 |
12 | Xuancheng | 1.016 | 0.989 | 1.005 |
13 | Changzhou | 1.039 | 0.965 | 1.003 |
14 | Taizhou, Jiangsu | 1.025 | 0.977 | 1.001 |
15 | Zhenjiang | 1.037 | 0.964 | 1.000 |
16 | Yangzhou | 1.030 | 0.969 | 0.999 |
17 | Taizhou, Zhejiang | 1.015 | 0.983 | 0.998 |
18 | Zhoushan | 1.027 | 0.969 | 0.995 |
19 | Suzhou | 1.025 | 0.958 | 0.994 |
20 | Wuhu | 1.029 | 0.963 | 0.991 |
21 | Wuxi | 1.037 | 0.951 | 0.986 |
22 | Chuzhou | 1.023 | 0.962 | 0.985 |
23 | Anqing | 1.020 | 0.957 | 0.977 |
24 | Tongling | 1.009 | 0.945 | 0.954 |
25 | Jinhua | 0.992 | 0.959 | 0.951 |
26 | Huzhou | 0.986 | 0.925 | 0.912 |
27 | Maanshan | 0.972 | 0.910 | 0.885 |
Average | 1.022 | 0.975 | 0.997 |
Year | Number of GTFP High-Growth Cities | Number of GTFP Medium-Growth Cities | Number of GTFP Low-Growth Cities | Number of GTFP Negative-Growth Cities |
---|---|---|---|---|
2004–2005 | 1 | 0 | 9 | 17 |
2005–2006 | 2 | 1 | 16 | 8 |
2006–2007 | 0 | 0 | 18 | 9 |
2007–2008 | 2 | 2 | 20 | 3 |
2008–2009 | 0 | 1 | 8 | 18 |
2009–2010 | 0 | 0 | 10 | 17 |
2010–2011 | 0 | 1 | 4 | 22 |
2011–2012 | 0 | 0 | 9 | 18 |
2012–2013 | 1 | 0 | 5 | 21 |
2013–2014 | 1 | 0 | 4 | 22 |
2014–2015 | 0 | 2 | 9 | 16 |
2015–2016 | 6 | 8 | 11 | 2 |
2016–2017 | 1 | 6 | 18 | 2 |
2017–2018 | 1 | 4 | 10 | 12 |
2018–2019 | 1 | 3 | 16 | 7 |
Variables | FDI | FDIQ | EVO | GOV | EDU | ECO | NET | IND | OPEN |
---|---|---|---|---|---|---|---|---|---|
FDI | 1.000 | ||||||||
FDIQ | −0.050 | 1.000 | |||||||
EVO | 0.237 | 0.293 | 1.000 | ||||||
GOV | 0.141 | 0.392 | 0.215 | 1.000 | |||||
EDU | 0.385 | 0.049 | 0.376 | −0.089 | 1.000 | ||||
ECO | 0.450 | −0.196 | 0.114 | −0.232 | 0.353 | 1.000 | |||
NET | 0.458 | 0.054 | 0.452 | 0.115 | 0.381 | 0.310 | 1.000 | ||
IND | −0.268 | 0.050 | −0.040 | −0.401 | 0.073 | 0.107 | −0.401 | 1.000 | |
OPEN | 0.673 | −0.184 | 0.447 | −0.229 | 0.505 | 0.498 | 0.672 | −0.095 | 1.000 |
Variables | HT Test | LLC Test | IPS Test |
---|---|---|---|
GTFP | −4.478 *** (0.000) | −2.876 ** (0.002) | −3.291 *** (0.001) |
FDI | −0.163 (0.435) | −4.003 *** (0.000) | −1.869 ** (0.031) |
FDIQ | −1.478 * | −4.404 *** | −4.256 *** |
(0.069) | (0.000) | (0.000) | |
ECO | −9.473 *** (0.000) | −5.332 *** (0.000) | −3.882 *** (0.000) |
IND | −2.491 ** (0.006) | −6.011 *** (0.000) | 1.148 (0.874) |
EVO | −2.764 ** (0.003) | −9.501 *** (0.000) | −3.159 *** (0.001) |
EDU | −1.935 ** (0.027) | −4.995 *** (0.000) | −3.591 *** (0.000) |
GOV | −3.327 *** (0.000) | −2.608 ** (0.004) | 0.315 (0.624) |
OPEN | −2.172 ** (0.015) | −4.655 *** (0.000) | −2.923 ** (0.002) |
Model | Test Method | Null Hypothesis | p Value |
---|---|---|---|
(10) | Hausman test | The random effect model is better. | 0.000 |
(11) | Hausman test | The random effect model is better. | 0.000 |
(10) Fixed Effect Model | (11) Fixed Effect Model | |
---|---|---|
FDI | 0.059 *** (0.013) | |
FDIQ | 0.054 ** (0.021) | |
EVO | −0.239 ** (0.086) | −0.213 * (0.091) |
GOV | −1.245 ** (0.456) | −0.730 (0.448) |
EDU | 0.068 ** (0.038) | 0.064 ** (0.037) |
ECO | 0.103 *** (0.005) | 0.102 *** (0.005) |
NET | 0.027 *** (0.028) | 0.020 ** (0.027) |
IND | −0.122 * (0.106) | −0.464 * (0.199) |
OPEN | 0.015 *** (0.026) | 0.032 ** (0.029) |
_cons | −0.315 (0.143) | 0.137 (0.174) |
N | 432 | 432 |
R-sq | 0.596 | 0.589 |
F-statistic | 82.69 | 78.03 |
Model (10) | Model (11) | |||||
---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 1 | Test 2 | Test 3 | |
FDI | 0.096 *** (0.017) | 0.089 *** (0.014) | 0.010 * (0.005) | |||
FDIQ | 0.048 ** (0.015) | 0.001 ** (0.001) | 0.031 * (0.012) | |||
EVO | −0.292 * (0.161) | −0.020 * (0.097) | −0.169 * (0.091) | −0.213 * (0.168) | −0.125 (0.102) | −0.121 (0.092) |
GOV | −1.242 * (0.539) | −1.275 ** (0.465) | −0.892 * (0.450) | −0.661 (0.556) | −0.802 * (0.482) | −0.630 (0.451) |
EDU | 0.026 (0.058) | 0.086 * (0.101) | 0.093 * (0.038) | 0.100 * (0.062) | 0.110 ** (0.043) | 0.114 ** (0.039) |
ECO | 0.135 *** (0.013) | 0.101 *** (0.005) | 0.104 *** (0.005) | 0.137 *** (0.013) | 0.100 *** (0.005) | 0.102 *** (0.005) |
NET | 0.139 *** (0.034) | 0.103 *** (0.030) | 0.039 (0.028) | 0.055 * (0.032) | 0.017 (0.028) | 0.018 (0.027) |
IND | −0.221 (0.272) | −0.461 (0.236) | −0.401 * (0.206) | −0.510 * (0.262) | −0.368 * (0.213) | −0.279 (0.198) |
OPEN | 0.113 ** (0.036) | 0.077 ** (0.029) | 0.047 (0.028) | 0.045 * (0.037) | 0.032 (0.031) | 0.038 (0.028) |
_cons | 0.238 (0.234) | −0.079 (0.179) | 0.190 (0.174) | 0.320 (0.243) | 0.103 (0.184) | 0.031 (0.184) |
N | 324 | 432 | 432 | 324 | 432 | 432 |
R-sq | 0.4030 | 0.583 | 0.601 | 0.355 | 0.547 | 0.602 |
F value | 91.60 | 93.07 | 86.27 | 84.28 | 82.08 | 87.21 |
Threshold Variable | Threshold Type | Threshold Value | F-Value | p-Value | 1% Critical Value | 5% Critical Value | 10% Critical Value |
---|---|---|---|---|---|---|---|
Single | 0.352 * | 14.92 | 0.033 | 16.651 | 21.822 | 34.454 | |
FDIQ | Double | 0.191 | 8.44 | 0.340 | 12.590 | 14.442 | 18.937 |
Triple | 1.805 | 26.29 | 0.140 | 27.903 | 33.622 | 42.617 | |
ECO | Single | 7.020 ** | 49.78 | 0.027 | 33.454 | 39.173 | 61.927 |
Double | 4.730 | 14.95 | 0.403 | 26.904 | 34.589 | 125.824 | |
Triple | 0.950 | 11.07 | 0.746 | 110.097 | 145.921 | 173.573 | |
IND | Single | 0.360 *** | 57.07 | 0.000 | 27.913 | 35.438 | 42.607 |
Double | 0.520 | 9.79 | 0.506 | 29.273 | 38.355 | 52.348 | |
Triple | 0.560 | 5.20 | 0.860 | 25.369 | 34.790 | 51.493 | |
EVO | Single | 0.944 ** | 38.86 | 0.003 | 20.172 | 23.596 | 30.447 |
Double | 0.965 | 11.51 | 0.406 | 21.745 | 26.261 | 36.373 | |
Triple | 0.301 | 5.94 | 0.733 | 15.519 | 17.698 | 23.164 | |
NET | Single | 1.536 ** | 36.12 | 0.010 | 19.813 | 23.353 | 35.235 |
Double | 0.427 | 5.19 | 0.783 | 16.775 | 21.614 | 27.644 | |
Triple | 0.4779 | 6.63 | 0.8000 | 19.184 | 22.372 | 26.565 |
Threshold Variables [Threshold Values] | FDIQ [0.169] | ECO [7.02] | IND [36.42] | EVO [94.42] | NET [1.536] |
---|---|---|---|---|---|
NET | 0.037 (0.027) | 0.079 *** (0.026) | 0.113 *** (0.026) | 0.063 ** (0.027) | 0.013 (0.031) |
ECO | 0.103 *** (0.005) | 0.099 *** (0.004) | 0.099 *** (0.004) | 0.099 *** (0.004) | 0.100 *** (0.004) |
GOV | −0.925 ** (0.450) | −1.319 *** (0.402) | −1.618 *** (0.413) | −1.204 ** (0.418) | −1.184 ** (0.420) |
EVO | −0.110 (0.092) | −0.283 ** (0.081) | −0.186 ** (0.081) | −0.206 ** (0.083) | −0.166 ** (0.083) |
IND | 0.025 (0.213) | 0.327 *** (0.202) | 0.683 *** (0.205) | 0.566 ** (0.207) | 0.161 (0.208) |
EDU | 0.102 *** (0.037) | 0.093 ** (0.033) | 0.098 ** (0.033) | 0.096 ** (0.034) | 0.109 ** (0.034) |
OPEN | 0.061 ** (0.029) | 0.010 ** (0.026) | 0.065 ** (0.026) | 0.073 ** (0.027) | 0.064 ** (0. 027) |
Fdi0 | 0.006 (0.016) | 0.063 *** (0.012) | 0.091 *** (0.012) | 0.056 *** (0.013) | 0.076 *** (0.012) |
Fdi1 | 0.062 *** (0.019) | 0.122 *** (0.013) | 0.037 *** (0.014) | 0.101 *** (0.012) | 0.119 *** (0.013) |
Index | Quantity | Cities in the Strong Promotion Zone |
---|---|---|
High quality of foreign capital utilization | 24 | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yangzhou, Zhenjiang, Taizhou Jiangsu, Hangzhou, Wenzhou, Ningbo, Jiaxing, Huzhou, Zhoushan, Taizhou Zhejiang, Hefei, Wuhu, Maanshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng |
High levels of economic development | 1 | Shanghai |
Lower industrial structure indexes | 6 | Shanghai, Nanjing, Hangzhou, Wenzhou, Zhoushan, Hefei |
Stricter environmental regulations | 20 | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Yangzhou, Zhenjiang, Hangzhou, Wenzhou, Ningbo, Huzhou, Shaoxing, Jinhua, Taizhou Zhejiang, Hefei, Maanshan, Anqing, Chuzhou, Chizhou, Xuancheng |
High network penetration rates | 11 | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Zhenjiang, Hangzhou, Ningbo, Jiaxing, Huzhou, Jinhua |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, J.; Chen, X. Impact of Foreign Direct Investment on Green Total Factor Productivity: New Evidence from Yangtze River Delta in China. Sustainability 2024, 16, 8085. https://doi.org/10.3390/su16188085
Chen S, Yang J, Chen X. Impact of Foreign Direct Investment on Green Total Factor Productivity: New Evidence from Yangtze River Delta in China. Sustainability. 2024; 16(18):8085. https://doi.org/10.3390/su16188085
Chicago/Turabian StyleChen, Shuai, Jiameng Yang, and Xue Chen. 2024. "Impact of Foreign Direct Investment on Green Total Factor Productivity: New Evidence from Yangtze River Delta in China" Sustainability 16, no. 18: 8085. https://doi.org/10.3390/su16188085
APA StyleChen, S., Yang, J., & Chen, X. (2024). Impact of Foreign Direct Investment on Green Total Factor Productivity: New Evidence from Yangtze River Delta in China. Sustainability, 16(18), 8085. https://doi.org/10.3390/su16188085