Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies
Abstract
:1. Introduction
2. Research Methodology
3. Historical Perspective on Nature-Oriented Sustainability Strategies
4. Emerging Perspectives on Nature-Oriented Sustainability Strategies
4.1. Nature-Inspired
4.1.1. Computing/Optimization Algorithms
4.1.2. Chemical Processing
4.1.3. Material Structure
4.1.4. Renewable Energy
4.1.5. Public Health
4.1.6. Fashion Technology
4.2. Nature-Based
4.2.1. Biodiversity
4.2.2. Catchment Management
4.2.3. Built Environment/Urban Planning
4.2.4. Public Health/Therapy
4.2.5. Ecotourism
4.2.6. Hydro-Meteorological Hazard Protection and Pollution Control
5. NOSS Application from a Systems Perspective
6. Implementation Challenges for Mainstreaming NOSSs
6.1. Scaling-Up Issues
6.2. Management Challenges
6.3. Adapting to Global Ecological and Cultural Diversity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McPhearson, T.; Raymond, C.M.; Gulsrud, N.; Albert, C.; Coles, N.; Fagerholm, N.; Nagatsu, M.; Olafsson, A.S.; Soininen, N.; Vierikko, K. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 2021, 1, 5. [Google Scholar] [CrossRef]
- Randrup, T.B.; Buijs, A.; Konijnendijk, C.C.; Wild, T. Moving beyond the nature-based solutions discourse: Introducing nature-based thinking. Urban Ecosyst. 2020, 23, 919–926. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Nature as a Model for Mimicking and Inspiration of New Technologies. Int. J. Aeronaut. Space Sci. 2012, 13, 1–13. [Google Scholar] [CrossRef]
- Zari, M.P.; MacKinnon, M.; Varshney, K.; Bakshi, N. Regenerative living cities and the urban climate-biodiversity-wellbeing nexus. Nat. Clim. Chang. 2022, 12, 601–604. [Google Scholar] [CrossRef]
- Ilieva, L.; Ursano, I.; Traista, L.; Hoffmann, B.; Dahy, H. Biomimicry as a Sustainable Design Methodology—Introducing the ‘Biomimicry for Sustainability’ Framework. Biomimetics 2022, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Speck, O.; Speck, T. Functional morphology of plants—A key to biomimetic applications. N. Phytol. 2021, 231, 950–956. [Google Scholar] [CrossRef]
- Kennedy, E.; Fecheyr-Lippens, D.; Hsiung, B.-K.; Niewiarowski, P.H.; Kolodziej, M. Biomimicry: A Path to Sustainable Innovation. Des. Issues 2015, 31, 66–73. [Google Scholar] [CrossRef]
- Helmrich, A.M.; Chester, M.V.; Hayes, S.; Markolf, S.A.; Desha, C.; Grimm, N.B. Using Biomimicry to Support Resilient Infrastructure Design. Earths Future 2020, 8, e2020EF001653. [Google Scholar] [CrossRef]
- MacKinnon, R.B.; Oomen, J.; Zari, M.P. Promises and Presuppositions of Biomimicry. Biomimetics 2020, 5, 33. [Google Scholar] [CrossRef]
- Speck, O.; Langer, M.; Mylo, M.D. Plant-inspired damage control—An inspiration for sustainable solutions in the Anthropocene. Annu. Rev. Anthropol. 2021, 9, 220–236. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. An Overview of Bioinspired and Biomimetic Self-Repairing Materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Bar-Cohen, Y. Biomimetics: Nature-Based Innovation; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- van der Jagt, A.P.N.; Raven, R.; Dorst, H.; Runhaar, H. Nature-based innovation systems. Environ. Innov. Soc. Transit. 2020, 35, 202–216. [Google Scholar] [CrossRef]
- Casement, W. William Morris on Labor and Pleasure. Soc. Theory Pract. 1986, 12, 351–382. [Google Scholar] [CrossRef]
- Huxley, A. Brave New World; Vintage: New York, NY, USA, 1931. [Google Scholar]
- Steinbeck, J. The Grapes of Wrath; The Viking Press: New York, NY, USA, 1939. [Google Scholar]
- Orwell, G. The Road to Wigan Pier; Victor Gollancz: London, UK, 1937. [Google Scholar]
- Seymour, J. The Forgotten Crafts; Portland House, Distributed by Outlet Books Co.: New York, NY, USA, 1984. [Google Scholar]
- Seymour, J.; Girardet, H. Blueprint for a Green Planet; Dorling Kindersley: London, UK, 1987. [Google Scholar]
- Mabey, R.; Sinclair, I. The Unofficial Countryside; Collins: London, UK, 1973. [Google Scholar]
- Cloke, P.; Milbourne, P.; Thomas, C. From wasteland to wonderland: Opencast mining, regeneration and the English National Forest. Geoforum 1996, 27, 159–174. [Google Scholar] [CrossRef]
- Jones, H. The Eden Project: A Synopsis around Sustainable Enterprise. J. Corp. Citizsh. 2008, 30, 133–137. [Google Scholar]
- Bisoffi, S.; Ahrné, L.; Aschemann-Witzel, J.; Báldi, A.; Cuhls, K.; DeClerck, F.; Duncan, J.; Hansen, H.O.; Hudson, R.L.; Kohl, J.; et al. COVID-19 and Sustainable Food Systems: What Should We Learn Before the Next Emergency. Front. Sustain. Food Syst. 2021, 5, 53. [Google Scholar] [CrossRef]
- Buheji, M.; Korže, A.V.; Eidan, S.; Abdulkareem, T.; Perepelkin, N.A.; Mavric, B.; Preis, J.; Bartula, M.; Ahmed, D.; Buheji, A.; et al. Optimising Pandemic Response through Self-Sufficiency—A Review Paper. Am. J. Econ. 2020, 10, 277–283. [Google Scholar] [CrossRef]
- Speck, T.; Poppinga, S.; Speck, O.; Tauber, F. Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene. Annu. Rev. Anthropol. 2021, 9, 237–256. [Google Scholar] [CrossRef]
- Hu, N.; Feng, P.; Dai, G. The Gift from Nature: Bio-Inspired Strategy for Developing Innovative Bridges. J. Bionic Eng. 2013, 10, 405–414. [Google Scholar] [CrossRef]
- Persiani, S. Biomimetics of Motion: Nature-Inspired Parameters and Schemes for Kinetic Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bozorg-Haddad, O. (Ed.) Advanced Optimization by Nature-Inspired Algorithms; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2018; ISBN 3540306765. [Google Scholar]
- Figueira, J.R.; Talbi, E.-G. Emergent nature inspired algorithms for multi-objective optimization. Comput. Oper. Res. 2013, 40, 1521–1523. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hessin, A.-N.; Abdel-Fatah, L. A comprehensive study of cuckoo-inspired algorithms. Neural Comput. Appl. 2018, 29, 345–361. [Google Scholar] [CrossRef]
- Viana, F.A.C.; Steffen, V.; Butkewitsch, S.; De Freitas Leal, M. Optimization of aircraft structural components by using nature-inspired algorithms and multi-fidelity approximations. J. Glob. Optim. 2009, 45, 427–449. [Google Scholar] [CrossRef]
- Zang, H.; Zhang, S.; Hapeshi, K. A Review of Nature-Inspired Algorithms. J. Bionic Eng. 2010, 7, S232–S237. [Google Scholar] [CrossRef]
- Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive Taxonomies of Nature- and Bio-inspired Op-timization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations. Cognit. Comput. 2020, 12, 897–939. [Google Scholar] [CrossRef]
- Li, M.D.; Zhao, H.; Weng, X.W.; Han, T. A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw. 2016, 92, 65–88. [Google Scholar] [CrossRef]
- Maraveas, C.; Asteris, P.G.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Application of Bio and Nature-Inspired Algorithms in Agricultural Engineering. Arch. Comput. Methods Eng. 2023, 30, 1979–2012. [Google Scholar] [CrossRef]
- Mehrnia, S.; Miyagawa, K.; Kusaka, J.; Nakamura, Y. Radial turbine optimization under unsteady flow using nature-inspired algorithms. Aerosp. Sci. Technol. 2020, 103, 105903. [Google Scholar] [CrossRef]
- Saad, A.E.H.; Dong, Z.; Karimi, M. A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design. Algorithms 2017, 10, 120. [Google Scholar] [CrossRef]
- Khan, Z.A.; Khalid, A.; Javaid, N.; Haseeb, A.; Saba, T.; Shafiq, M. Exploiting Nature-Inspired-Based Artificial Intelligence Techniques for Coordinated Day-Ahead Scheduling to Efficiently Manage Energy in Smart Grid. IEEE Access 2019, 7, 140102–140125. [Google Scholar] [CrossRef]
- Sheta, A.; Faris, H.; Braik, M.; Mirjalili, S. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparison Study. In Applied Nature-Inspired Computing: Algorithms and Case Studies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–230. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Bhandari, A.; Kumar, A.; Chaudhary, S.; Singh, G.K. A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst. Appl. 2016, 63, 112–133. [Google Scholar] [CrossRef]
- Khurana, A.; Verma, O.P. Novel approach with nature-inspired and ensemble techniques for optimal text classification. Multimedia Tools Appl. 2020, 79, 23821–23848. [Google Scholar] [CrossRef]
- Kashyap, A.K.; Parhi, D.R.; Pandey, A. Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain. ISA Trans. 2022, 125, 591–613. [Google Scholar] [CrossRef]
- Kashyap, A.K.; Pandey, A.; Parhi, D.R. Route Mapping of Multiple Humanoid Robots Using Firefly-Based Artificial Potential Field Algorithm in a Cluttered Terrain. In The New Advanced Society: Artificial Intelligence and Industrial Internet of Things Paradigm; Wiley Online Library: New, York, NY, USA, 2022; pp. 323–350. [Google Scholar] [CrossRef]
- Nayak, J.; Naik, B.; Jena, A.K.; Barik, R.K.; Das, H. Nature Inspired Optimizations in Cloud Computing: Applications and Challenges. In Cloud Computing for Optimization: Foundations, Applications, and Challenges; Springer: Berlin/Heidelberg, Germany, 2018; Volume 39, pp. 1–26. [Google Scholar] [CrossRef]
- Mchergui, A.; Moulahi, T.; Zeadally, S. Survey on Artificial Intelligence (AI) techniques for Vehicular Ad-hoc Networks (VANETs). Veh. Commun. 2022, 34, 100403. [Google Scholar] [CrossRef]
- Coppens, M.-O. A nature-inspired approach to reactor and catalysis engineering. Curr. Opin. Chem. Eng. 2012, 1, 281–289. [Google Scholar] [CrossRef]
- Trogadas, P.; Coppens, M.-O. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 2020, 49, 3107–3141. [Google Scholar] [CrossRef]
- Trogadas, P.; Nigra, M.M.; Coppens, M.-O. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New J. Chem. 2016, 40, 4016–4026. [Google Scholar] [CrossRef]
- Martin, D.J.; Reardon, P.J.T.; Moniz, S.J.A.; Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semicon-ductor-based system. J. Am. Chem. Soc. 2014, 136, 12568–12571. [Google Scholar] [CrossRef]
- Čechová, P.; Kubala, M. Comparison of three nature inspired molecular docking algorithms. Int. J. Bio Inspired Comput. 2021, 17, 34–41. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Liu, Q.; Palmer, M.R.; Varma, R.S. Nature-inspired and sustainable synthesis of sulfur-bearing fe-rich nano-particles. ACS Sustain. Chem. Eng. 2020, 8, 15791–15808. [Google Scholar] [CrossRef]
- No, Y.H.; Kim, N.H.; Gnapareddy, B.; Choi, B.; Dugasani, S.R.; Lee, O.-S.; Kim, K.-H.; Ko, Y.-S.; Lee, S.; Lee, S.W.; et al. Nature-Inspired Construction of Two-Dimensionally Self-Assembled Peptide on Pristine Graphene. J. Phys. Chem. Lett. 2017, 8, 3734–3739. [Google Scholar] [CrossRef]
- Gomes, G.F.; da Cunha, S.S., Jr.; Ancelotti, A.C. A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng. Comput. 2019, 35, 619–626. [Google Scholar] [CrossRef]
- Liu, Y.; He, K.; Chen, G.; Leow, W.R.; Chen, X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem. Rev. 2017, 117, 12893–12941. [Google Scholar] [CrossRef]
- Nagy, D.; Zhao, D.; Benjamin, D. Nature-Based Hybrid Computational Geometry System for Optimizing Component Structure. In Humanizing Digital Reality: Design Modelling Symposium Paris; Springer: Berlin/Heidelberg, Germany, 2018; pp. 167–176. [Google Scholar] [CrossRef]
- Rian, I.M.; Asayama, S. Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals. Autom. Constr. 2016, 66, 43–58. [Google Scholar] [CrossRef]
- Glowacki, E.D.; Leonat, L.; Voss, G.; Bodea, M.; Bozkurt, Z.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N.S. Natural and nature-inspired semiconductors for organic electronics. In Proceedings of the Organic Semiconductors in Sensors and Bioelectronics IV, San Diego, CA, USA, 24–25 August 2011; Volume 8118, pp. 78–87. [Google Scholar] [CrossRef]
- Soudi, N.; Nanayakkara, S.; Jahed, N.M.; Naahidi, S. Rise of nature-inspired solar photovoltaic energy convertors. Sol. Energy 2020, 208, 31–45. [Google Scholar] [CrossRef]
- Bian, Q.; Ma, F.; Chen, S.; Wei, Q.; Su, X.; Buyanova, I.A.; Chen, W.M.; Ponseca, C.S.; Linares, M.; Karki, K.J.; et al. Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nat. Commun. 2020, 11, 617. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zhou, X.; Yuan, M.; Qu, D.; Zheng, Y.; Vishinkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem. Rev. 2019, 119, 11761–11817. [Google Scholar] [CrossRef]
- Scates, D.; Dickinson, J.I.; Sullivan, K.; Cline, H.; Balaraman, R. Using Nature-Inspired Virtual Reality as a Distraction to Reduce Stress and Pain Among Cancer Patients. Environ. Behav. 2020, 52, 895–918. [Google Scholar] [CrossRef]
- Singh, A.V.; Rahman, A.; Kumar, N.S.; Aditi, A.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. 2012, 36, 829–839. [Google Scholar] [CrossRef]
- Speck, O.; Möller, M.; Grießhammer, R.; Speck, T. Biological Concepts as a Source of Inspiration for Efficiency, Consistency, and Sufficiency. Sustainability 2022, 14, 8892. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems. Renew. Sustain. Energy Rev. 2015, 50, 755–769. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Menshsari, A.; Ghiamy, M.; Mousavi, M.M.; Bagal, H.A. Optimal design of hybrid water-wind-solar system based on hydrogen storage and evaluation of reliability index of system using ant colony algorithm. Int. Res. J. Appl. Basic. Sci. 2013, 4, 3582–3600. [Google Scholar]
- Xu, D.; Kang, L.; Cao, B. Graph-Based Ant System for Optimal Sizing of Standalone Hybrid Wind/PV Power Systems. In Proceedings of the International Conference on Intelligent Computing, Kunming, China, 16–19 August 2006; pp. 1136–1146. [Google Scholar]
- Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 2002, 22, 52–67. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Nasiraghdam, H.; Jadid, S. Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm. Sol. Energy 2012, 86, 3057–3071. [Google Scholar] [CrossRef]
- Maleki, A.; Askarzadeh, A. Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Sol. Energy 2014, 107, 227–235. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. Bridging the Gap: From Biomechanics and Functional Morphology of Plants to Biomimetic Developments. Biomimetics 2021, 6, 60. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Donnison, I. Characterization of Nature-Based Solutions for the Built Environment. Sustainability 2017, 9, 149. [Google Scholar] [CrossRef]
- Potschin, M.; Kretsch, C.; Haines-Young, R.; Furman, E.; Berry, P.; Baró, F. Nature-Based Solutions. In Open NESS Ecosystem Services Reference; Potschin, M., Jax, K., Eds.; EC FP7 Grant Agreement No. 308428; IPBES Secretariat: Bonn, Germany, 2016. [Google Scholar]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; European Commission: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- Seddon, N.; Daniels, E.; Davis, R.; Chausson, A.; Harris, R.; Hou-Jones, X.; Huq, S.; Kapos, V.; Mace, G.M.; Rizvi, A.R.; et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain. 2020, 3, e15. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Seddon, N.; Turner, B.; Berry, P.; Chausson, A.; Girardin, C.A.J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 2019, 9, 84–87. [Google Scholar] [CrossRef]
- Mori, A.S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 2020, 23, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Bulkeley, H. Nature-based solutions for urban biodiversity governance. Environ. Sci. Policy 2020, 110, 77–87. [Google Scholar] [CrossRef]
- Blau, M.L.; Luz, F.; Panagopoulos, T. Urban River Recovery Inspired by Nature-Based Solutions and Biophilic Design in Albufeira, Portugal. Land 2018, 7, 141. [Google Scholar] [CrossRef]
- Martin, E.G.; Costa, M.M.; Máñez, K.S. An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice. Ecol. Econ. 2019, 167, 106460. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Valdes, H.; Correa, C.; Agredano, R.; Vidal, G.; Belmonte, M.; Olave, J.; Arias, C. Proposal of competencies for engineering education to develop water infrastructure based on “Nature-Based Solutions” in the urban context. J. Clean. Prod. 2020, 265, 121717. [Google Scholar] [CrossRef]
- Krauze, K.; Wagner, I. From classical water-ecosystem theories to nature-based solutions—Contextualizing nature-based solutions for sustainable city. Sci. Total. Environ. 2019, 655, 697–706. [Google Scholar] [CrossRef]
- Janssen, S.; Vreugdenhil, H.; Hermans, L.; Slinger, J. On the nature based flood defence dilemma and its Resolution: A game theory based analysis. Sci. Total. Environ. 2020, 705, 135359. [Google Scholar] [CrossRef]
- Luo, K.; Wang, Z.; Sha, W.; Wu, J.; Wang, H.; Zhu, Q. Integrating Sponge City Concept and Neural Network into Land Suitability Assessment: Evidence from a Satellite Town of Shenzhen Metropolitan Area. Land 2021, 10, 872. [Google Scholar] [CrossRef]
- Lancia, M.; Zheng, C.; He, X.; Lerner, D.N.; Andrews, C.; Tian, Y. Hydrogeological constraints and opportunities for “Sponge City” development: Shenzhen, southern China. J. Hydrol. Reg. Stud. 2020, 28, 100679. [Google Scholar] [CrossRef]
- Ren, K.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Cheng, L.; Fang, W.; Li, P. A nature-based reservoir optimization model for resolving the conflict in human water demand and riverine ecosystem protection. J. Clean. Prod. 2019, 231, 406–418. [Google Scholar] [CrossRef]
- Guerrero, P.; Haase, D.; Albert, C. Locating Spatial Opportunities for Nature-Based Solutions: A River Landscape Application. Water 2018, 10, 1869. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J.; van den Bosch, C.K.; Randrup, T.B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Dushkova, D.; Haase, D. Not Simply Green: Nature-Based Solutions as a Concept and Practical Approach for Sustainability Studies and Planning Agendas in Cities. Land 2020, 9, 19. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Dumitru, A.; Frantzeskaki, N.; Collier, M. Identifying principles for the design of robust impact evaluation frameworks for nature-based solutions in cities. Environ. Sci. Policy 2020, 112, 107–116. [Google Scholar] [CrossRef]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G. Nature-based solutions: Settling the issue of sustainable urbanization. Environ. Res. 2019, 172, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.J.; Atkins, J.P.; Burdon, D.; Elliott, M. A problem structuring method for ecosystem-based management: The DPSIR modelling process. Eur. J. Oper. Res. 2013, 227, 558–569. [Google Scholar] [CrossRef]
- Toxopeus, H.; Kotsila, P.; Conde, M.; Katona, A.; van der Jagt, A.P.; Polzin, F. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 2020, 105, 102839. [Google Scholar] [CrossRef]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Sartison, K.; Artmann, M. Edible cities—An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban For. Urban Green. 2020, 49, 126604. [Google Scholar] [CrossRef]
- Colléony, A.; Shwartz, A. Beyond Assuming Co-Benefits in Nature-Based Solutions: A Human-Centered Approach to Optimize Social and Ecological Outcomes for Advancing Sustainable Urban Planning. Sustainability 2019, 11, 4924. [Google Scholar] [CrossRef]
- Tozer, L.; Hörschelmann, K.; Anguelovski, I.; Bulkeley, H.; Lazova, Y. Whose city? Whose nature? Towards inclusive nature-based solution governance. Cities 2020, 107, 102892. [Google Scholar] [CrossRef]
- Stigsdotter, U.; Palsdottir, A.; Burls, A.; Chermaz, A.; Ferrini, F.; Grahn, P. Nature-based Therapeutic Interventions. In Forests, Trees and Human Health; Nilsson, K., Sangster, M., Gallis, C., Hartig, T., de Vries, S., Seeland, K., Schipperijn, J., Eds.; Springer: Berlin, Germany, 2011; pp. 309–342. [Google Scholar]
- Segal, D.; Harper, N.J.; Rose, K. Outdoor Therapies: An Introduction to Practices, Possibilities, and Critical Perspectives; Routledge: New York, NY, USA, 2020; pp. 95–107. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—A sys-tematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Leavell, M.A.; Leiferman, J.A.; Gascon, M.; Braddick, F.; Gonzalez, J.C.; Litt, J.S. Nature-Based Social Prescribing in Urban Settings to Improve Social Connectedness and Mental Well-being: A Review. Curr. Environ. Heal. Rep. 2019, 6, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; van den Bosch, M.; Lafortezza, R. The health benefits of nature-based solutions to urbanization challenges for children and the elderly—A systematic review. Environ. Res. 2017, 159, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.O.; Browning, W.D.; O Clancy, J.; Andrews, S.L.; Kallianpurkar, N.B. Biophilic Design Patterns: Emerging Nature-Based Parameters for Health and Well-Being in the Built Environment. J. Archit. Res. 2014, 8, 62–76. [Google Scholar] [CrossRef]
- Han, H.; Hyun, S.S. Green indoor and outdoor environment as nature-based solution and its role in increasing customer/employee mental health, well-being, and loyalty. Bus. Strat. Environ. 2019, 28, 629–641. [Google Scholar] [CrossRef]
- Sahlin, E.; Ahlborg, G.; Matuszczyk, J.V.; Grahn, P. Nature-Based Stress Management Course for Individuals at Risk of Adverse Health Effects from Work-Related Stress—Effects on Stress Related Symptoms, Workability and Sick Leave. Int. J. Environ. Res. Public Health 2014, 11, 6586–6611. [Google Scholar] [CrossRef] [PubMed]
- Heintzman, P. Nature-Based Recreation and Spirituality: A Complex Relationship. Leis. Sci. 2009, 32, 72–89. [Google Scholar] [CrossRef]
- Yuxi, Z.; Linsheng, Z. Identifying conflicts tendency between nature-based tourism development and ecological protection in China. Ecol. Indic. 2020, 109, 105791. [Google Scholar] [CrossRef]
- Fossgard, K.; Fredman, P. Dimensions in the nature-based tourism experiencescape: An explorative analysis. J. Outdoor Recreat. Tour. 2019, 28, 100219. [Google Scholar] [CrossRef]
- Debele, S.E.; Kumar, P.; Sahani, J.; Marti-Cardona, B.; Mickovski, S.B.; Leo, L.S.; Porcù, F.; Bertini, F.; Montesi, D.; Vojinovic, Z.; et al. Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environ. Res. 2019, 179, 108799. [Google Scholar] [CrossRef] [PubMed]
- Sahani, J.; Kumar, P.; Debele, S.; Spyrou, C.; Loupis, M.; Aragão, L.; Porcù, F.; Shah, M.A.R.; Di Sabatino, S. Hydro-meteorological risk assessment methods and management by nature-based solutions. Sci. Total Environ. 2019, 696, 133936. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; van Wyk, E.; Ordóñez, C.; et al. Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. BioScience 2019, 69, 455–466. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Giordano, R.; Pagano, A.; van der Keur, P.; Máñez Costa, M. Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Sci. Total Environ. 2020, 738, 139693. [Google Scholar] [CrossRef] [PubMed]
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total. Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Raskin, P.D. Global Scenarios: Background Review for the Millennium Ecosystem Assessment. Ecosystems 2005, 8, 133–142. [Google Scholar] [CrossRef]
- Blok, V.; Gremmen, B. Ecological Innovation: Biomimicry as a New Way of Thinking and Acting Ecologically. J. Agric. Environ. Ethics 2016, 29, 203–217. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry, 1st ed.; Taylor and Francis: London, UK, 2018; p. 260. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Hutchins, S.H. Natural products for crop protection: Evolution or intelligent design. ACS Symp. Ser. 2015, 1204, 55–62. [Google Scholar] [CrossRef]
- Paulo, P.L.; Galbiati, A.F.; Filho, F.J.C.M.; Bernardes, F.S.; Carvalho, G.A.; Boncz, M. Evapotranspiration tank for the treatment, disposal and resource recovery of blackwater. Resour. Conserv. Recycl. 2019, 147, 61–66. [Google Scholar] [CrossRef]
- Loo, L.; Guenther, R.H.; Basnayake, V.R.; Lommel, S.A.; Franzen, S. Controlled Encapsidation of Gold Nanoparticles by a Viral Protein Shell. J. Am. Chem. Soc. 2006, 128, 4502–4503. [Google Scholar] [CrossRef] [PubMed]
- Hastings, A.; Clifton-Brown, J.; Wattenbach, M.; Mitchell, C.P.; Stampfl, P.; Smith, P. Future energy potential of Miscanthus in Europe. GCB Bioenergy 2009, 1, 180–196. [Google Scholar] [CrossRef]
- Zwierzchowska, I.; Fagiewicz, K.; Poniży, L.; Lupa, P.; Mizgajski, A. Introducing nature-based solutions into urban policy—Facts and gaps. Case study of Poznań. Land Use Policy 2019, 85, 161–175. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, A.; Godsmark, K.; Smethurst, J. Field evaluation of precipitation interception potential of green façades. Ecol. Eng. 2018, 122, 69–75. [Google Scholar] [CrossRef]
- Himeur, Y.; Rimal, B.; Tiwary, A.; Amira, A. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Inf. Fusion 2022, 86–87, 44–75. [Google Scholar] [CrossRef]
- Sekulova, F.; Anguelovski, I.; Kiss, B.; Kotsila, P.; Baró, F.; Palgan, Y.V.; Connolly, J. The governance of nature-based solutions in the city at the intersection of justice and equity. Cities 2021, 112, 103136. [Google Scholar] [CrossRef]
- Nunes, N.; Björner, E.; Hilding-Hamann, K.E. Guidelines for Citizen Engagement and the Co-Creation of Nature-Based Solutions: Living Knowledge in the URBiNAT Project. Sustainability 2021, 13, 13378. [Google Scholar] [CrossRef]
- Kotsila, P.; Anguelovski, I.; Baró, F.; Langemeyer, J.; Sekulova, F.; Connolly, J.J. Nature-based solutions as discursive tools and contested practices in urban nature’s neoliberalisation processes. Environ. Plan. E Nat. Space 2020, 4, 252–274. [Google Scholar] [CrossRef]
- Wamsler, C.; Alkan-Olsson, J.; Björn, H.; Falck, H.; Hanson, H.; Oskarsson, T.; Simonsson, E.; Zelmerlow, F. Beyond participation: When citizen engagement leads to undesirable outcomes for nature-based solutions and climate change adaptation. Clim. Chang. 2020, 158, 235–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwary, A.; Brown, N. Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies. Sustainability 2024, 16, 881. https://doi.org/10.3390/su16020881
Tiwary A, Brown N. Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies. Sustainability. 2024; 16(2):881. https://doi.org/10.3390/su16020881
Chicago/Turabian StyleTiwary, Abhishek, and Neil Brown. 2024. "Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies" Sustainability 16, no. 2: 881. https://doi.org/10.3390/su16020881
APA StyleTiwary, A., & Brown, N. (2024). Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies. Sustainability, 16(2), 881. https://doi.org/10.3390/su16020881