Toxicity of a Common Glyphosate Metabolite to the Freshwater Planarian (Girardia tigrina)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planarian
2.2. Contamination
2.3. Swimming Speed
2.4. Body Measurements
2.5. Seven-Day AMPA Exposure
2.6. Fourteen-Day Exposure
2.7. Data Analysis
3. Results
3.1. Ensuring Equality before the Inception of the 7-Day Exposure Experiment
3.2. Survivorship after 7-Day Exposure
3.3. Body Regeneration after 7-Day Exposure
3.4. Eye Spot Regeneration after 7-Day Exposure
3.5. Swimming Speed after 7-Day Exposure
3.6. Ensuring Equality before Inception of the 14-Day Exposure Experiment
3.7. Survivorship While Regenerating during 14-Day Exposure
3.8. Growth during 14-Day Exposure
3.9. Head Regeneration after 14-Day Exposure
3.10. Tail Regeneration after 14-Day Exposure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar]
- Rudell, E.C.; Zanrosso, B.A.; Frandaloso, D.; Giacomini, A.J.; Spadotto, D.V.; Vargas, L.; Nunes, A.L.; Santos, F.M. Integrated weed management strategies in a long-term crop rotation system. Weed Sci. 2023, 41, e020220053. [Google Scholar] [CrossRef]
- Baek, Y.; Bobadilla, L.K.; Giacomini, D.A.; Montgomery, J.S.; Murphy, B.P.; Tranel, P.J. Evolution of glyphosate-resistant weeds. Rev. Environ. Contam. T 2021, 255, 93–128. [Google Scholar]
- Battaglin, W.A.; Meyer, M.T.; Kuivila, K.M.; Dietze, J.E. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA 2014, 50, 275–290. [Google Scholar]
- Bach, N.C.; Marino, D.J.; Natale, G.S.; Somoza, G.M. Effects of glyphosate and its commercial formulation, Roundup® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (amphibia: Anura). Chemosphere 2018, 202, 289–297. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar]
- Pochron, S.; Choudhury, M.; Gomez, R.; Hussaini, S.; Illuzzi, K.; Mann, M.; Mezic, M.; Nikakis, J.; Tucker, C. Temperature and body mass drive earthworm (Eisenia fetida) sensitivity to a popular glyphosate-based herbicide. Appl. Soil Ecol. 2019, 139, 32–39. [Google Scholar]
- Pochron, S.; Simon, L.; Mirza, A.; Littleton, A.; Sahebzada, F.; Yudell, M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere 2020, 241, 125017. [Google Scholar]
- Pochron, S.T.; Mirza, A.; Mezic, M.; Chung, E.; Ezedum, Z.; Geraci, G.; Mari, J.; Meiselbach, C.; Shamberger, O.; Smith, R.; et al. Earthworms Eisenia fetida recover from Roundup exposure. Appl. Soil Ecol. 2021, 158, 103793. [Google Scholar]
- Kanabar, M.; Bauer, S.; Ezedum, Z.M.; Dwyer, I.P.; Moore, W.S.; Rodriguez, G.; Mall, A.; Littleton, A.T.; Yudell, M.; Kanabar, J.; et al. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environ. Sci. Pollut. Res. 2021, 28, 32933–32944. [Google Scholar] [CrossRef]
- Pochron, S.T.; Mezic, M.; Byrne, S.; Sasoun, S.; Casamassima, A.; Kilic, M.; Nuzzo, A.; Beaudet, C.E. Exposure to Roundup increases movement speed and decreases body mass in earthworms. Front. Environ. Sci 2021, 10, 1832. [Google Scholar] [CrossRef]
- Tresnakova, N.; Stara, A.; Velisek, J. Effects of glyphosate and its metabolite AMPA on aquatic organisms. Appl. Sci. 2021, 11, 9004–9011. [Google Scholar] [CrossRef]
- Suciu, N.; Russo, M.; Calliera, G.; Luciani, M.; Trevisan, E.; Capri, E. Glyphosate, glufosinate ammonium, and AMPA occurrences and sources in groundwater of hilly vineyards. Sci. Tatal Environ. 2023, 866, 161171. [Google Scholar] [CrossRef]
- Maggi, F.; la Cecilia, F.; Tang, A.; McBratney, A. The global environmental hazard of glyphosate use. Sci. Tatal Environ. 2020, 717, 137167. [Google Scholar] [CrossRef]
- Medalie, L.; Baker, N.T.; Shoda, M.E.; Stone, W.W.; Meyer, M.T.; Stets, E.G.; Wilson, M. Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Sci. Tatal Environ. 2020, 707, 136008. [Google Scholar] [CrossRef]
- Carretta, L.; Masin, R.; Zanin, G. Review of studies analysing glyphosate and aminomethylphosphonic acid (AMPA) occurrence in groundwater. Environ. Rev. 2022, 30, 88–109. [Google Scholar] [CrossRef]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological Risk Assessment for Roundup® Herbicide; Springer: New York, NY, USA, 2000; pp. 35–120. [Google Scholar]
- Bergström, L.; Börjesson, E.; Stenström, J. Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J. Environ. Qual. 2011, 40, 98–108. [Google Scholar] [CrossRef]
- Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest. Manag. Sci. 2012, 68, 16–30. [Google Scholar] [CrossRef]
- Tóth, G.; Háhn, J.; Szoboszlay, S.; Harkai, P.; Farkas, M.; Radó, J.; Göbölös, B.; Kaszab, E.; Szabó, I.; Urbányi, B.; et al. Spatiotemporal analysis of multi-pesticide residues in the largest Central European shallow lake, Lake Balaton, and its sub-catchment area. Environ. Sci. Eur. 2022, 34, 1–18. [Google Scholar] [CrossRef]
- Manenti, R.; Barzaghi, B.; Lana, E.; Stocchino, G.A.; Manconi, R.; Lunghi, E. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines. J. Nat. Conserv. 2018, 45, 90–97. [Google Scholar]
- Macadam, C.; Stockan, J. More than just fish food: Ecosystem services provided by freshwater insects. Ecol. Entomol. 2015, 40, 113–123. [Google Scholar] [CrossRef]
- Reynoldson, T.B.; Young, J. A key to the Freshwater Triclads of Britain and Ireland with Notes on their Ecology; FBA Scientific Publishing: Cumbria, UK, 2000; pp. 28–33. [Google Scholar]
- Melo, A.S.; Andrade, C.F.S. Differential predation of the planarian Dugesia tigrina on two mosquito species under laboratory conditions. J. Am. Mosq. Contr. 2001, 17, 81–83. [Google Scholar]
- Tranchida, M.C.; Pelizza, S.A.; Micieli, M.V.; Maciá, A. Consequences of the introduction of the planarian Girardia anceps (Tricladida: Dugesiidae) in artificial containers with larvae of the mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae) from Argentina. Biol. Contr. 2014, 71, 49–55. [Google Scholar] [CrossRef]
- Majdi, N.; Kreuzinger-Janik, B.; Traunspurger, W. Effects of flatworm predators on sediment communities and ecosystem functions: A microcosm approach. Hydrobiologia 2016, 776, 193–207. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Conservation; Oxford University Press: Oxford, UK, 2014; pp. 101–112. [Google Scholar]
- Pestana, J.L.T.; Ofoegbu, P.U. Ecotoxicity Assays Using Freshwater Planarians. In Toxicity Assessment: Methods Protocols; Palmeira, C.M.M., DeOliveira, D.P., Dorta, D.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2240, pp. 125–137. [Google Scholar]
- Sheiman, I.M.; Kreshchenko, N.D. Regeneration of planarians: Experimental object. Russ. J. Dev. Biol. 2015, 46, 1–9. [Google Scholar] [CrossRef]
- Mangel, M.; Bonsall, M.B.; Aboobaker, A. Feedback control in planarian stem cell systems. BMC Syst. Biol. 2016, 10, 1–18. [Google Scholar] [CrossRef]
- Byrne, T. Effects of ethanol on negative phototaxis and motility in brown planarians (Dugesia tigrina). Neurosci. Lett. 2018, 685, 102–108. [Google Scholar]
- Gomes, M.P.; dos Santos, M.P.; de Freitas, P.L.; Schafaschek, A.M.; de Barros, E.N.; Kitamura, R.S.A.; Navarro-Silva, M.A. The aquatic macrophyte Salvinia molesta mitigates herbicides (glyphosate and aminomethylphosphonic acid) effects to aquatic invertebrates. Environ. Sci. Pollut. R 2023, 30, 12348–12361. [Google Scholar] [CrossRef]
- de Brito Rodrigues, L.; Costa, G.G.; Thá, E.L.; da Silva, L.R.; de Oliveira, R.; Leme, D.M.; Cestari, M.M.; Grisolia, C.K.; Valadares, M.C.; de Oliveira, G.A.R. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutation Res. Genet. Toxicol. Environ. Mutagen. 2019, 842, 94–101. [Google Scholar] [CrossRef]
- da Silva Santos, J.; da Silva Pontes, M.; Grillo, R.; Fiorucci, A.R.; de Arruda, G.J.; Santiago, E.F. Physiological mechanisms and phytoremediation potential of the macrophyte Salvinia biloba towards a commercial formulation and an analytical standard of glyphosate. Chemosphere 2020, 259, 127417. [Google Scholar] [CrossRef]
- Struger, J.; Thompson, D.; Staznik, B.; Martin, P.; McDaniel, T.; Marvin, C. Occurrence of glyphosate in surface waters of southern Ontario. B Environ. Contamin. Tox. 2008, 80, 378–384. [Google Scholar]
- Levine, S.L.; von Mérey, G.; Minderhout, T.; Manson, P.; Sutton, P. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas. Environ. Toxicol. Chem. 2015, 34, 1382–1389. [Google Scholar] [CrossRef]
- Domínguez, A.; Brown, G.G.; Sautter, K.D.; Ribas de Oliveira, C.M.; de Vasconcelos, E.C.; Niva, C.C.; Bedano, J.C. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci. Rep. 2019, 6, 19731. [Google Scholar] [CrossRef]
- Rawls, S.M.; Thomas, T.; Adeola, M.; Patil, T.; Raymondi, N.; Poles, A.; Raffa, R.B. Topiramate antagonizes NMDA- and AMPA-induced seizure-like activity in planarians. Pharmacol. Biochem. Behav. 2009, 93, 363–367. [Google Scholar] [CrossRef]
- Raffa, R.B.; Finno, K.E.; Tallarida, C.S.; Rawls, S.M. Topiramate-antagonism of L-glutamate-induced paroxysms in planarians. Eur. J. Pharmacol. 2010, 649, 150–153. [Google Scholar] [CrossRef]
- Witchley, J.N.; Mayer, M.; Wagner, D.E.; Owen, J.H.; Reddien, P.W. Muscle cells provide instructions for planarian regeneration. Cell Rep. 2013, 4, 633–641. [Google Scholar]
- Reddien, P.W. The cellular and molecular basis for planarian regeneration. Cell 2018, 175, 327–345. [Google Scholar] [CrossRef]
- Petersen, C.P.; Reddien, P.W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl. Acad. Sci. USA 2009, 106, 17061–17066. [Google Scholar] [CrossRef]
- Gurley, K.A.; Elliott, S.A.; Simakov, O.; Schmidt, H.A.; Holstein, T.W.; Alvarado, A.S. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 2010, 347, 24–39. [Google Scholar] [CrossRef]
- Zhang, X.; Cheong, S.M.; Amado, N.G.; Reis, A.H.; MacDonald, B.T.; Zebisch, M.; Jones, E.Y.; Abreu, J.G.; He, X. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 2015, 32, 719–730. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pochron, S.T.; Sasoun, S.; Maharjan, S.; Pirzada, W.U.; Byrne, S.; Girgis, M.; Jacobellis, M.A.; Mitra, J.A.; Miranda, A.S.; Gelder, G.V.; et al. Toxicity of a Common Glyphosate Metabolite to the Freshwater Planarian (Girardia tigrina). Sustainability 2024, 16, 842. https://doi.org/10.3390/su16020842
Pochron ST, Sasoun S, Maharjan S, Pirzada WU, Byrne S, Girgis M, Jacobellis MA, Mitra JA, Miranda AS, Gelder GV, et al. Toxicity of a Common Glyphosate Metabolite to the Freshwater Planarian (Girardia tigrina). Sustainability. 2024; 16(2):842. https://doi.org/10.3390/su16020842
Chicago/Turabian StylePochron, Sharon T., Samy Sasoun, Siddhartha Maharjan, Wali U. Pirzada, Samantha Byrne, Mary Girgis, Morgan A. Jacobellis, Johanna A. Mitra, Alec S. Miranda, Grace Van Gelder, and et al. 2024. "Toxicity of a Common Glyphosate Metabolite to the Freshwater Planarian (Girardia tigrina)" Sustainability 16, no. 2: 842. https://doi.org/10.3390/su16020842
APA StylePochron, S. T., Sasoun, S., Maharjan, S., Pirzada, W. U., Byrne, S., Girgis, M., Jacobellis, M. A., Mitra, J. A., Miranda, A. S., Gelder, G. V., & Khan, S. (2024). Toxicity of a Common Glyphosate Metabolite to the Freshwater Planarian (Girardia tigrina). Sustainability, 16(2), 842. https://doi.org/10.3390/su16020842