Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Soil Incorporation
2.2. Gathering of SIW and Analysis
2.3. Plant Experiment
2.4. Soil Analysis
2.4.1. Properties of SIW and Bioavailable HMs in It
2.4.2. Arbuscular Mycorrhizal Fungi and Soil Enzyme Responses
2.5. Plant Analysis for HM Estimation in Shoots, Roots, and Grain
2.6. Statistical Analysis
3. Results
3.1. Arbuscular Mycorrhizal Fungi Responses
3.2. Soil Physicochemical Attributes
3.3. HMs in SIW and Their Plant Uptake
3.4. Plant Growth Performance
3.5. Soil Enzyme Activities
4. Discussion
4.1. Arbuscular Mycorrhizal Fungi Responses
4.2. Soil Physicochemical Attributes
4.3. Bioavailability of HMs in Soil and Their Plant Uptake
4.4. Plant Growth Performance
4.5. Soil Enzyme Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | HMs in Soil–DTPA Extract | |||||
---|---|---|---|---|---|---|
Pb | Cd | Ni | Cu | Co | Zn | |
Concentrations (mg kg−1 Soil) | ||||||
Control | 3.30 ± 0.08 a | 1.64 ± 0.04 a | 2.55 ± 0.07 a | 1.91 ± 0.05 a | 1.15 ± 0.03 a | 1.24 ± 0.03 a |
RS | 3.07 ± 0.08 bc | 1.50 ± 0.04 b | 2.35 ± 0.06 bc | 1.78 ± 0.05 b | 1.05 ± 0.03 b | 1.22 ± 0.03 a |
RSC | 2.85 ± 0.07 d | 1.30 ± 0.03 c | 2.16 ± 0.06 d | 1.57 ± 0.04 c | 0.84 ± 0.02 d | 1.17 ± 0.03 ab |
RSB | 2.30 ± 0.06 e | 1.04 ± 0.03 d | 1.77 ± 0.05 e | 1.28 ± 0.03 d | 0.71 ± 0.02 e | 1.08 ± 0.03 bc |
AMF | 3.21 ± 0.08 ab | 1.59 ± 0.04 ab | 2.43 ± 0.06 ab | 1.86 ± 0.05 ab | 1.10 ± 0.03 ab | 1.23 ± 0.03 a |
RS+AMF | 2.95 ± 0.08 cd | 1.38 ± 0.04 c | 2.24 ± 0.06 cd | 1.64 ± 0.04 c | 0.96 ± 0.02 c | 1.18 ± 0.03 a |
RSC+AMF | 2.76 ± 0.07 d | 0.92 ± 0.02 e | 1.62 ± 0.04 ef | 1.19 ± 0.03 de | 0.64 ± 0.02 f | 1.03 ± 0.03 cd |
RSB+AMF | 2.13 ± 0.05 e | 0.82 ± 0.02 f | 1.46 ± 0.04 f | 1.09 ± 0.03 e | 0.55 ± 0.01 g | 0.97 ± 0.02 d |
LSD0.05 | 0.22 | 0.10 | 0.16 | 0.12 | 0.07 | 0.09 |
Treatment | BCF | TF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Ni | Cu | Co | Zn | Pb | Cd | Ni | Cu | Co | Zn | |
Control | 0.12 ± 0.002 a | 0.16 ± 0.008 a | 0.12 ± 0.006 a | 0.22 ± 0.01 a | 0.15 ± 0.004 a | 0.39 ± 0.01 a | 0.34 ± 0.01 a | 0.43 ± 0.005 a | 0.33 ± 0.004 a | 0.54 ± 0.01 a | 0.35 ± 0.004 a | 0.51 ± 0.01 a |
RS | 0.10 ± 0.002 c | 0.13 ± 0.004 b | 0.10 ± 0.003 b | 0.17 ± 0.005 c | 0.12 ± 0.003 c | 0.34 ± 0.01 b | 0.27 ± 0.004 c | 0.40 ± 0.005 b | 0.32 ± 0.004 a | 0.51 ± 0.01 cd | 0.33 ± 0.004 b | 0.48 ± 0.01 b |
RSC | 0.05 ± 0.001 e | 0.10 ± 0.003 c | 0.08 ± 0.002 d | 0.12 ± 0.003 e | 0.08 ± 0.002 d | 0.27 ± 0.01 d | 0.19 ± 0.002 e | 0.39 ± 0.004 c | 0.30 ± 0.003 b | 0.47 ± 0.01 e | 0.28 ± 0.003 d | 0.44 ± 0.005 c |
RSB | 0.03 ± 0.001 f | 0.07 ± 0.002 d | 0.05 ± 0.001 e | 0.10 ± 0.003 f | 0.07 ± 0.002 e | 0.22 ± 0.01 e | 0.16 ± 0.002 f | 0.36 ± 0.004 d | 0.28 ± 0.003 c | 0.52 ± 0.01 bc | 0.31 ± 0.004 c | 0.41 ± 0.005 d |
AMF | 0.11 ± 0.002 b | 0.14 ± 0.007 a | 0.11 ± 0.007 a | 0.20 ± 0.01 b | 0.13 ± 0.004 b | 0.36 ± 0.01 a | 0.32 ± 0.01 b | 0.42 ± 0.005 a | 0.32 ± 0.004 a | 0.53 ± 0.01 ab | 0.34 ± 0.004 b | 0.50 ± 0.006 a |
RS+AMF | 0.06 ± 0.001 d | 0.11 ± 0.003 b | 0.09 ± 0.002 c | 0.15 ± 0.004 d | 0.11 ± 0.003 c | 0.29 ± 0.01 c | 0.23 ± 0.003 d | 0.39 ± 0.004 bc | 0.31 ± 0.003 b | 0.49 ± 0.006 d | 0.33 ± 0.004 b | 0.45 ± 0.005 c |
RSC+AMF | 0.02 ± 0.0003 g | 0.05 ± 0.002 e | 0.04 ± 0.001 f | 0.08 ± 0.002 g | 0.06 ± 0.002 f | 0.19 ± 0.01 f | 0.10 ± 0.001 g | 0.32 ± 0.004 e | 024 ± 0.003 d | 0.44 ± 0.005 f | 0.26 ± 0.003 e | 0.40 ± 0.005 d |
RSB+AMF | 0.008 ± 0.0001 g | 0.04 ± 0.001 f | 0.02 ± 0.001 g | 0.06 ± 0.002 g | 0.04 ± 0.001 g | 0.17 ± 0.005 g | 0.07 ± 0.001 h | 0.28 ± 0.003 f | 0.20 ± 0.002 e | 0.41 ± 0.005 g | 0.25 ± 0.003 f | 0.37 ± 0.004 e |
References
- Guadie, A.; Yesigat, A.; Gatew, S.; Worku, A.; Liu, W.; Ajibade, F.O.; Wang, A. Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Sci. Total Environ. 2021, 761, 143302. [Google Scholar] [CrossRef] [PubMed]
- Natasha; Shahid, M.; Khalid, S.; Murtaza, B.; Anwar, H.; Shah, A.H.; Sardar, A.; Shabbir, Z.; Niazi, N.K. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environ. Geochem. Health 2020, 45, 5599–5618. [Google Scholar] [CrossRef] [PubMed]
- y Castor, C.P.; Gastélum-Strozzi, A.; Sammartino, S.; Michel, E.; Vicente, J.; Prado, B. Long-term (>90 years) wastewater irrigation effect on the pore characteristics and stability of soil aggregates. Geoderma 2023, 434, 116469. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Gupta, R.K.; Pradhan, T.; Raj, A.; Singh, S.K.; Pandey, K.D.; Kumar, A. Contamination of soil and food chain through wastewater application. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2023; Volume 9, pp. 109–132. [Google Scholar]
- Aslam, A.; Naz, A.; Shah, S.S.H.; Rasheed, F.; Naz, R.; Kalsom, A.; Mukhtar, N.; Niaz, A.; Aftab, M.; Rasheed, I. Heavy metals contamination in vegetables irrigated with wastewater: A case study of underdeveloping regions of Pakistan. Environ. Geochem. Health 2023, 45, 8911–8927. [Google Scholar] [CrossRef] [PubMed]
- Natasha; Shahid, M.; Sardar, A.; Anwar, H.; Khalid, S.; Shah, S.H.; Shah, A.H.; Bilal, M. Effect of co-application of wastewater and freshwater on the physiological properties and trace element content in Raphanus sativus: Soil contamination and human health. Environ. Geochem. Health 2021, 43, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Mawof, A.; Prasher, S.O.; Bayen, S.; Anderson, E.C.; Nzediegwu, C.; Patel, R. Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability 2022, 14, 5665. [Google Scholar] [CrossRef]
- Sikhau, T.; Tanga, M.; Adetunji, A.; Howell, C.; Mulidzi, R.; Lewu, F. Sustainable Winery Wastewater Management for Improving Soil Quality, Environmental Health, and Crop Yield. In Towards Sustainable Food Production in Africa: Best Management Practices and Technologies; Springer Nature: Singapore, 2023; pp. 153–170. [Google Scholar]
- Karam, D.S.; Nagabovanalli, P.; Rajoo, K.S.; Ishak, C.F.; Abdu, A.; Rosli, Z.; Muharam, F.M.; Zulperi, D. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J. Saudi Soc. Agric. Sci. 2022, 21, 149–159. [Google Scholar]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop residue management in India: Stubble burning vs. other utilizations including bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Tokas, D.; Singh, S.; Yadav, R.; Kumar, P.; Sharma, S.; Singh, A.N. Wheat-Paddy Straw Biochar: An Ecological Solution of Stubble Burning in the Agroecosystems of Punjab and Haryana Region, India, A Synthesis. Sciences 2021, 9, 613–625. [Google Scholar] [CrossRef]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar]
- Rajendran, S.; Priya, T.; Khoo, K.S.; Hoang, T.K.; Ng, H.-S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Khan, S.A.; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef]
- Yang, L.; Fan, L.; Huang, B.; Xin, J. Efficiency and mechanisms of fermented horse manure, vermicompost, bamboo biochar, and fly ash on Cd accumulation in rice. Environ. Sci. Pollut. Res. 2020, 27, 27859–27869. [Google Scholar] [CrossRef] [PubMed]
- Siles, J.A.; García-Romera, I.; Cajthaml, T.; Belloc, J.; Silva-Castro, G.; Szaková, J.; Tlustos, P.; Garcia-Sanchez, M. Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils. Sci. Rep. 2022, 12, 12690. [Google Scholar] [CrossRef] [PubMed]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef] [PubMed]
- Blenis, N.; Hue, N.; Maaz, T.M.; Kantar, M. Biochar production, modification, and its uses in soil remediation: A review. Sustainability 2023, 15, 3442. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Usman, M. Feedstock type, pyrolysis temperature and acid modification effects on physiochemical attributes of biochar and soil quality. Arab. J. Geosci. 2022, 15, 305. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Y.; Guo, Z.; Xiao, X.; Peng, C.; Zeng, P. Optimizing pyrolysis temperature of contaminated rice straw biochar: Heavy metal (loid) deportment, properties evolution, and Pb adsorption/immobilization. J. Saudi Chem. Soc. 2022, 26, 101439. [Google Scholar] [CrossRef]
- Bhantana, P.; Rana, M.S.; Sun, X.-c.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Shen, C.; Fu, H.; Huang, B.; Liao, Q.; Huang, Y.; Wang, Y.; Wang, Y.; Xin, J. Physiological and molecular mechanisms of boron in alleviating cadmium toxicity in Capsicum annuum. Sci. Total Environ. 2023, 903, 166264. [Google Scholar] [CrossRef]
- Mulyadi; Jiang, L. Combined Application of Arbuscular Mycorrhizal Fungi (AMF) and Nitrogen Fertilizer Alters the Physicochemical Soil Properties, Nitrogen Uptake, and Rice Yield in a Polybag Experiment. Agriculture 2023, 13, 1364. [Google Scholar] [CrossRef]
- Khan, M.A.; Ramzani, P.M.A.; Zubair, M.; Rasool, B.; Khan, M.K.; Ahmed, A.; Khan, S.A.; Turan, V.; Iqbal, M. Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci. Total Environ. 2020, 710, 136294. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, F.; Zhang, X.-F.; Lei, L.-L.; Yan, T.-X.; Lu, R.-R.; Hu, Z.-H.; Jing, Y.-X. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int. J. Phytore. 2020, 22, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Kausar, H.; Ismail, M.R.; Saud, H.M.; Habib, S.H.; Othman, R.; Bhuiyan, M. Changes of physical and chemical characteristics during microbial composting of rice straw at various pH levels. Compos. Sci. Util. 2014, 22, 153–163. [Google Scholar] [CrossRef]
- Jindo, K.; Sonoki, T. Comparative assessment of biochar stability using multiple indicators. Agronomy 2019, 9, 254. [Google Scholar] [CrossRef]
- Waqas-ud-Din Khan, P.M.; Ramzani, A.; Anjum, S.; Abbas, F.; Iqbal, M.; Yasar, A.; Ihsan, M.Z.; Anwar, M.N.; Baqar, M.; Tauqeer, H.M. Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization 2 in soil and nutritional quality of spinach. Chemosphere 2017, 185, 1144–1156. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Voroney, R.; Brookes, P.; Beyaert, R. Soil microbial biomass C, N, P, and S. Soil Sampl. Methods Anal. 2008, 2, 637–652. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Derkowska, E.; Sas-Paszt, L.; Sumorok, B.; Szwonek, E.; Gluszek, S. The influence of mycorrhization and organic mulches on mycorrhizal frequency in apple and strawberry roots. J. Fruit Ornam. Plant Res. 2008, 16, 227–242. [Google Scholar]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Koske, R.; Gemma, J. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.; Fairchild, G.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Kormanik, P.; McGraw, A.; Schenck, N. Methods and Principles of Mycorrhizal Research; The American Phytopathological Society: Saint Paul, MI, USA, 1982; pp. 37–45. [Google Scholar]
- An, Z.-Q.; Hendrix, J. Determining viability of endogonaceous spores with a vital stain. Mycologia 1988, 80, 259–261. [Google Scholar] [CrossRef]
- Zubair, M.; Ramzani, P.M.A.; Rasool, B.; Khan, M.A.; Akhtar, I.; Turan, V.; Tauqeer, H.M.; Farhad, M.; Khan, S.A.; Iqbal, J. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J. Environ. Manag. 2021, 284, 112047. [Google Scholar] [CrossRef] [PubMed]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Jones Jr, J.B.; Case, V.W. Sampling, handling, and analyzing plant tissue samples. Soil Test. Plant Anal. 1990, 3, 389–427. [Google Scholar]
- Wang, Y.; Xu, Y.; Sun, G.; Liang, X.; Sun, Y.; Wang, L.; Huang, Q. Comparative effects of Tagetes patula L. extraction, mercapto-palygorskite immobilisation, and the combination thereof on Cd accumulation by wheat in Cd-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 224, 112639. [Google Scholar] [CrossRef]
- d Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
- Minkosse, C.; Langenfeld, A.; Azzaz, A.A.; Jeguirim, M.; El-Bassi, L.; Akrout, H.; Jellali, S.; Ghimbeu, C.M.; Nassr, N. Short-term effects of olive-mill-wastes-derived biochars amendment and arbuscular mycorrhizal fungi inoculation on growth of maize (Zea mays) and mycorrhizal colonization. C. R. Chim. 2023, 26 (Suppl. S1), 1–16. [Google Scholar] [CrossRef]
- Hashem, A.; Kumar, A.; Al-Dbass, A.M.; Alqarawi, A.A.; Al-Arjani, A.-B.F.; Singh, G.; Farooq, M.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 2019, 26, 614–624. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.K. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environ. Exp. Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, M.; Chen, L.; Ji, L.; Zhao, Z.; Wang, L.; Wei, L.; Zhang, Y. Growth and elemental uptake of Trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environ. Pollut. 2020, 260, 113761. [Google Scholar] [CrossRef] [PubMed]
- Keyes, S.; Van Veelen, A.; McKay Fletcher, D.; Scotson, C.; Koebernick, N.; Petroselli, C.; Williams, K.; Ruiz, S.; Cooper, L.; Mayon, R. Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi. New Phytol. 2022, 234, 688–703. [Google Scholar] [CrossRef] [PubMed]
- Lǚ, L.-H.; Zou, Y.-N.; Wu, Q.-S. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Commun. Soil Sci. Plant Anal. 2019, 50, 909–921. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Glaser, B.; Pellegrino Cerri, C.E. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef]
- Ahmad Bhat, S.; Kuriqi, A.; Dar, M.U.D.; Bhat, O.; Sammen, S.S.; Towfiqul Islam, A.R.M.; Elbeltagi, A.; Shah, O.; AI-Ansari, N.; Ali, R. Application of biochar for improving physical, chemical, and hydrological soil properties: A systematic review. Sustainability 2022, 14, 11104. [Google Scholar] [CrossRef]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for soil applications-sustainability aspects, challenges and future prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Ajayi, A.; Horn, R. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res. 2016, 164, 34–44. [Google Scholar] [CrossRef]
- Barbosa, M.V.; Pedroso, D.d.F.; Curi, N.; Carneiro, M.A.C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciênc. Agrotecnol. 2019, 43, 003519. [Google Scholar] [CrossRef]
- Matos, P.S.; Silva, C.F.d.; Damian, J.M.; Cerri, C.E.P.; Pereira, M.G.; Zonta, E. Beneficial services of Glomalin and Arbuscular Mycorrhizal fungi in degraded soils in Brazil. Sci. Agric. 2021, 79, e20210064. [Google Scholar] [CrossRef]
- Bitterlich, M.; Franken, P.; Graefe, J. Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front. Plant Sci. 2018, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; El-Bebany, A.F.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Prediction models based on soil properties for evaluating the uptake of eight heavy metals by tomato plant (Lycopersicon esculentum Mill.) grown in agricultural soils amended with sewage sludge. J. Environ. Chem. Eng. 2021, 9, 105977. [Google Scholar] [CrossRef]
- Patel, S.; Sharma, A.; Batra, N.G. Arbuscular Mycorrhizal Fungi-Assisted Bioremediation Bioremediations of Heavy Metals: A Revaluation. In Innovations in Environmental Biotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 785–804. [Google Scholar]
- Shi, W.; Zhang, Y.; Chen, S.; Polle, A.; Rennenberg, H.; Luo, Z.B. Physiological and molecular mechanisms of heavy metal accumulation in non-mycorrhizal versus mycorrhizal plants. Plant Cell Environ. 2019, 42, 1087–1103. [Google Scholar] [CrossRef]
- Dhalaria, R.; Kumar, D.; Kumar, H.; Nepovimova, E.; Kuča, K.; Torequl Islam, M.; Verma, R. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 2020, 10, 815. [Google Scholar] [CrossRef]
- Munir, M.A.M.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Ullah, H. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere 2020, 240, 124845. [Google Scholar] [CrossRef]
- Galal, T.M.; Hassan, L.M.; Ahmed, D.A.; Alamri, S.A.; Alrumman, S.A.; Eid, E.M. Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS ONE 2021, 16, e0252229. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
Property | Unit | Rice Stubble | Rice Stubble Compost | Rice Stubble Biochar |
---|---|---|---|---|
pH | − | 7.60 | 7.91 | 9.11 |
EC 1 | dS m−1 | 0.31 | 1.15 | 2.67 |
CEC 2 | cmolc kg−1 | 11.3 | 38.4 | 68.4 |
Surface area | m2 g−1 | 1.34 | 17.4 | 234.1 |
C | % | 37.5 | 34.5 | 45.1 |
H | % | 5.38 | 4.10 | 4.43 |
O | % | 35.6 | 19.2 | 22.4 |
N | g kg−1 | 25.5 | 32.4 | 18.7 |
P | g kg−1 | 2.27 | 2.91 | 2.52 |
K | g kg−1 | 23.0 | 31.0 | 29.2 |
Ca | g kg−1 | 12.6 | 14.8 | 13.4 |
Mg | g kg−1 | 5.90 | 7.32 | 6.90 |
S | g kg−1 | 1.33 | 1.62 | 1.01 |
Fe | mg kg−1 | 187.1 | 263.8 | 241.2 |
Zn | mg kg−1 | 67.7 | 80.6 | 72.8 |
Mn | mg kg−1 | 113.4 | 139.5 | 125.2 |
Cu | mg kg−1 | 49.5 | 63.4 | 54.9 |
B | mg kg−1 | 23.9 | 27.1 | 30.6 |
Characteristic | Unit | Value |
---|---|---|
Texture | − | Clay loam |
Sand | % | 39.5 |
Silt | % | 31.0 |
Clay | % | 29.5 |
pH | − | 6.71 |
EC | dS m−1 | 1.46 |
CEC | cmolc kg−1 | 5.86 |
OM 1 | % | 0.61 |
Total C 2 | % | 0.637 |
CaCO3 | % | 2.67 |
Total N | mg kg−1 | 0.71 |
NH4−N 3 | mg kg−1 | 8.38 |
NO3−N 4 | mg kg−1 | 51.5 |
Bioavailable Ni | mg kg−1 | 2.57 |
Bioavailable Cd | mg kg−1 | 1.64 |
Bioavailable Pb | mg kg−1 | 3.31 |
Bioavailable Cu | mg kg−1 | 1.92 |
Bioavailable Co | mg kg−1 | 1.15 |
Bioavailable Zn | mg kg−1 | 1.24 |
Total Ni | mg kg−1 | 81.7 |
Total Cd | mg kg−1 | 13.1 |
Total Pb | mg kg−1 | 518.7 |
Total Cu | mg kg−1 | 209.4 |
Total Co | mg kg−1 | 20.1 |
Total Zn | mg kg−1 | 130.2 |
Soil Treatment | Rice Stubble and Its Products | Inoculum of AMF |
---|---|---|
(% w/w of Soil) | (g pot−1) | |
No soil additive | − | − |
Rice stubble | 5 | − |
Rice stubble compost | 5 | − |
Rice stubble biochar | 5 | − |
Arbuscular mycorrhizal fungi | − | 1.70 |
Rice stubble+arbuscular mycorrhizal fungi | 5 | 1.70 |
Rice stubble compost+arbuscular mycorrhizal fungi | 5 | 1.70 |
Rice stubble biochar+arbuscular mycorrhizal fungi | 5 | 1.70 |
Treatment | Shoot Length | Root Length | Shoot DW | Root DW | No. of Pods | No. of Seeds | Grain Yield |
---|---|---|---|---|---|---|---|
cm | g Plant−1 | No. Plant−1 | g Plant−1 | ||||
Control | 53.8 ± 1.38 f | 17.0 ± 0.44 f | 3.98 ± 0.10 f | 1.15 ± 0.03 e | 6.00 ± 0.58 f | 13.7 ± 0.33 e | 2.75 ± 0.07 f |
RS | 57.4 ± 1.47 ef | 18.0 ± 0.46 ef | 4.41 ± 0.11 e | 1.25 ± 0.03 de | 7.67 ± 0.33 de | 17.3 ± 0.33 d | 3.03 ± 0.08 e |
RSC | 59.4 ± 1.52 de | 18.7 ± 0.48 de | 5.04 ± 0.13 d | 1.32 ± 0.03 d | 9.00 ± 0.58 d | 18.3 ± 0.33 d | 3.35 ± 0.09 d |
RSB | 65.2 ± 1.67 bc | 20.8 ± 0.53 bc | 5.78 ± 0.15 bc | 1.49 ± 0.04 bc | 13.0 ± 0.58 bc | 21.3 ± 0.67 c | 3.76 ± 0.10 bc |
AMF | 56.3 ± 1.44 ef | 17.8 ± 0.45 ef | 4.31 ± 0.11 ef | 1.22 ± 0.03 de | 7.33 ± 0.33 ef | 17.0 ± 0.58 d | 2.92 ± 0.07 ef |
RS+AMF | 62.7 ± 1.61 cd | 20.2 ± 0.52 cd | 5.46 ± 0.14 c | 1.44 ± 0.04 c | 12.0 ± 0.58 c | 21.0 ± 0.58 c | 3.53 ± 0.09 cd |
RSC+AMF | 69.1 ± 1.77 b | 22.0 ± 0.56 b | 6.09 ± 0.16 b | 1.57 ± 0.04 b | 14.0 ± 0.58 ab | 24.0 ± 0.58 b | 3.93 ± 0.10 b |
RSB+AMF | 74.7 ± 1.91 a | 24.8 ± 0.64 a | 6.62 ± 0.17 a | 1.70 ± 0.04 a | 15.3 ± 0.67 a | 26.7 ± 0.67 a | 4.30 ± 0.11 a |
LSD0.05 | 4.81 | 1.54 | 0.41 | 0.11 | 1.62 | 1.58 | 0.27 |
Treatment | Urease | Catalase | Peroxidase | Phosphatase | β-Glucosidase | Fluorescein Diacetate |
---|---|---|---|---|---|---|
µg N−N(H4+ kg−1 h−1) | Vol. of 0.1 M KMnO4 g−1 of Soil | mol g−1 h−1 | µg PNP g−1 Soil h−1 | µg PNP g−1 Soil h−1 | µg Fluorescein g−1 Dry Soil h−1 | |
Control | 1.59 ± 0.04 f | 0.23 ± 0.01 g | 2.85 ± 0.07 f | 29.1 ± 0.75 f | 25.5 ± 0.65 g | 32.0 ± 0.82 f |
RS | 1.82 ± 0.05 e | 0.30 ± 0.01 f | 3.13 ± 0.08 e | 34.8 ± 0.89 e | 39.0 ± 1.00 f | 36.5 ± 0.93 e |
RSC | 2.01 ± 0.05 d | 0.36 ± 0.01 e | 3.48 ± 0.09 d | 41.8 ± 1.07 d | 49.0 ± 1.25 e | 41.6 ± 1.07 d |
RSB | 2.41 ± 0.06 b | 0.44 ± 0.01 c | 3.95 ± 0.10 bc | 52.7 ± 1.35 c | 66.3 ± 1.70 c | 48.7 ± 1.25 c |
AMF | 1.78 ± 0.05 e | 0.28 ± 0.01 f | 3.04 ± 0.08 ef | 32.5 ± 0.83 ef | 35.4 ± 0.91 f | 35.6 ± 0.91 e |
RS+AMF | 2.22 ± 0.06 c | 0.40 ± 0.01 d | 3.77 ± 0.10 c | 45.3 ± 1.16 d | 54.1 ± 1.39 d | 43.8 ± 1.12 d |
RSC+AMF | 2.56 ± 0.07 b | 0.50 ± 0.01 b | 4.21 ± 0.11 b | 58.5 ± 1.50 b | 76.5 ± 1.96 b | 56.9 ± 1.46 b |
RSB+AMF | 2.83 ± 0.07 a | 0.59 ± 0.02 a | 4.61 ± 0.12 a | 65.0 ± 1.67 a | 85.5 ± 2.19 a | 62.9 ± 1.61 a |
LSD0.05 | 0.17 | 0.03 | 0.28 | 3.58 | 4.40 | 3.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhad, M.; Noor, M.; Yasin, M.Z.; Nizamani, M.H.; Turan, V.; Iqbal, M. Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas. Sustainability 2024, 16, 634. https://doi.org/10.3390/su16020634
Farhad M, Noor M, Yasin MZ, Nizamani MH, Turan V, Iqbal M. Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas. Sustainability. 2024; 16(2):634. https://doi.org/10.3390/su16020634
Chicago/Turabian StyleFarhad, Muniba, Maryam Noor, Muhammad Zubair Yasin, Mohsin Hussain Nizamani, Veysel Turan, and Muhammad Iqbal. 2024. "Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas" Sustainability 16, no. 2: 634. https://doi.org/10.3390/su16020634
APA StyleFarhad, M., Noor, M., Yasin, M. Z., Nizamani, M. H., Turan, V., & Iqbal, M. (2024). Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas. Sustainability, 16(2), 634. https://doi.org/10.3390/su16020634