Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries
Abstract
:1. Introduction
2. Snail Shell Composition
2.1. Proximate Composition of Snail Shell
2.2. Chitin and Chitosan
Species Name | Chitin (%) | Chitosan (%) |
---|---|---|
Achatina fulica | 13.42 | 67.16 [35] |
Achatina achatina | Unknown | 46.37 [37] |
Archachatina marginata | Unknown | 35.85 [37] |
2.3. Calcium Carbonate
2.4. Other Mineral Elements
Shell Mineral Content | mg/100 g | Ref. | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Na | K | S | Mn | Mg | P | Zn | Fe | Se | Pb | Ni | Cr | Co | Cu | Cl | ||
Cochlicella acuta | 192.500 | 800 | 119.36 | 149.420 | 156.6 | 30.633 | 21.08 | 7.52 | 8.645 | 2.000 | 1.668 | 533.3 | 300 | 50 | 1.200 | [66] | |
Achatina achatina | 207.500 | 1.300 | 793.60 | 0.00 | 208.8 | 18.283 | 0.00 | 15.571 | 1.677 | 5.000 | 1.833 | 800 | 300 | 50 | 960 | ||
Thais callifera | 220.00 | 2.300 | 87.360 | 104.060 | 191.4 | 22.800 | 0.00 | 13.429 | 2.548 | 3.000 | 1.750 | 666.7 | 200 | 25 | 1.040 | ||
Archachatina marginata (mean) | 269.80 | 25.76 | 125.36 | 139.13 | 170.71 | 2.27 | 1.06 | [65] | |||||||||
Achatina achatina | 0.431 | 0.0985 | 25.123 | 0.647 | [29] | ||||||||||||
Archacatina marginata | 0.671 | 0.25 | 5.745 | 0.533 | |||||||||||||
Achatina fulica | 1698 | 0.802 | 3.704 | 0.551 | |||||||||||||
Limucolaria sp. | 0.199 | 6.3 | 20.858 | 0.446 | |||||||||||||
Archacatina marginata | 13,716.09 | 5.92 | 24.95 | 0.33 | 50.09 | BDL * | BDL | 1.37 | BDL | [18] | |||||||
Achatina achatina | 14,188.53 | 6.82 | 22.32 | 0.14 | 65.06 | BDL | BDL | 2.34 | BDL | ||||||||
Achatina fulica | 14,375 | 21.83 | 26.41 | BDL | 119.71 | BDL | BDL | 3.8 | BDL |
3. Materials and Methods
4. Food Industry Applications
4.1. Functional By-Product Production
4.2. Valorization in Livestock Feed Supplement
5. Future Sustainable Perspectives and Conclusive Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Casula, E.; Marongiu, F.; Bacchetta, G.; Sarais, G.; Zaru, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Fais, S.; et al. From waste to health: Sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci. Rep. 2020, 10, 14184. [Google Scholar] [CrossRef] [PubMed]
- Osorio, L.L.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- FAO. The state of Food and Agriculture 2019. In Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Al-Obadi, M.; Ayad, H.; Pokharel, S.; Ayari, M.A. Perspectives on food waste management: Prevention and social innovations. Sustain. Prod. Consum. 2022, 31, 190–208. [Google Scholar] [CrossRef]
- Baker, D. Food Loss and Food Waste, Causes and Solutions, by Michael Blakeney. Published by Edward Elgar Publishing, Cheltenham, UK, 2019, 225 pp, ISBN: 978-1-78897-538-4. Aust. J. Agric. Resour. Econ. 2019, 63, 942–944. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Akram, M.; Ahmed, R.; Shakir, I.; Ibrahim, W.A.W.; Hussain, R. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014, 49, 1461–1475. [Google Scholar] [CrossRef]
- Snail Market Size—By Snail Type (Helix Aspersa, Helix Pomatia, Achatina Fulica, Otala Lactea, Cornu Aspersum), Form (Fresh snails, Canned snails, Frozen snails, Dried snails), Distribution Channel, Application. Regional Outlook & Global Forecast. 2023–2032. 2023. Available online: https://www.gminsights.com/industry-analysis/snail-market (accessed on 14 December 2023).
- Christian, K.M.; Annick, E.N.; Siri, B.N.; Kingsley, E. Socio-Economic Perception of Snail Meat Consumption in Fako Division, South-West Region Cameroon. Int. J. Livest. Prod. 2019, 10, 143–151. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Rochow, V.B.M. Snail as Mini-Livestock: Nutritional Potential of Farmed Pomacea canaliculata (Ampullariidae). Agric. Nat. Resour. 2017, 51, 504–511. [Google Scholar] [CrossRef]
- Marcel, K.N.; Rosemonde, Y.E.S.; Patricia, K.A.; Alexandre, Z.B.F.G.; Ambroise, A.N.; Ernest, A.K. Evaluation of the Nutritional Potential of Snail (Achatina spp) Meat in Rat. Eur. Sci. J. 2020, 16, 111–121. [Google Scholar] [CrossRef]
- Houndonougbo, M.F.; Chwalibog, A.; Chrysostome, C.A.A.M. Effect of processing on feed quality and bio-economic performances of broiler chickens in Benin. Int. J. Appl. Poult. Res. 2012, 1, 47–54. [Google Scholar]
- Oyekunle, D.T.; Omoleye, J.A. New Process for Synthesizing Chitosan from Snail Shell. J. Phys. Conf. Ser. 2019, 1299, 012089. [Google Scholar] [CrossRef]
- Nkansah, M.A.; Agyei, E.A.; Opoku, F. Mineral and proximate composition of the meat and shell of three snail species. Heliyon 2021, 7, e08149. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- TES (Think Eat Save). Environmental Impact of Food Waste in the US. 2019. Available online: https://www.thinkeatsave.org/environmental-impact-of-food-waste-in-the-us/ (accessed on 14 December 2023).
- Bennett, J.A.; Wilson, K.; Lee, A.F. Catalytic applications of waste derived materials. J. Mater. Chem. 2016, 4, 3617–3637. [Google Scholar] [CrossRef]
- Marin, F.; Luquet, G.; Marie, B.; Medakovic, D. Molluscan Shell Proteins: Primary Structure, Origin, and Evolution. Curr. Top. Dev. Biol. 2008, 80, 209–276. [Google Scholar] [CrossRef]
- Checa, A.G. Physical and Biological Determinants of the Fabrication of Molluscan Shell Microstructures. Front. Mar. Sci. 2018, 5, 353. [Google Scholar] [CrossRef]
- Weiss, I.M.; Tuross, N.; Addadi, L.; Weiner, S. Mollusc Larval Shell Formation: Amorphous Calcium Carbonate is a Precursor Phase for Aragonite. J. Exp. Zool. 2002, 293, 478–491. [Google Scholar] [CrossRef]
- McDougall, C.; Degnan, B.M. The Evolution of Mollusc Shells. Wire. Dev. Biol. 2018, 7, e313. [Google Scholar] [CrossRef] [PubMed]
- Marin, F.; Roy, N.L.; Marie, B. The Formation and Mineralization of Mollusk Shell. Front. Biosci. 2012, S4, 1099–1125. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Information. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Sundalian, M.; Husein, S.G.; Putri, N.K.D. Review: Analysis and benefit of shells content of freshwater and land snails from gastropods class. Biointerface Res. Appl. Chem. 2021, 12, 508–517. [Google Scholar] [CrossRef]
- Jatto, E.O.; Asia, O.; Medjer, W.E. Proximate and Mineral Composition of Different Species of Snail Shell. Pac. J. Sci. Technol. 2010, 11, 416–419. [Google Scholar]
- Chandy, T.; Sharma, C.P. Chitosan as a biomaterial. Biomater. Artif. Cells Artif. Organs 1990, 18, 1–24. [Google Scholar] [CrossRef]
- Paul, W.; Sharma, C.P. Chitosan, a drug carrier for the 21st century: A review. STP Pharma Sci. 2000, 10, 5–22. [Google Scholar]
- Muzzarelli, R.A.A.; Guerrieri, M.; Goteri, G.; Muzzarelli, C.; Armeni, T.; Ghiselli, R.; Cornelissen, M. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 2005, 26, 5844–5854. [Google Scholar] [CrossRef]
- Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Hirano, S. Chitin biotechnology applications. Biotechnol. Annu. Rev. 1996, 2, 237–258. [Google Scholar]
- Maya, S.M.G.; Putri, R.R.F.A.; Sahara, A.; Ashari, G.A.; Zaky, A.; Adrianto, D. Comparison of Methods for Glucosamine Production from Achatina fulica Shells Waste. Curr. Biochem. 2017, 4, 15–22. [Google Scholar] [CrossRef]
- Sugita, P.; Wukirsari, T.; Sjahriza, A.; Wahyono, D. Kitosan: Sumber Biomaterial Masa Depan; IPB Press: Bogor, Indonesia, 2009; pp. 23–31. [Google Scholar]
- Satitsri, S.; Muanprasat, C. Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules 2020, 25, 5961. [Google Scholar] [CrossRef] [PubMed]
- Umarudin, U.; Surahmaida, S.; Alta, R.; Ningrum, R.S. Preparation, Characterization, and Antibacterial of Staphylococcus aureus Activity of Chitosan from Shell of Snail (Achatina fulica F.). BIOTA Biol. Dan Pendidik. Biol. 2019, 12, 22–31. [Google Scholar] [CrossRef]
- Umarudin, U.; Surahmaida, S. Isolation, Identification, and Antibacterial Test of Gastropod Chitosan of Snail Shell (Achatina fulica) Against Staphylococcus aureus From Diabetic Ulcer. Simbiosa J. 2019, 8, 37–49. [Google Scholar] [CrossRef]
- Rismawati, R.; Hasri, H.; Sudding, S. Kitosan Asetat Cangkang Bekicot (Achatina Fulica) Sebagai Antibakteri Pada Kain Katun. Jurnal Sainsmat Maret 2020, 9, 45–56. [Google Scholar] [CrossRef]
- Hudson, S.M.; Jenkins, D.W. Chitin and Chitosan. Encycl. Polym. Sci. Technol. 2001, 1, 569–580. [Google Scholar]
- Palpandi, C.; Shanmugam, V.; Shanmugam, A. Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. Int. J. Med. Sci. 2009, 1, 198–205. [Google Scholar]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. [Google Scholar] [CrossRef]
- Adhikari, H.S.; Yadav, P.N. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater. 2018, 2018, 2952085. [Google Scholar] [CrossRef]
- He, X.; Xing, R.; Li, K.; Qin, Y.; Zou, P.; Liu, S.; Yu, H.; Li, P. Beta chitosan extracted from Loligo japonica for a potential use to inhibit Newcastle disease. Int. J. Biol. Macromol. 2016, 82, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, P.; Sekar, S.; Paramasivam, S.; Suri, P.; Chinnaiyan, U.; Singh, R.; Tanguturi Raghavaiah, B.P.; Seshadri, V.D. Sulfation of chitosan from Sepia kobiensis as potential anticoagulant and antibacterial molecule. Nat. Prod. Res. 2022, 36, 3216–3222. [Google Scholar] [CrossRef] [PubMed]
- Van Hoa, N.; Vuong, N.T.H.; Minh, N.C.; Cuong, H.N.; Trung, T.S. Squid pen chitosan nanoparticles: Small size and high antibacterial activity. Polym. Bull. 2021, 78, 7313–7324. [Google Scholar] [CrossRef]
- Agoha, E.E.C.; Mazi, E.A. Biopolymers from African Giant Snail Shells Waste: Isolation and Characterization. In World Congress on Medical Physics and Biomedical Engineering; IFMBE Proceedings; Abia State University Department of Food Science and Technology Umuahia, Nigeria, 7–12 September; Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Parveen, S.; Chakraborty, A.; Chanda, D.K.; Pramanik, S.; Barik, A.; Aditya, G. Microstructure Analysis and Chemical and Mechanical Characterization of the Shells of Three Freshwater Snails. ACS Omega 2020, 5, 25757–25771. [Google Scholar] [CrossRef] [PubMed]
- Osseni, S.; Bonou, S.; Sagbo, E.; Ahouansou, R.; Agbahoungbata, M.; Neumeyer, D.; Verelst, M.; Mauricot, R. Synthesis of Calcium Phosphate Bioceramics Based on Snail Shells: Towards a Valorization of Snail Shells from Republic of Benin. Am. J. Chem. 2018, 8, 90–95. [Google Scholar] [CrossRef]
- Ademolu, K.; Precious, O.; Ebenso, I.; Baratunde, I. Morphometrics and Mineral Composition of Shell Whorls in Three Species of Giant African Snails from Abeokuta, Nigeria. Folla Malacol. 2016, 24, 81–84. [Google Scholar] [CrossRef]
- Kolawole, M.Y.; Aweda, J.O.; Abdulkareem, S. Archachatina marginata bio-shells as reinforcement material in metal matrix composites. Int. J. Automot. Mech. Eng. 2017, 4, 4068–4079. [Google Scholar] [CrossRef]
- White, M.M.; Chejlava, M.; Fried, B.; Sherma, J. The concentration of calcium carbonate in shells of freshwater snails. Am. Malacol. Bull. 2007, 22, 139–142. [Google Scholar] [CrossRef]
- Jia, H.X.; Han, J.H.; Li, H.Z.; Liang, D.; Deng, T.T.; Chang, S.Y. Mineral intake in urban pregnant women from base diet, fortified foods, and food supplements: Focus on calcium, iron and zinc. Biomed. Environ. Sci. 2016, 29, 898–901. [Google Scholar]
- Ray, S.; Barman, A.K.; Roy, P.K.; Singh, B.K. Chicken egg shell powder as dietary calcium source in chocolate cakes. Pharma Innov. J. 2017, 6, 1–4. [Google Scholar]
- Braun, U. Chronic Indigestion Syndrome in Ruminants. MSD Vet. Man. 2022, 1–2. Available online: https://www.msdvetmanual.com/digestive-system/diseases-of-the-ruminant-forestomach/chronic-indigestion-syndrome-in-ruminants (accessed on 14 December 2023).
- Buwjoom, T.; Maneewan, B.; Yamauchi, K.; Pongpisantham, B.; Yamauchi, K.E. Examining the impact of different particle sizes of Golden Apple Snail (Pomacea Canaliculata, La-marck) shells on the growth performance, carcass quality, bone strength, and small intestinal histology of Thai Native Chickens (Pradu Hang Dum Chiangmai 1). Int. J. Biol. 2016, 8, 58–65. [Google Scholar] [CrossRef]
- Yuvaraj, D.; Gnanasekaran, R.; Iyyappan, J.; Subashini, I.; Nandhini, S.; Jayasudha, M.; Shaleni, R.; Shyam, M. Production of anti-microbial adhesives. J. Environ. Biol. 2019, 40, 812–816. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, M.K. Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biol. Trace Elem. Res. 2013, 153, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2009, 4, 200–222. [Google Scholar]
- Eruvbetine, D.; Tajudeen, I.D.; Adeosun, A.T.; Olojede, A.A. Cassava (Manihot esculenta) leaf and tuber concentrate in diets for broiler chickens. Bioresour. Technol. 2003, 86, 277–281. [Google Scholar] [CrossRef]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry, 25th ed.; McGraw-Hill, Health Profession Division: New York, NY, USA, 2000; Volume 225. [Google Scholar]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health—A comprehensive review. Vet. Q. 2021, 41, 1–29. [Google Scholar] [CrossRef]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Akinnusi, F.A.O.; Oni, O.O.; Ademolu, K.O. Mineral composition of giant African land snail’s (archachatina marginata) shells from six south West States, Nigeria. Niger. J. Anim. Sci. 2018, 20, 485–489. [Google Scholar]
- Dickson, U.J. Mineral composition of shells of some animals found in the niger delta region of Nigeria. Afr. J. Sci. Res. 2013, 2, 7–13. [Google Scholar]
- Houndonougbo, M.F.; Chrysostome, C.A.A.M.; Odoulami, R.C.; Codjia, J.T.C. Snail shell as an efficient mineral feedstuff for layer hens: Effects and optimum rate. Livest. Res. Rural. Dev. 2012, 24, 162. [Google Scholar]
- Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Appl. Sci. 2023, 13, 623. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Applications of chitin-and chitosanderivatives for the detoxification of water and wastewater—A short review. Adv. Colloid Interface Sci. 2009, 152, 26–38. [Google Scholar] [CrossRef]
- Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Liu, Y.; Onumah, J.; Wang, W.; Song, Y. Removal of cadmium from aqueous solution using low molecular weight chitosan derivative. Carbohydr. Polym. 2015, 122, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kavisri, M.; Abraham, M.; Namasivayam, S.K.R.; Aravindkumar, J.; Balaji, D.; Sathishkumar, R.; Sigamani, S.; Srinivasan, R.; Moovendhan, M. Adsorption isotherm, kinetics and response surface methodology optimization of cadmium (Cd) removal from aqueous solution by chitosan biopolymers from cephalopod waste. J. Environ. Manag. 2023, 335, 117484. [Google Scholar] [CrossRef] [PubMed]
- Nouj, N.; Hafid, N.; El Alem, N.; Buciscanu, I.I.; Maier, S.S.; Samoila, P.; Soreanu, G.; Cretescu, I.; Stan, C.D. Valorization of β-chitin extraction byproduct from cuttlefish bone and its application in food wastewater treatment. Materials 2022, 15, 2803. [Google Scholar] [CrossRef]
- Siswoyo, E.; Zahra, R.N.; Mai, N.H.A.; Nurmiyanto, A.; Umemura, K.; Boving, T. Chitosan of blood cockle shell (Anadara granosa) as a natural coagulant for removal of total suspended solids (TSS) and turbidity of well-water. Egypt. J. Aquat. Res. 2023, 49, 283–289. [Google Scholar] [CrossRef]
- Seong, N. Traditional Chinese medicine. In Singapore’s Health Care System: What 50 Years Have Achieved; Earn, C., Satku, K., Eds.; World Scientific Publishing: Singapore, 2015; p. 351. [Google Scholar]
- Gopal, R.; Vijayakumaran, M.; Venkatesan, R.; Kathiroli, S. Marine organisms in Indian medicine and their future prospects. Nat. Prod. Radian 2008, 7, 139–145. [Google Scholar]
- Benkendorff, K.; Rudd, D.; Nongmaithem, B.D.; Liu, L.; Young, F.; Edwards, V.; Avila, C.; Abbott, C.A. Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Mar. Drugs 2015, 18, 5237–5275. [Google Scholar] [CrossRef]
- Lev, E. Practical Materia Medica of the Medieval Eastern Mediterranean According to the Cairo Genizah; Brill: Leiden, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Ratsch, C.; Müller-Ebeling, C. The Encyclopedia of Aphrodisiacs: Psychoactive Substances for Use in Sexual Practices; Park Street Press: South Paris, ME, USA, 2013. [Google Scholar]
- Krishna, K.M.; Singh, K.K. A critical review on Ayurvedic drug Kapardika (Cypraea Moneta Linn). Int. Res. J. Pharm. 2012, 3, 8–11. [Google Scholar]
- Gelfland, M.; Mavi, S.; Drummond, R.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia; Mambo Press: Gweru, Zimbabwe, 1985. [Google Scholar]
- Ahmad, T.B.; Liu, L.; Kotiw, M.; Benkendorff, K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. J. Ethnopharmacol. 2018, 210, 156–178. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, G.; Thaddaeus, B.J.; Usha, M.; Ramasubburayan, R.; Prakash, S.; Palavesam, A. Antipyretic, wound healing and antimicrobial activity of processed shell of the marine mollusc Cypraea moneta. Asian Pac. J. Trop. Biomed. 2012, 2 (Suppl. S3), S1643–S1646. [Google Scholar] [CrossRef]
- Chitprasert, P.; Dumrongchai TRodklongtan, A. Effect of in vitro dynamic gastrointestinal digestion on antioxidant activity and bioaccessibility of vitexin nanoencapsulated in vaterite calcium carbonate. LWT 2023, 173, 114366. [Google Scholar] [CrossRef]
- Zalte, N. Calcium and Calcium salts. J. Assoc. Physicians India 2017, 65, 1–2. [Google Scholar]
- Wu, C. What Are Filter Aids? American Filtration and Separation Society (AFS): Nashville, TN, USA, 2018. [Google Scholar]
- Iwuouno, J. Potential of egg shell and snail shell powder in Sorghum Beer Clarification. Arch. Curr. Res. Int. 2019, 16, 1–10. [Google Scholar] [CrossRef]
- Muir, F.V.; Harris, P.C.; Gerry, R.W. The Comparative Value of Five Calcium Sources for Laying Hens. Poult. Sci. 1976, 55, 1046–1051. [Google Scholar] [CrossRef]
- Islam, M.A.; Nishibori, M. Use of extruded eggshell as a calcium source substituting limestone or oyster shell in the diet of laying hens. Vet. Med. Sci. 2021, 7, 1948–1958. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Kittelsen, K.; Vasdal, G. Environmental enrichment in commercial flocks of aviary housed laying hens: Relationship with plumage condition and fearfulness. Poult. Sci. 2022, 101, 101754. [Google Scholar] [CrossRef]
- Saki, A.; Rahmani, A.; Yousefi, A. Calcium particle size and feeding time influence egg shell quality in laying hens. Acta Sci. Anim. Sci. 2018, 41, 42926. [Google Scholar] [CrossRef]
- Safaa, H.; Serrano, M.P.; Valencia, D.G.; Frikha, M.; Jiménez-Moreno, E.; Mateos, G.G. Productive Performance and Egg Quality of Brown Egg-Laying Hens in the Late Phase of Production as Influenced by Level and Source of Calcium in the Diet. Poult. Sci. 2008, 87, 2043–2051. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Zhang, H.X.; Ruan, D.; Lin, Y.C. Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. Poult. Sci. 2014, 93, 2560–2566. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.P.; Backeljau, T.; Chapelle, G. Shells from Aquaculture: A Valuable Biomaterial, Not a Nuisance Waste Product. Rev. Aquac. 2019, 11, 42–57. [Google Scholar] [CrossRef]
- de Alvarenga, R.A.F.; Galindro, B.M.; de Fátima Helpa, C.; Soares, S.R. The recycling of oyster shells: An environmental analysis using Life Cycle Assessment. J. Environ. Manag. 2012, 106, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Azad, M.d.; Abul, K.; Lin, Y.; Kim, S.W.; Tian, Y.; Liu, G.; Wang, H. Biological effect and applications of chitosan and chito-oligosaccharides. Front. Physiol. 2019, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Rusdi, R.; Hasanuddin, A.; Hafsah, H.; Nurhaeni. Effect of addition chitosan-oligosaccharide of snail shell in the diet on quail (Coturnix coturnix japonica) performance and carcass charachteristics. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012053. [Google Scholar] [CrossRef]
- Chiaraluce, G.; Bentivoglio, D.; Finco, A. Circular Economy for a Sustainable Agri-Food Supply Chain: A Review for Current Trends and Future Pathways. Sustainability 2021, 13, 9294. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222310/ (accessed on 14 December 2023).
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. Available online: https://www.frontiersin.org/articles/10.3389/fsufs.2018.00052.ISSN=2571-581X (accessed on 14 December 2023). [CrossRef]
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review Article Open Access International Journal of Waste. Resour. Int. J. Waste Resour. 2016, 6, 3. [Google Scholar] [CrossRef]
- Zucaro, A.; Forte, A.; De Vico, G.; Fierro, A. Environmental loading of Italian semi-intensive snail farming system evaluated by means of life cycle assessment. J. Clean. Prod. 2016, 125, 56–67. [Google Scholar] [CrossRef]
- Tchakounte, F.; Kana, J.R.; Azine, P.C.; Meffowoet, C.P.; Djuidje, V.P. Effects of Dietary Level of Calcium on Body Proportion and Nutritional Value of African Giant Snail (Archachatina Marginata). Anim. Res. Vet. Sci. 2019, 3, 020. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain). Resour. Conserv. Recycl. 2010, 55, 106–117. [Google Scholar] [CrossRef]
- Lee, M.; Tsai, W.-S.; Chen, S.-T. Reusing shell waste as a soil conditioner alternative? A comparative study of eggshell and oyster shell using a life cycle assessment approach. J. Clean. Prod. 2020, 265, 121845. [Google Scholar] [CrossRef]
- Karthik, R.; Manigandan, V.; Saravanan, R.; Rajesh, R.P.; Chandrika, B. Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int. J. Biol. Macromol. 2016, 84, 319–328F. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Kim, M.H.; Shin, J.Y.; Park, S.R.; Jung, J.Y.; Park, W.H. Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym. 2018, 193, 205–211. [Google Scholar] [CrossRef]
- Traill, W.; Meulenberg, M. Innovation in the Food Industry. Agribusiness 2001, 18, 1–21. [Google Scholar] [CrossRef]
- Hailat, E.; Amiri, M.; Debnath, N.; Rahman, M.; Nurul Islam, M.; Fatima, Z.; Khader, Y.; Al Nsour, M. Strengthening the One Health Approach in the Eastern Mediterranean Region. Interact. J. Med. Res. 2023, 12, e41190. [Google Scholar] [CrossRef] [PubMed]
(%) | ||||||||
---|---|---|---|---|---|---|---|---|
Snail Species | Protein | Fiber | Fat | Ash | Carbohydrate | NFE | Energy | Ref. |
(KJ/100 g) | ||||||||
Achatina achatina | 0.12 | 4.06 | 0.79 | 2.00 | nd * | 93.04 | nd * | [29] |
Achatina marginata | 0.42 | 3.37 | 0.75 | 10.00 | nd | 85.46 | nd | |
Achatina fulica | 0.30 | 3.96 | 0.38 | 10.00 | nd | 82.36 | nd | |
Limucolaria sp. | 0.23 | 4.14 | 0.48 | 13.00 | nd | 82.15 | nd | |
Achatina marginata | 2.1 | 0.5 | 0.68 | 96.31 | 0.64 | nd | 71.74 | [18] |
Achatina fulica | 2.06 | 0.36 | 0.62 | 95.85 | 1.26 | nd | 79.38 | |
Achatina achatina | 3.18 | 0.63 | 0.59 | 94.85 | 0.95 | nd | 92.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potortì, A.G.; Messina, L.; Licata, P.; Gugliandolo, E.; Santini, A.; Di Bella, G. Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries. Sustainability 2024, 16, 706. https://doi.org/10.3390/su16020706
Potortì AG, Messina L, Licata P, Gugliandolo E, Santini A, Di Bella G. Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries. Sustainability. 2024; 16(2):706. https://doi.org/10.3390/su16020706
Chicago/Turabian StylePotortì, Angela Giorgia, Laura Messina, Patrizia Licata, Enrico Gugliandolo, Antonello Santini, and Giuseppa Di Bella. 2024. "Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries" Sustainability 16, no. 2: 706. https://doi.org/10.3390/su16020706
APA StylePotortì, A. G., Messina, L., Licata, P., Gugliandolo, E., Santini, A., & Di Bella, G. (2024). Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries. Sustainability, 16(2), 706. https://doi.org/10.3390/su16020706