Does New Urbanization Promote Urban Metabolic Efficiency?
Abstract
:1. Introduction
2. Policy Background and Theoretical Analysis
2.1. Policy Context
2.2. Theoretical Analysis
2.2.1. Impact of NU on UME
2.2.2. Spillover Effects of NU on UME
2.2.3. Mechanism of the NU Effect on UME
3. Modeling and Variable Selection
3.1. Modeling
3.2. Variable Selection
3.2.1. Explained Variables
3.2.2. Explanatory Variables
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Data Sources
4. Analysis of Results
4.1. Trend Analysis of UME
4.2. Benchmark Regression Results
4.3. Parallel Trend Test
4.4. Robustness Tests
4.4.1. Placebo Test
4.4.2. PSM-DID
4.4.3. Adding Predetermined Variables
4.4.4. Replacement of the Econometric Model
4.4.5. Exclusion of Contemporaneous Policies
4.4.6. Changing the Clustering Hierarchy
4.5. Tests for Heterogeneity
4.5.1. Regional Heterogeneity
4.5.2. Administrative Districts Heterogeneity
4.5.3. Urban Hierarchical Heterogeneity
4.6. Spatial Spillover Effects
4.7. Mechanism Testing
5. Discussion
5.1. NU Has a Promoting Effect and a Positive Spatial Spillover Effect on UME
5.2. Heterogeneous Characterization of the Impact of NU on UME
5.3. Deconstructing the NU in Three Dimensions: Target Level, Standard Level, and Program Level, and Building a Systematic Conduction Framework for NU to Influence UME
6. Conclusions and Policy Recommendations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- István, B. Does market value maximization affect the order of resource exploitation? Econ. Model. 2005, 22, 1090–1104. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. How can urban agglomeration market integration promote urban green development: Evidence from China’s Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2022, 29, 10649–10664. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Ferasso, M.; Sroufe, R.; Zhang, Q. Assessing green technology indicators for cleaner production and sustainable investments in a developing country context. J. Clean. Prod. 2021, 322, 129090. [Google Scholar] [CrossRef]
- Ding, L.; Zhuang, Y.; Jiang, S. Green credit and high-quality sustainable development of banks. Environ. Sci. Pollut. Res. 2022, 29, 80871–80881. [Google Scholar] [CrossRef] [PubMed]
- Wolman, A. The metabolism of cities. Sci. Am. 1965, 213, 178–193. [Google Scholar] [CrossRef]
- Broto, V.C.; Allen, A.; Rapoport, E. Interdisciplinary Perspectives on Urban Metabolism. J. Ind. Ecol. 2012, 16, 851–861. [Google Scholar] [CrossRef]
- D’Amico, G.; Taddeo, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Ecological indicators of smart urban metabolism: A review of the literature on international standards. Ecol. Indic. 2020, 118, 106808. [Google Scholar] [CrossRef]
- Chen, S.Q.; Chen, B. Network Environ Perspective for Urban Metabolism and Carbon Emissions: A Case Study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yu, X. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecol. Model. 2009, 220, 1690–1696. [Google Scholar] [CrossRef]
- Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 2013, 178, 463–473. [Google Scholar] [CrossRef]
- McKinnon, I.; Hurley, P.T.; Myles, C.C.; Maccaroni, M.; Filan, T. Uneven urban metabolisms: Toward an integrative (ex)urban political ecology of sustainability in and around the city. Urban Geogr. 2019, 40, 352–377. [Google Scholar] [CrossRef]
- Cao, L.; Li, L.; Wu, Y.; Zeng, W.P. Does industrial convergence promote regional metabolism? Evidence from China. J. Clean. Prod. 2020, 273, 123010. [Google Scholar] [CrossRef]
- Hu, B.; Chen, C. New Urbanisation under Globalisation and the Social Implications in China. Asia Pac. Policy Stud. 2015, 2, 34–43. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Wang, B. How does the new-type urbanisation affect CO2 emissions in China? An empirical analysis from the perspective of technological progress. Energy Econ. 2019, 80, 917–927. [Google Scholar] [CrossRef]
- Governa, F.; Sampieri, A. Urbanisation processes and new towns in contemporary China: A critical understanding from a decentred view. Urban Stud. 2020, 57, 366–382. [Google Scholar] [CrossRef]
- Han, H. Governance for green urbanisation: Lessons from Singapore’s green building certification scheme. Environ. Plan. C-Politics Space 2019, 37, 137–156. [Google Scholar] [CrossRef]
- Konecka-Szydlowska, B.; Trócsányi, A.; Pirisi, G. Urbanisation in a formal way? The different characteristics of the ‘newest towns’ in Poland and Hungary. Reg. Stat. 2018, 8, 135–153. [Google Scholar] [CrossRef]
- Seo, J.K. Re-urbanisation in regenerated areas of Manchester and Glasgow—New residents and the problems of sustainability. Cities 2002, 19, 113–121. [Google Scholar] [CrossRef]
- Yan, J.; Chen, H.; Xia, F. Toward improved land elements for urban-rural integration: A cell concept of an urban-rural mixed community. Habitat Int. 2018, 77, 110–120. [Google Scholar] [CrossRef]
- Onyebueke, V.; Walker, J.; Lipietz, B.; Ujah, O.; Ibezim-Ohaeri, V. Urbanisation-induced displacements in peri-urban areas: Clashes between customary tenure and statutory practices in Ugbo-Okonkwo Community in Enugu, Nigeria. Land Use Policy 2020, 99, 104884. [Google Scholar] [CrossRef]
- Ma, H.; Chou, N.T.; Wang, L. Dynamic coupling analysis of urbanization and water resource utilization systems in China. Sustainability 2016, 8, 1176. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, A.L.; Xu, S. Urbanization and administrative restructuring: A case study on the Wuhan urban agglomeration. Habitat Int. 2016, 55, 46–57. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Lu, D.; Ye, C. Build a people-oriented urbanization: China’s new-type urbanization dream and Anhui model. Land Use Policy 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Sorace, C.; Hurst, W. China’s Phantom Urbanisation and the Pathology of Ghost Cities. J. Contemp. Asia 2016, 46, 304–322. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Doan, P.L. Building new capital cities in Africa: Lessons for new satellite towns in developing countries. Afr. Stud. 2017, 76, 546–565. [Google Scholar] [CrossRef]
- Gripaios, P.; Bishop, P. Spatial inequalities in UK GDP per head: The role of private and public services. Serv. Ind. J. 2005, 25, 945–958. [Google Scholar] [CrossRef]
- Aksztejn, W. Local Territorial Cohesion: Perception of Spatial Inequalities in Access to Public Services in Polish Case-Study Municipalities. Soc. Incl. 2020, 8, 253–264. [Google Scholar] [CrossRef]
- Chu, Y.W. China’s new urbanization plan: Progress and structural constraints. Cities 2020, 103, 102736. [Google Scholar] [CrossRef]
- Penazzi, S.; Accorsi, R.; Manzini, R. Planning low carbon urban-rural ecosystems: An integrated transport land-use model. J. Clean. Prod. 2019, 235, 96–111. [Google Scholar] [CrossRef]
- Khalil, H.A.E.E.; Al-Ahwal, A. Reunderstanding Cairo through urban metabolism: Formal versus informal districts resource flow performance in fast urbanizing cities. J. Ind. Ecol. 2021, 25, 176–192. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Saha, S.; Banerjee, S. Income inequality and the quality of public services: A developing country perspective. J. Dev. Econ. 2016, 123, 1–17. [Google Scholar] [CrossRef]
- Aaberge, R.; Eika, L.; Langorgen, A.; Mogstad, M. Local governments, in-kind transfers, and economic inequality. J. Public Econ. 2019, 180, 103966. [Google Scholar] [CrossRef]
- Matallah, S. Public service delivery, corruption and inequality: Key factors driving migration from North Africa to the developed world. J. Soc. Econ. Dev. 2020, 22, 328–354. [Google Scholar] [CrossRef]
- Kuijs, L.; Wang, T. China’s pattern of growth: Moving to sustainability and reducing inequality. China World Econ. 2006, 14, 1–14. [Google Scholar] [CrossRef]
- Niu, G.; Zhao, G. Living condition among China’s rural-urban migrants: Recent dynamics and the inland-coastal differential. Hous. Stud. 2018, 33, 476–493. [Google Scholar] [CrossRef]
- Menashe-Oren, A.; Stecklov, G. Age-specific sex ratios: Examining rural–urban variation within low-and middle-income countries. Popul. Stud. 2023, 77, 539–558. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, K. National Investment Framework for Revitalizing the R&D Collaborative Ecosystem of Sustainable Smart Agriculture. Sustainability 2022, 14, 6452. [Google Scholar]
- Chanieabate, M.; He, H.; Guo, C.; Abrahamgeremew, B.; Huang, Y. Examining the Relationship between Transportation Infrastructure, Urbanization Level and Rural-Urban Income Gap in China. Sustainability 2023, 15, 8410. [Google Scholar] [CrossRef]
- Syverson, C. Prices, spatial competition and heterogeneous producers: An empirical test. J. Ind. Econ. 2007, 55, 197–222. [Google Scholar] [CrossRef]
- Bernal, H. Intra-industry agglomeration and the external economies of scale model: Empirical evidence from Colombia. Spat. Econ. Anal. 2022, 17, 332–353. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, S.; Wang, W.; Li, Y.; Li, N. Coupling coordination between new urbanisation and carbon emissions in China. Sci. Total Environ. 2022, 850, 158076. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Arestis, P.; Chong, S.C.; Yap, S.; Sia, B.K. The heterogeneous effects of urbanisation and institutional quality on greenhouse gas emissions in Belt and Road Initiative countries. Environ. Sci. Pollut. Res. 2022, 29, 1087–1105. [Google Scholar] [CrossRef] [PubMed]
- Obstfeld, M. Regional non-adjustment and fiscal policy. Econ. Policy 1998, 13, 205–259. [Google Scholar] [CrossRef]
- Kessler, A.S.; Hansen, N.A.; Lessmann, C. Interregional Redistribution and Mobility in Federations: A Positive Approach. Rev. Econ. Stud. 2011, 78, 1345–1378. [Google Scholar] [CrossRef]
- Velayudhan, P.K.; Singh, A.; Srinivasa, A.K. Effect of Direct Benefit Transfer Policy on Fertilizer Sales in India. Natl. Acad. Sci. Lett.-India 2022, 45, 481–484. [Google Scholar] [CrossRef]
- Xu, X.; Cui, X.; Chen, X.; Zhou, Y. Impact of government subsidies on the innovation performance of the photovoltaic industry: Based on the moderating effect of carbon trading prices. Energy Policy 2022, 170, 113216. [Google Scholar] [CrossRef]
- Williams, D.M.; Lee, H.H.; Connell, L.; Boyle, H.; Emerson, J.; Strohacker, K.; Galárraga, O. Small sustainable monetary incentives versus charitable donations to promote exercise: Rationale, design, and baseline data from a randomized pilot study. Contemp. Clin. Trials 2018, 66, 80–85. [Google Scholar] [CrossRef]
- Santos, G.; Davies, H. Incentives for quick penetration of electric vehicles in five European countries: Perceptions from experts and stakeholders. Transp. Res. Part A-Policy Pract. 2020, 137, 326–342. [Google Scholar] [CrossRef]
- D’Amico, G.; Arbolino, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy. Sustainability 2021, 13, 6043. [Google Scholar] [CrossRef]
- Pena, D.O.; Perrotti, D.; Mohareb, E. Advancing urban metabolism studies through GIS data: Resource flows, open space networks, and vulnerable communities in Mexico City. J. Ind. Ecol. 2022, 26, 1333–1349. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B. How does new-type urbanization affect air pollution? Empirical evidence based on spatial spillover effect and spatial Durbin model. Environ. Int. 2022, 165, 107304. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Lu, X.; Chai, Y.; Huang, D.; Cai, Y. Low carbon city and FDI inflows: Evidence from China. Environ. Sci. Pollut. Res. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, P.; Liu, X.; Lu, T. The effect of low-carbon transportation pilot policy on carbon performance: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 54694–54722. [Google Scholar] [CrossRef] [PubMed]
- Cutrini, E. Specialization and Concentration from a Twofold Geographical Perspective: Evidence from Europe. Reg. Stud. 2010, 44, 315–336. [Google Scholar] [CrossRef]
- Holgersen, S.; Baeten, G. Beyond a liberal critique of ‘trickle down’: Urban Planning in the City of Malmo. Int. J. Urban Reg. Res. 2016, 40, 1170–1185. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, T.; Feng, Y.; Liu, Y.; Ye, X. Does financial agglomeration promote the green development in China? A spatial spillover perspective. J. Clean. Prod. 2019, 237, 117808. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, L.; Yuan, H.; Dai, L. The spatial spillover effects and impact paths of financial agglomeration on green development: Evidence from 285 prefecture-level cities in China. J. Clean. Prod. 2022, 340, 130816. [Google Scholar] [CrossRef]
- Li, Z.; Bai, T.; Tang, C. How does the low-carbon city pilot policy affect the synergistic governance efficiency of carbon and smog? Quasi-experimental evidence from China. J. Clean. Prod. 2022, 373, 133809. [Google Scholar] [CrossRef]
- Tan, J.; Chen, L. Spatial Effect of Digital Economy on Particulate Matter 2.5 in the Process of Smart Cities: Evidence from Prefecture-Level Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 14456. [Google Scholar] [CrossRef]
- Dijkstra, J. Externalities in exchange networks an adaptation of existing theories of exchange networks. Ration. Soc. 2009, 21, 395–427. [Google Scholar] [CrossRef]
- Mildenberger, C.D. A liberal theory of externalities? Philos. Stud. 2018, 175, 2105–2123. [Google Scholar] [CrossRef]
- Caplan, A.J.; Silva, E.C.D. An equitable, efficient and implementable scheme to control global carbon dioxide emissions. Int. Tax Public Financ. 2007, 14, 263–279. [Google Scholar] [CrossRef]
- Naoto, A.; Silva, E.C.D. Correlated pollutants, interregional redistribution and labor attachment in a federation. Environ. Resour. Econ. 2008, 41, 111–131. [Google Scholar] [CrossRef]
- Boadway, R.; Song, Z.; Tremblay, J.-F. Non-cooperative pollution control in an inter-jurisdictional setting. Reg. Sci. Urban Econ. 2013, 43, 783–796. [Google Scholar] [CrossRef]
- Velaga, N.R.; Beecroft, M.; Nelson, J.D.; Corsar, D.; Edwards, P. Transport poverty meets the digital divide: Accessibility and connectivity in rural communities. J. Transp. Geogr. 2012, 21, 102–112. [Google Scholar] [CrossRef]
- Risimati, B.; Gumbo, T.; Chakwizira, J. Spatial Integration of Non-Motorized Transport and Urban Public Transport Infrastructure: A Case of Johannesburg. Sustainability 2021, 13, 11461. [Google Scholar] [CrossRef]
- Saikia, A.; Kar, B.K. Impact of road connectivity on urbanisation: A case study of Central Brahmaputra Valley, Assam, India. Geojournal 2023, 88, 3923–3934. [Google Scholar] [CrossRef]
- Bhatt, V.; Chandrasekhar, S.; Sharma, A. Regional Patterns and Determinants of Commuting Between Rural and Urban India. Indian J. Labour Econ. 2020, 63, 1041–1063. [Google Scholar] [CrossRef]
- Ye, C.; Pan, J.; Liu, Z. The historical logics and geographical patterns of rural-urban governance in China. J. Geogr. Sci. 2022, 32, 1225–1240. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.; Jia, W.; Zhang, S. Can New-Type Urbanization Construction Narrow the Urban-Rural Income Gap? Evidence from China. Sustainability 2022, 14, 14725. [Google Scholar] [CrossRef]
- Batubara, B.; Kooy, M.; Zwarteveen, M. Uneven Urbanisation: Connecting Flows of Water to Flows of Labour and Capital Through Jakarta’s Flood Infrastructure. Antipode 2018, 50, 1186–1205. [Google Scholar] [CrossRef]
- Cowan, T. The village as urban infrastructure: Social reproduction, agrarian repair and uneven urbanisation. Environ. Plan. E-Nat. Space 2021, 4, 736–755. [Google Scholar] [CrossRef]
- Allawi, A.H.; Al-Jazaeri, H.M.J. A new approach towards the sustainability of urban-rural integration: The development strategy for central villages in the Abbasiya District of Iraq using GIS techniques. Reg. Sustain. 2023, 4, 28–43. [Google Scholar] [CrossRef]
- Chen, H.; Hua, Y.; Xu, Y. Spatial-Temporal Evolution Patterns and Obstacle Factors of Urban-Rural “Economy-Society-Ecology” Coordination in the Yangtze River Delta. Sustainability 2023, 15, 13839. [Google Scholar] [CrossRef]
- Vaz, D.M.; Matos, M.J. Regional Polycentrism in a Mountainous Territory: The Case of Covilha (Portugal) and Alpine Cities. Eur. Plan. Stud. 2015, 23, 379–397. [Google Scholar] [CrossRef]
- Oedl-Wieser, T.; Hausegger-Nestelberger, K.; Dax, T.; Bauchinger, L. Formal and Informal Governance Arrangements to Boost Sustainable and Inclusive Rural-Urban Synergies: An Analysis of the Metropolitan Area of Styria. Sustainability 2020, 12, 10637. [Google Scholar] [CrossRef]
- Chotpantarat, S.; Boonkaewwan, S. Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrol. Sci. J. 2018, 63, 1386–1407. [Google Scholar] [CrossRef]
- Aktas, N.K.; Donmez, N.Y. Effects of urbanisation and human activities on basin ecosystem: Sapanca lake basin. J. Environ. Prot. Ecol. 2019, 20, 102–112. [Google Scholar]
- Ji, X.; Han, M.; Ulgiati, S. Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization. Land Use Policy 2020, 91, 104392. [Google Scholar] [CrossRef]
- Fang, G.; Tian, L.; Fu, M.; Sun, M.; Du, R.; Lu, L.; He, Y. The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China. Appl. Energy 2017, 196, 180–189. [Google Scholar] [CrossRef]
- Chang, X.; Ma, T.; Wu, R. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives. Int. J. Hydrogen Energy 2019, 44, 16015–16027. [Google Scholar] [CrossRef]
- Chlond, B.; Gavard, C.; Jeuck, L. How to Support Residential Energy Conservation Cost-Effectively? An analysis of Public Financial Schemes in France. Environ. Resour. Econ. 2023, 85, 29–63. [Google Scholar] [CrossRef]
- Huang, S.-L.; Chen, C.-W. Urbanization and Socioeconomic Metabolism in Taipei. Journal of Industrial Ecology 2009, 13, 75–93. [Google Scholar] [CrossRef]
- Davoudi, S.; Sturzaker, J. Urban form, policy packaging and sustainable urban metabolism. Resour. Conserv. Recycl. 2017, 120, 55–64. [Google Scholar] [CrossRef]
- Roy, M.; Curry, R.; Ellis, G. Spatial allocation of material flow analysis in residential developments: A case study of Kildare County, Ireland. J. Environ. Plan. Manag. 2015, 58, 1749–1769. [Google Scholar] [CrossRef]
- Royuela, V. The role of urbanisation on international migrations: A case study of EU and ENP countries. Int. J. Manpow. 2015, 36, 469–490. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol.-Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Fafchamps, M.; Shilpi, F. Cities and specialisation: Evidence from South Asia. Econ. J. 2005, 115, 477–504. [Google Scholar] [CrossRef]
- Scott, A.J. The constitution of the city and the critique of critical urban theory. Urban Stud. 2022, 59, 1105–1129. [Google Scholar] [CrossRef]
- Lachapelle, E.; MacNeil, R.; Paterson, M. The political economy of decarbonisation: From green energy ‘race’ to green ‘division of labour’. New Political Econ. 2017, 22, 311–327. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. Spatial division of labor, specialization of green technology innovation process and urban coordinated green development: Evidence from China. Sustain. Cities Soc. 2022, 80, 103778. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. Urban green innovation efficiency and its influential factors: The Chinese evidence. Environ. Dev. Sustain. 2023, 25, 6551–6573. [Google Scholar] [CrossRef]
- Lu, D. Rural-urban income disparity: Impact of growth, allocative efficiency, and local growth welfare. China Econ. Rev. 2002, 13, 419–429. [Google Scholar] [CrossRef]
- Carver, A.; Timperio, A.F.; Crawford, D.A. Young and free? A study of independent mobility among urban and rural dwelling Australian children. J. Sci. Med. Sport 2012, 15, 505–510. [Google Scholar] [CrossRef]
- Luo, X.X.; Liu, Y.; Liao, B. Does Urban Sprawl Affect Urban Metabolic Efficiency? --An empirical study based on panel data of 285 prefecture-level cities. China Popul. Resour. Environ. 2023, 33, 113–123. [Google Scholar]
- Muniba, M.; Yu, B. Does Innovative City Pilot Policy Stimulate the Chinese Regional Innovation: An Application of DID Model. Int. J. Environ. Res. Public Health 2023, 20, 1245. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, H.; Qian, X.-M.; Chen, L. Can carbon emission trading pilot facilitate green development performance? Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2023, 400, 136755. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, F.; Liu, J.; Zhu, G.L.; Zou, W. Measuring the Level of Urban-Rural Integration, Spatial and Temporal Evolution, and Influence Mechanisms in China under a Multidimensional Perspective. China Popul. Resour. Environ. 2019, 29, 166–176. [Google Scholar]
- Liao, B.; Li, L.; Luo, X.; Liu, Y. Urban sprawl, innovation network connectivity and regional synergy. China Popul. Resour. Environ. 2023, 33, 128–137. [Google Scholar]
- Wang, J.; Ma, H.; Jiang, M.; Zang, J. Urban sprawl, land resource mismatch and agglomeration economies. Explor. Econ. Issues 2021, 10, 62–73. [Google Scholar]
- Chen, Y.; Hu, W. Price distortions, factor mismatches and efficiency losses: Theory and applications. Economics 2011, 10, 1401–1422. [Google Scholar]
- Liu, X.; Wang, C. How does urban-rural population mobility promote rural revitalization?—An Empirical Study Based on County-level Panel Data in China. Zhejiang J. 2023, 160–170. [Google Scholar]
- Jiang, X.; Sun, Q.; Wu, F. Division of technological specialization, evolution of regional innovation capacity and coordinated regional development. Urban Issues 2022, 23–33. [Google Scholar]
- Beck, T.; Levine, R.; Levkov, A. Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Lu, X.H.; Chen, D.L.; Kuang, B.; Zhang, C.Z.; Cheng, C. Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency. Land Use Policy 2020, 95, 104583. [Google Scholar] [CrossRef]
- Tang, C.J.; Huang, K.Q.; Liu, Q.R. Robots and skill-biased development in employment structure: Evidence from China. Econ. Lett. 2021, 205, 109960. [Google Scholar] [CrossRef]
- Quitzow, L.; Rohde, F. Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city. Urban Stud. 2022, 59, 341–359. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Impact of China’s new-type urbanization on energy intensity: A city-level analysis. Energy Econ. 2021, 99, 105292. [Google Scholar] [CrossRef]
- Kara, E.; Ribaudo, M.; Johansson, R.C. On how environmental stringency influences adoption of best management practices in agriculture. J. Environ. Manag. 2008, 88, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.M.; Pasanen, T.; Repo, V.; Hartig, T.; Staats, H.; Mason, M.; Alves, S.; Fornara, F.; Marks, T.; Saini, S.; et al. Environmental Strategies of Affect Regulation and Their Associations With Subjective Well-Being. Front. Psychol. 2018, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Komninos, N. Transformation of Industry Ecosystems in Cities and Regions: A Generic Pathway for Smart and Green Transition. Sustainability 2022, 14, 9694. [Google Scholar] [CrossRef]
- Nkambwe, M.; Sekhwela, M.B.M. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in Botswana. Environ. Manag. 2006, 37, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, H.; Punzo, G.; Meyers, G.; Tan, L.M.; Li, Q.; Tingley, D.D.; Mayfield, M. On the use of random graphs in analysing resource utilization in urban systems. R. Soc. Open Sci. 2020, 7, 200087. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.J.; de Goei, B.; van der Laan, L.; Huisman, F.J.M. Heterogeneous development of metropolitan spatial structure: Evidence from commuting patterns in English and Welsh city-regions, 1981–2001. Cities 2011, 28, 160–170. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Erdiaw-Kwasie, M.O.; Amoateng, P. Africa’s urbanisation: Implications for sustainable development. Cities 2015, 47, 62–72. [Google Scholar] [CrossRef]
- Klos-Adamkiewicz, Z.; Szaruga, E.; Gozdek, A.; Kogut-Jaworska, M. Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland. Energies 2023, 16, 3799. [Google Scholar] [CrossRef]
- Tumwesigye, S.; Vanmaercke, M.; Hemerijckx, L.-M.; Opio, A.; Poesen, J.; Twongyirwe, R.; Van Rompaey, A. Spatial patterns of urbanisation in Sub-Saharan Africa: A case study of Uganda. Dev. S. Afr. 2023, 40, 1–21. [Google Scholar] [CrossRef]
- Mycoo, M.A. A Caribbean New Urban Agenda post-Habitat III: Closing the gaps. Habitat Int. 2017, 69, 68–77. [Google Scholar] [CrossRef]
- Harris, M.; Cave, C.; Foley, K.; Bolger, T.; Hochstrasser, T. Urbanisation of Protected Areas within the European Union-An Analysis of UNESCO Biospheres and the Need for New Strategies. Sustainability 2019, 11, 5899. [Google Scholar] [CrossRef]
- Datta, A. India’s ecocity? Environment, urbanisation, and mobility in the making of Lavasa. Environ. Plan. C-Gov. Policy 2012, 30, 982–996. [Google Scholar] [CrossRef]
- Pokharel, S.; Archer, F. Habitat-III and the New Urban Agenda: Implications for Australia. Aust. J. Emerg. Manag. 2020, 35, 66–72. [Google Scholar]
- Lyhagen, J.; Rickne, J. Income inequality between Chinese regions: Newfound harmony or continued discord? Empir. Econ. 2014, 47, 93–110. [Google Scholar] [CrossRef]
- Yang, S.Y.; Wang, W.Z.; Feng, D.W.; Lu, J.J. Impact of pilot environmental policy on urban eco-innovation. J. Clean. Prod. 2022, 341, 130858. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Noland, R.B. A meta-analysis of estimates of urban agglomeration economies. Reg. Sci. Urban Econ. 2009, 39, 332–342. [Google Scholar] [CrossRef]
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Wolman, H.; Marckini, L. The effect of place on legislative roll-call voting: The case of central-city representatives in the US House. Soc. Sci. Q. 2000, 81, 763–781. [Google Scholar]
- Shao, J.; Wang, L.H. Can new-type urbanization improve the green total factor energy efficiency? Evidence from China. Energy 2023, 262, 125499. [Google Scholar] [CrossRef]
- Anarfi, K.; Hill, R.A.; Shiel, C. Highlighting the Sustainability Implications of Urbanisation: A Comparative Analysis of Two Urban Areas in Ghana. Land 2020, 9, 300. [Google Scholar] [CrossRef]
- Ibekilo, B.; Ekesiobi, C.; Emmanuel, P.M. Heterogeneous assessment of urbanisation, energy consumption and environmental pollution in Africa: The role of regulatory quality. Econ. Chang. Restruct. 2023, 1–24. [Google Scholar] [CrossRef]
- Sarkar, R.; Lakshmana, C.M. Measuring Urbanisation, Growth of Urban Agglomeration, Urban Growth Sustainability and Role of Urban Primacy in India. J. Asian Afr. Stud. 2022, 153, 106566. [Google Scholar] [CrossRef]
Base Layer | Factor Layer | Indicator Layer | |
---|---|---|---|
UME | Resource inputs | Water resource input | Water consumption for society as a whole |
Land resource inputs | Land area for urban construction | ||
Electricity resource inputs | Electricity consumption of society as a whole | ||
Gas supply resource inputs | Total gas and natural gas consumption | ||
LPG resource inputs | Total LPG consumption | ||
Expected outputs | Compulsory education benefits | Number of students enrolled in primary and secondary schools | |
Wages and benefits | Total wages of employees on board | ||
Economic output | Gross regional product (GDP) | ||
Non-expected outputs | Wastewater discharge | Industrial wastewater discharge | |
Exhaust emission | Industrial sulfur dioxide emissions | ||
Solid waste emission | Industrial fume (dust) emissions |
Var | Obs | Mean | Max | Min |
---|---|---|---|---|
UME | 3692 | 0.317 | 0.006 | 1.000 |
NU | 3692 | 0.274 | 0.000 | 1.000 |
URI | 3692 | 0.102 | 0.034 | 0.486 |
RSD | 3692 | 0.031 | 0.015 | 1.000 |
US | 3692 | 1.064 | 0.015 | 11.044 |
EM | 3692 | 10.157 | 0.001 | 27.421 |
URPM | 3692 | −2.525 | −25.995 | 25.451 |
IDGIDL | 3692 | 0.425 | 0.045 | 1.166 |
UB | 3692 | 0.969 | 0.260 | 1.000 |
ED | 3692 | 1.456 | 0.114 | 16.094 |
PD | 3692 | 0.042 | 0.004 | 0.275 |
PT | 3692 | 7.806 | 0.238 | 22.504 |
FD | 3692 | 2.833 | 0.648 | 39.031 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
NU | 0.021 *** | 0.026 *** | 0.025 *** | 0.024 *** | 0.024 *** | 0.024 *** |
(2.69) | (3.32) | (3.30) | (3.11) | (2.82) | (2.95) | |
ED | 0.035 *** | 0.036 *** | 0.035 *** | 0.035 *** | 0.035 *** | |
(4.65) | (4.29) | (4.26) | (4.70) | (4.24) | ||
UB | 0.089 | 0.116 | 0.109 | 0.122 | ||
(0.78) | (0.99) | (0.73) | (0.86) | |||
PD | 0.783 | 0.533 | 0.527 | |||
(0.81) | (0.87) | (0.86) | ||||
PT | 0.001 | 0.001 | ||||
(1.02) | (1.04) | |||||
FD | −0.005 | |||||
(−1.42) | ||||||
Constant | 0.330 *** | 0.275*** | 0.187 * | 0.129 | 0.165 | 0.164 |
(109.11) | (22.32) | (1.68) | (1.08) | (1.43) | (1.42) | |
City FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
Obs | 0.658 | 0.665 | 0.666 | 0.668 | 0.671 | 0.672 |
R2 | 3692 | 3692 | 3692 | 3692 | 3692 | 3692 |
Variables | (1) PSM-DID | (2) Predefined Variable | (3) Tobit Model | (4) Exclusion of Simultaneous Interference | (5) Changing the Clustering Hierarchy |
---|---|---|---|---|---|
NU | 0.050 *** | 0.015 * | 0.025 *** | 0.017 * | 0.024 ** |
(3.49) | (1.71) | (2.89) | (1.72) | (2.07) | |
SMC | 0.064 *** | ||||
(7.62) | |||||
Constant | 0.202 | −2.021 *** | 1.434 | 0.130 | |
(0.66) | (−3.26) | (0.03) | (0.72) | ||
Control variable | Control | Control | Control | Control | Control |
City/Pro FE | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes |
Obs | 1111 | 3692 | 3692 | 3692 | 3692 |
Log-likelihood | 776.489 | ||||
R2 | 0.739 | 0.667 | / | 0.666 | 0.666 |
Variables | (1) Eastern Region | (2) Central Region | (3) Western Region | (4) Urban Agglomeration Cities | (5) Non-Urban Agglomerations Cities | (6) Center Cities | (7) General Cities |
---|---|---|---|---|---|---|---|
NU | 0.027 *** | 0.015 *** | 0.005 | 0.017 * | 0.048 ** | 0.092 *** | 0.018 * |
(2.89) | (2.62) | (1.55) | (1.88) | (2.37) | (4.38) | (1.99) | |
Constant | −0.136 | 0.118 ** | 0.157 * | −0.577 ** | 0.238 | 0.817 | 0.108 |
(−1.25) | (2.11) | (1.28) | (−2.23) | (1.42) | (1.44) | (0.89) | |
Control variable | Control | Control | Control | Control | Control | Control | Control |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 1300 | 1300 | 1092 | 2730 | 962 | 390 | 3302 |
R2 | 0.487 | 0.584 | 0.594 | 0.643 | 0.721 | 0.760 | 0.656 |
Variables | (1) Spatial Adjacency Matrix | (2) Inverse Geographic Distance Matrix | (3) Economic–Geographic Nested Matrices |
---|---|---|---|
W* NU | 0.026 ** | 0.029 ** | 0.034 ** |
(2.02) | (2.05) | (2.36) | |
Control variable | Control | Control | Control |
City FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Obs | 3692 | 3692 | 3692 |
R2 | 0.090 | 0.194 | 0.139 |
Target Level | Standardized Layer | Program Level | ||||
---|---|---|---|---|---|---|
(1) URI | (2) RSD | (3) US | (4) EM | (5) URPM | (6) IDGIDL | |
NU | 0.214 *** | 0.106 * | −0.033 *** | −0.586 *** | 0.043 *** | 0.046 ** |
(10.25.) | (1.98) | (−3.06) | (−11.24) | (12.11) | (2.30) | |
Constant | 0.368 *** | −0.604 | 1.202 *** | 5.084 *** | 0.099 * | 0.835 ** |
(2.88) | (−9.08) | (7.58) | (6.70) | (1.88) | (2.24) | |
Control variable | Control | Control | Control | Control | Control | Control |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 3692 | 3692 | 3692 | 3692 | 3692 | 3692 |
R2 | 0.911 | 0.255 | 0.667 | 0.849 | 0.917 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B. Does New Urbanization Promote Urban Metabolic Efficiency? Sustainability 2024, 16, 564. https://doi.org/10.3390/su16020564
Liao B. Does New Urbanization Promote Urban Metabolic Efficiency? Sustainability. 2024; 16(2):564. https://doi.org/10.3390/su16020564
Chicago/Turabian StyleLiao, Bin. 2024. "Does New Urbanization Promote Urban Metabolic Efficiency?" Sustainability 16, no. 2: 564. https://doi.org/10.3390/su16020564
APA StyleLiao, B. (2024). Does New Urbanization Promote Urban Metabolic Efficiency? Sustainability, 16(2), 564. https://doi.org/10.3390/su16020564