Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Water Condition Evaluation for Maize Cultivation
2.4. Suitability Assessment
2.5. Irrigation as Potential Adaptation Strategy
3. Results
3.1. Mean Annual Temperature and Mean Annual Precipitation Sum for Baseline Period and by 2050s and 2080s
3.2. Mean Climatic Water Balance in the Period from April to September for Baseline Period and by 2050s and 2080s
3.3. Suitability Assessment
3.4. Adaptation Strategies Increasing Land Suitability for Maize—Irrigation
4. Discussion
4.1. Climate Change Impact on Maize
4.2. Adaptation to Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Food and Agriculture Organization (FAO). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 October 2023).
- Piniewski, M.; Marcinkowski, P.; O’Keeffe, J.; Szcześniak, M.; Nieróbca, A.; Kozyra, J.; Kundzewicz, Z.W.; Okruszko, T. Model-Based Reconstruction and Projections of Soil Moisture Anomalies and Crop Losses in Poland. Theor. Appl. Climatol. 2020, 140, 691–708. [Google Scholar] [CrossRef]
- Górski, T.; Kozyra, J. Agroklimatyczna Norma Średniej Temperatury Powietrza w Polsce Na Lata 2011–2020. Pol. J. Agron. 2011, 5, 21–28. [Google Scholar]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S. Agroclimatic Conditions in Europe under Climate Change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef]
- Nendel, C.; Reckling, M.; Debaeke, P.; Schulz, S.; Berg-Mohnicke, M.; Constantin, J.; Fronzek, S.; Hoffmann, M.; Jakšić, S.; Kersebaum, K.-C. Future Area Expansion Outweighs Increasing Drought Risk for Soybean in Europe. Glob. Chang. Biol. 2023, 29, 1340–1358. [Google Scholar] [CrossRef] [PubMed]
- Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches. Sustainability 2019, 11, 5243. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing Seasonal Drought Variations and Trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, A.; Yue, Y.; Wang, J.; Su, P. Predicting Shifts in Land Suitability for Maize Cultivation Worldwide Due to Climate Change: A Modeling Approach. Land 2021, 10, 295. [Google Scholar] [CrossRef]
- Lopez-Blanco, J.; Pérez-Damián, J.L.; Conde-Álvarez, A.C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Land Suitability Levels for Rainfed Maize under Current Conditions and Climate Change Projections in Mexico. Outlook Agric. 2018, 47, 181–191. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, Y.; Wang, Y.; Wang, L.; Sun, G. The Decrease of Potential Suitable Areas and the Distribution Tendency of Staple Crops in Ethiopia under Future Climate Conditions. Afr. J. Agric. Res. 2016, 11, 2092–2101. [Google Scholar]
- Shaloo, S.; Bisht, H.; Jain, R.; Singh, R.P. Cropland Suitability Assessment Using Multi Criteria Evaluation Techniques and Geo-Spatial Technology: A Review. Indian J. Agric. Sci. 2022, 92, 554–562. [Google Scholar] [CrossRef]
- Seif-Ennasr, M.; Bouchaou, L.; El Morjani, Z.E.A.; Hirich, A.; Beraaouz, E.H.; Choukr-Allah, R. Gis-Based Land Suitability and Crop Vulnerability Assessment under Climate Change in Chtouka Ait Baha, Morocco. Atmosphere 2020, 11, 1167. [Google Scholar] [CrossRef]
- Ramamurthy, V.; Reddy, G.O.; Kumar, N. Assessment of Land Suitability for Maize (Zea mays L.) in Semi-Arid Ecosystem of Southern India Using Integrated AHP and GIS Approach. Comput. Electron. Agric. 2020, 179, 105806. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Integration of ANP and Fuzzy Set Techniques for Land Suitability Assessment Based on Remote Sensing and GIS for Irrigated Maize Cultivation. Arch. Agron. Soil Sci. 2019, 65, 1063–1079. [Google Scholar] [CrossRef]
- Maddahi, Z.; Jalalian, A.; Zarkesh, M.K.; Honarjo, N. Land Suitability Analysis for Rice Cultivation Using a GIS-Based Fuzzy Multi-Criteria Decision Making Approach: Central Part of Amol District, Iran. Soil Water Res. 2017, 12, 29–38. [Google Scholar] [CrossRef]
- Xue, L.; Cao, P.; Xu, D.; Guo, Y.; Wang, Q.; Zheng, X.; Han, R.; You, A. Agricultural Land Suitability Analysis for an Integrated Rice–Crayfish Culture Using a Fuzzy AHP and GIS in Central China. Ecol. Indic. 2023, 148, 109837. [Google Scholar] [CrossRef]
- Sari, F.; Sari, K.F. Multi Criteria Decision Analysis to Determine the Suitability of Agricultural Crops for Land Consolidation Areas. Int. J. Eng. Geosci. 2021, 6, 64–73. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Gholizadeh, A. Modeling Land Suitability Evaluation for Wheat Production by Parametric and TOPSIS Approaches Using GIS, Northeast of Iran. Model. Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Ali, I.; Gunawan, V.; Adi, K. Decision Support Systems for Land Suitability Evaluation on Rice Cultivation Using ELECTRE Method. E3S Web Conf. 2020, 202, 14004. [Google Scholar] [CrossRef]
- Rodcha, R.; Tripathi, N.K.; Prasad Shrestha, R. Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods. Land 2019, 8, 79. [Google Scholar] [CrossRef]
- Elaalem, M. A Comparison of Parametric and Fuzzy Multi-Criteria Methods for Evaluating Land Suitability for Olive in Jeffara Plain of Libya. APCBEE Procedia 2013, 5, 405–409. [Google Scholar] [CrossRef]
- Kalichkin, V.K.; Pavlova, A.I.; Logachova, O.M. GIS-Based Multi-Criteria Analysis of the Suitability of Western Siberian Forest-Steppe Lands. Ann. GIS 2021, 27, 225–237. [Google Scholar] [CrossRef]
- Elaalem, M. Land Suitability Evaluation for Sorghum Based on Boolean and Fuzzy-Multi-Criteria Decision Analysis Methods. Int. J. Environ. Sci. Dev. 2012, 3, 357–361. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B. Meteorological and Agricultural Drought Indices Used in Drought Monitoring in Poland: A Review. Meteorol. Hydrol. Water Manag. 2014, 2, 3–13. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Żarski, J.; Rolbiecki, S. Potrzeby, Efekty i Perspektywy Nawadniania Roślin Na Obszarach Szczególnie Deficytowych w Wodę. Postępy Nauk Rol. 2011, 1, 51–63. [Google Scholar]
- Duc, T.T. Using GIS and AHP Technique for Land-Use Suitability Analysis. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh, Vietnam, 9–11 November 2006; pp. 1–6. [Google Scholar]
- Habibie, M.I.; Noguchi, R.; Shusuke, M.; Ahamed, T. Land Suitability Analysis for Maize Production in Indonesia Using Satellite Remote Sensing and GIS-Based Multicriteria Decision Support System. GeoJournal 2021, 86, 777–807. [Google Scholar] [CrossRef]
- Ceballos-Silva, A.; Lopez-Blanco, J. Delineation of Suitable Areas for Crops Using a Multi-Criteria Evaluation Approach and Land Use/Cover Mapping: A Case Study in Central Mexico. Agric. Syst. 2003, 77, 117–136. [Google Scholar] [CrossRef]
- Han, C.; Chen, S.; Yu, Y.; Xu, Z.; Zhu, B.; Xu, X.; Wang, Z. Evaluation of Agricultural Land Suitability Based on RS, AHP, and MEA: A Case Study in Jilin Province, China. Agriculture 2021, 11, 370. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Aruchamy, S. Land Suitability Evaluation of Tea (Camellia sinensis L.) Plantation in Kallar Watershed of Nilgiri Bioreserve, India. Geographies 2022, 2, 701–723. [Google Scholar] [CrossRef]
- Layomi Jayasinghe, S.; Kumar, L.; Sandamali, J. Assessment of Potential Land Suitability for Tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef]
- Donatelli, M.; Srivastava, A.K.; Duveiller, G.; Niemeyer, S.; Fumagalli, D. Climate Change Impact and Potential Adaptation Strategies under Alternate Realizations of Climate Scenarios for Three Major Crops in Europe. Environ. Res. Lett. 2015, 10, 075005. [Google Scholar] [CrossRef]
- Zohner, C.M.; Mo, L.; Renner, S.S.; Svenning, J.-C.; Vitasse, Y.; Benito, B.M.; Ordonez, A.; Baumgarten, F.; Bastin, J.-F.; Sebald, V. Late-Spring Frost Risk between 1959 and 2017 Decreased in North America but Increased in Europe and Asia. Proc. Natl. Acad. Sci. USA 2020, 117, 12192–12200. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Luo, X.; Zhou, W.; Chen, Y.; Sun, G. Evaluation of Suitability Areas for Maize in China Based on GIS and Its Variation Trend on the Future Climate Condition. In Ecosystem Assessment and Fuzzy Systems Management. Advances in Intelligent Systems and Computing; Cao, B.-Y., Ma, S.-Q., Cao, H.-H., Eds.; Springer: Cham, Switzerland, 2014; Volume 254, pp. 285–299. [Google Scholar]
- Wójcik, I.; Doroszewski, A.; Wróblewska, E.; Koza, P. Susza Rolnicza w Uprawie Zbóż Jarych w Polsce w Latach 2006–2017. Woda-Śr.-Obsz. Wiej. 2019, 19, 77–95. [Google Scholar]
- Łabędzki, L.; Kanecka-Geszke, E.; Bak, B.; Slowinska, S. Estimation of Reference Evapotranspiration Using the FAO Penman-Monteith Method for Climatic Conditions of Poland. In Evapotranspiration; Łabędzki, L., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 275–294. [Google Scholar]
- Somorowska, U. Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Blazejczyk, K. Climate and Bioclimate of Poland. In Natural and Human Environment of Poland—A Geographical Overview; Degórski, M., Ed.; Polish Academy of Sciences, Institute of Geography and Spatial Organization Polish Geographical Society: Warsaw, Poland, 2006; pp. 31–48. [Google Scholar]
- Kędziora, A. Podstawy Agrometeorologii; PWRiL: Poznań, Poland, 2008. [Google Scholar]
- Grzywna, A.; Bochniak, A.; Ziernicka-Wojtaszek, A.; Krużel, J.; Jóźwiakowski, K.; Wałęga, A.; Cupak, A.; Mazur, A.; Obroślak, R.; Serafin, A. The Analysis of Spatial Variability of Precipitation in Poland in the Multiyears 1981–2010. J. Water Land Dev. 2020, 46, 105–111. [Google Scholar]
- Łabędzki, L. Estimation of Local Drought Frequency in Central Poland Using the Standardized Precipitation Index SPI. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Benestad, R.; Haensler, A.; Hennemuth, B.; Illy, T.; Jacob, D.; Keup-Thiel, E.; Katragkou, E.; Kotlarski, S.; Nikulin, G.; Otto, J.; et al. Guidance for EURO-CORDEX Climate Projections Data Use. Version1.0—2017.08. 2017. Available online: https://www.euro-cordex.net/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (accessed on 13 January 2020).
- Schulzweida, U.; Kornblueh, L.; Quast, R. CDO User’s Guide; Climate Data Operation Version; MPI for Meteorology: Hamburg, Germany, 2006. [Google Scholar]
- Landelius, T.; Dahlgren, P.; Gollvik, S.; Jansson, A.; Olsson, E. A High-resolution Regional Reanalysis for Europe. Part 2: 2D Analysis of Surface Temperature, Precipitation and Wind. Q. J. R. Meteorol. Soc. 2016, 142, 2132–2142. [Google Scholar] [CrossRef]
- Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-Based Scaling to Improve Usability of Regional Climate Model Projections for Hydrological Climate Change Impacts Studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Brzóska, B.; Jaczewski, A. Przyszłe Zmiany Wybranych Wskaźników Klimatycznych Dla Polski Na Podstawie Wyników Dynamicznego Downscalingu. Pr. Geogr. 2017, 149, 7–14. [Google Scholar]
- Mezghani, A.; Dobler, A.; Haugen, J.E.; Benestad, R.E.; Parding, K.M.; Piniewski, M.; Kardel, I.; Kundzewicz, Z.W. CHASE-PL Climate Projection Dataset over Poland–Bias Adjustment of EURO-CORDEX Simulations. Earth Syst. Sci. Data 2017, 9, 905–925. [Google Scholar] [CrossRef]
- IMGW Instytut Meteorologii i Gospodarki Wodnej PIB. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne (accessed on 21 April 2021).
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; Van Meijgaard, E. Regional Climate Modeling on European Scales: A Joint Standard Evaluation of the EURO-CORDEX RCM Ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Podstawy Systemu Monitoringu Suszy Rolniczej. Woda-Śr.-Obsz. Wiej. 2012, 12, 77–91. [Google Scholar]
- Doroszewski, A.; Jóźwicki, T.; Wróblewska, E.; Kozyra, J. Susza Rolnicza w Polsce w Latach 1961–2010; IUNG-PIB: Puławy, Poland, 2014. [Google Scholar]
- Doroszewski, A.; Górski, T. Prosty Wskaznik Ewapotranspiracji Potencjalnej. Rocz. Akad. Rol. W Poznaniu Melior. Inż. Śr. 1995, 16, 3–8. [Google Scholar]
- Żyłowska, K. Raport Końcowy z Tematu Badawczego Nr.4.03. Pt Warunki Agroklimatyczne w Polsce Według Scenariuszy Klimatycznych Na Lata 2030, 2050, 2080 Zrealizowanego w Ramach Działalności Statutowej w Podprogramie Badawczym Nr. 4.03; IUNG-PIB: Puławy, Poland, 2015. [Google Scholar]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Muluneh, A.; Tadesse, T.; Girma, R. Assessing Potential Land Suitable for Surface Irrigation Using GIS and AHP Techniques in the Rift Valley Lakes Basin, Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 46. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural Land Use Suitability Analysis Using GIS and AHP Technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Mishra, A.K.; Deep, S.; Choudhary, A. Identification of Suitable Sites for Organic Farming Using AHP & GIS. Egypt. J. Remote Sens. Space Sci. 2015, 18, 181–193. [Google Scholar]
- Saaty, T.L.; Sodenkamp, M. The Analytic Hierarchy and Analytic Network Measurement Processes: The Measurement of Intangibles: Decision Making under Benefits, Opportunities, Costs and Risks. In Handbook of Multicriteria Analysis; Zopounidis, C., Pardalos, P.M., Eds.; Springer: Berlin, Germany, 2010; pp. 91–166. [Google Scholar]
- Król-Badziak, A.; Pishgar-Komleh, S.H.; Rozakis, S.; Księżak, J. Environmental and Socio-Economic Performance of Different Tillage Systems in Maize Grain Production: Application of Life Cycle Assessment and Multi-Criteria Decision Making. J. Clean. Prod. 2021, 278, 123792. [Google Scholar] [CrossRef]
- Parra-Lopez, C.; Calatrava-Requena, J.; de-Haro-Gimenez, T. A Multi-Criteria Evaluation of the Environmental Performances of Conventional, Organic and Integrated Olive-Growing Systems in the South of Spain Based on Experts’ Knowledge. Renew. Agric. Food Syst. 2007, 22, 189–203. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating Individual Judgments and Priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- ADMS—Soil Categories. Available online: https://susza.iung.pulawy.pl/en/kategorie/ (accessed on 21 December 2023).
- Kopacz, M.; Twardy, S. Potencjalne Zagrożenie Suszą Rolniczą w Północnej Części Województwa Małopolskiego. Woda-Śr.-Obsz. Wiej. 2016, 16, 5–19. [Google Scholar]
- FAO (Food and Agriculture Organization). A Framework for Land Evaluation; Soils Bulletin; FAO: Rome, Italy, 1976; Volume 32. [Google Scholar]
- Łabędzki, L. Potrzeby i Stan Nawodnień w Województwie Kujawsko-Pomorskim [Irrigation Needs and Condition in the Kuyavian-Pomeranian Voivodeship]. In Proceedings of the Warsztaty dla Interesariuszy Projektu OPERA [Workshops for the Stakeholders of the OPERA Project], Minikowo, Poland, 27 November 2017. [Google Scholar]
- Łabędzki, L. Irrigation in Poland-Current Status after Reforms in Agriculture and Future Development. J. Water Land Dev. 2007, 11, 3–16. [Google Scholar] [CrossRef]
- Łabędzki, L. Expected Development of Irrigation in Poland in the Context of Climate Change. J. Water Land Dev. 2009, 13b, 17–29. [Google Scholar] [CrossRef]
- Łabędzki, L. Agroklimatyczne Uwarunkowania Potrzeb Melioracji Nawadniających. Inż. Ekol. 2016, 47, 199–204. [Google Scholar] [CrossRef]
- Strużewska, J.; Jefimow, M.; Jagiełło, P.; Kłeczek, M.; Sattari, A.; Gienibor, A.; Norowski, A.; Durka, P.; Walczak, B.; Drzewiecki, P. Raport Skrócony: Zmiany Temperatury i Opadu Na Obszarze Polski w Warunkach Przyszłego Klimatu Do Roku 2100; Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warszawa, Poland, 2020. [Google Scholar]
- Szwed, M. The Elements of Water Balance in the Changing Climate in Poland. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A. Klimatyczny Bilans Wodny Na Obszarze Polski w Świetle Współczesnych Zmian Klimatu. Woda-Śr.-Obsz. Wiej. 2015, 15, 93–100. [Google Scholar]
- Igras, J.; Lipiński, W. Regionalne Zróżnicowanie Stanu Agrochemicznego Gleb w Polsce. In Regionalne Zróżnicowanie Produkcji Rolniczej w Polsce; Harasim, A., Ed.; Studia i Raporty IUNG-PIB: Puławy, Poland, 2006; Volume 15, pp. 71–79. [Google Scholar]
- Nieróbca, A.; Kozyra, J.; Mizak, K. Zmiany Warunków Termicznych Dla Uprawy Kukurydzy w Polsce. In Problemy Agrotechniki oraz Wykorzystania Kukurydzy i Sorgo; Michalski, T., Ed.; UP Poznań: Poznan, Poland, 2008; pp. 26–30. [Google Scholar]
- Nieróbca, A.; Kozyra, J.; Pudełko, R. Evaluation of Meteorological Conditions for the Cultivation of Maize Grain in Poland. Acta Agrophys. 2010, 6, 45–55. [Google Scholar]
- Ziernicka-Wojtaszek, A. Weryfikacja Rolniczo-Klimatycznych Regionalizacji Polski w Świetle Współczesnych Zmian Klimatu. Acta Agrophys. 2009, 13, 803–812. [Google Scholar]
- Ramirez-Cabral, N.Y.; Kumar, L.; Shabani, F. Global Alterations in Areas of Suitability for Maize Production from Climate Change and Using a Mechanistic Species Distribution Model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef]
- Więckowski, J.; Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. RANCOM: A Novel Approach to Identifying Criteria Relevance Based on Inaccuracy Expert Judgments. Eng. Appl. Artif. Intell. 2023, 122, 106114. [Google Scholar] [CrossRef]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Prognozowanie Efektów Nawadniania Roślin Na Podstawie Wybranych Wskaźników Suszy Meteorologicznej i Rolniczej. Rocz. Ochr. Śr. 2013, 15, 2185–2203. [Google Scholar]
- Żarski, J. Tendencje Zmian Klimatycznych Wskaźników Potrzeb Nawadniania Roślin w Rejonie Bydgoszczy. Infrastrukt. Ekol. Teren. Wiej. 2011, 5, 29–37. [Google Scholar]
- Żarski, J.; Dudek, S.; Grzelak, B.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Wpływ Nawadniania i Fertygacji Kroplowej Azotem Na Plonowanie Kukurydzy Na Obszarze Szczególnie Deficytowym w Wodę. Infrastrukt. Ekol. Teren. Wiej. 2015, 11, 279–289. [Google Scholar]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J.; Liu, D. Future Projection for Climate Suitability of Summer Maize in the North China Plain. Agriculture 2022, 12, 348. [Google Scholar] [CrossRef]
- Dudek, S.; Żarski, J. Ocena Efektów Zastosowania Nawadniania w Uprawie Kukurydzy Na Ziarno. Inż. Rol. 2005, 3, 159–164. [Google Scholar]
- Dudek, S.; Zarski, J.; Kusmierek-Tomaszewska, R. Reakcja Kukurydzy Na Nawadnianie w Świetle Wyników Wieloletniego Eksperymentu Polowego. Infrastrukt. Ekol. Teren. Wiej. 2009, 3, 189–195. [Google Scholar]
- Żarski, J.; Dudek, S.; Grzelak, B. Rola Czynnika Wodnego i Termicznego w Ksztaltowaniu Plonow Ziarna Kukurydzy. Acta Agrophys. 2004, 3, 189–195. [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R. Drip Irrigation as a Factor Mitigating Drought Impact in Corn Cultivation in Central Poland. In Proceedings of the 8th International Scientific Conference Rural Development 2017, Akademija, Lithuania, 23–24 November 2017; Raupelienė, A., Ed.; Aleksandras Stulginskis University: Kaunas, Lithuania, 2018; pp. 182–186. [Google Scholar]
- Zhao, J.; Bindi, M.; Eitzinger, J.; Ferrise, R.; Gaile, Z.; Gobin, A.; Holzkämper, A.; Kersebaum, K.-C.; Kozyra, J.; Kriaučiūnienė, Z.; et al. Priority for Climate Adaptation Measures in European Crop Production Systems. Eur. J. Agron. 2022, 138, 126516. [Google Scholar] [CrossRef]
N | GCMs | RCMs | Institution |
---|---|---|---|
1 | CNRM-CERFACS-CNRM-CM5 | SMHI-RCA4 | SMHI |
2 | ICHEC-EC-EARTH | SMHI-RCA4 | SMHI |
3 | ICHEC-EC-EARTH | KNMI-RACMO22E | KNMI |
4 | ICHEC-EC-EARTH | DMI-HIRHAM5 | DMI |
5 | IPSL-IPSL-CM5A-MR | SMHI-RCA4 | SMHI |
6 | MPI-M-MPI-ESM-LR | SMHI-RCA4 | SMHI |
Intensity of Importance | Definition |
---|---|
1 | Equal importance |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extreme importance |
2, 4, 6, 8 | Compromise between above values |
Reciprocals of above | Values for inverse comparison |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
Suitability Class | Description |
---|---|
S1—highly suitable | No significant limitations or only minor limitations |
S2—moderately suitable | Moderately severe limitations that reduce productivity or benefits and rise inputs |
S3—marginally suitable | Severe limitations that reduce productivity or benefits and rise inputs to the extent of being marginally justifiable |
N—not suitable | Severe limitations that may preclude sustained use of the land in a specific manner |
Characteristic | Suitability Class 1 | References | ||||
---|---|---|---|---|---|---|
Criteria | S1 | S2 | S3 | N | ||
Rating scale | 85–100 | 60–85 | 40–60 | 0–40 | [29,68] | |
Climatic water balance | on very light soils [mm] | >−150 | −200–−150 | −250–−200 | <−250 | [69] |
on light soils [mm] | >−210 | −260–−210 | −310–−260 | <−310 | [69] | |
on medium soils [mm] | >−250 | −300–−250 | −350–−300 | <−350 | [69] | |
on heavy soils [mm] | >−290 | −340–−290 | −390–−340 | <−390 | [69] |
Period 1 | BL | 2050s | 2080s | ||
---|---|---|---|---|---|
Emission Scenario 2 | LE | HE | LE | HE | |
Mean annual temperature [°C] | 8.2 | 9.7 (+1.5) | 10.3 (+2.1) | 10.3 (+2.1) | 12.0 (+3.8) |
Mean annual precipitation [mm] | 622 | 676 (+9%) | 710 (+14%) | 692 (+11%) | 741 (+19%) |
Period 1 | BL | 2050s | 2080s | ||
---|---|---|---|---|---|
Emission Scenario 2 | LE | HE | LE | HE | |
CWB sum (Apr–Sept) [mm] | −213 | −237 (−11%) | −214 (0%) | −240 (−13%) | −230 (−8%) |
Criteria | Very Light | Light | Medium | Heavy | Weights |
---|---|---|---|---|---|
Very light | 1.0000 | 0.2194 | 0.1305 | 0.1386 | 0.0433 |
Light | 4.5581 | 1.0000 | 0.1909 | 0.2437 | 0.1169 |
Medium | 7.6617 | 5.2382 | 1.0000 | 1.3286 | 0.4655 |
Heavy | 7.2157 | 4.1038 | 0.7526 | 1.0000 | 0.3743 |
RCP | RCP4.5 | RCP8.5 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | BL | 2050s | 2080s | 2050s | 2080s | |||||||||||||||
Rating scale 1 | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N |
Percentage | 81 | 18 | 1 | 0 | 67 | 26 | 7 | 0 | 64 | 24 | 12 | 0 | 69 | 22 | 8 | 0 | 44 | 24 | 21 | 11 |
RCP | RCP4.5 | RCP8.5 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | BL | 2050s | 2080s | 2050s | 2080s | |||||||||||||||
Rating scale 1 | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N |
0 mm | 81 | 18 | 1 | 0 | 67 | 26 | 7 | 0 | 64 | 24 | 12 | 0 | 69 | 22 | 8 | 0 | 44 | 24 | 21 | 11 |
30 mm | 94 | 6 | 0 | 0 | 84 | 16 | 0 | 0 | 79 | 20 | 2 | 0 | 82 | 16 | 1 | 0 | 57 | 23 | 18 | 1 |
80 mm | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 98 | 2 | 0 | 0 | 99 | 1 | 0 | 0 | 80 | 18 | 1 | 0 |
140 mm | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król-Badziak, A.; Kozyra, J.; Rozakis, S. Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress. Sustainability 2024, 16, 852. https://doi.org/10.3390/su16020852
Król-Badziak A, Kozyra J, Rozakis S. Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress. Sustainability. 2024; 16(2):852. https://doi.org/10.3390/su16020852
Chicago/Turabian StyleKról-Badziak, Aleksandra, Jerzy Kozyra, and Stelios Rozakis. 2024. "Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress" Sustainability 16, no. 2: 852. https://doi.org/10.3390/su16020852
APA StyleKról-Badziak, A., Kozyra, J., & Rozakis, S. (2024). Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress. Sustainability, 16(2), 852. https://doi.org/10.3390/su16020852