Multiphase Equilibrium Relationships between Copper Matte and CaO-Al2O3-Bearing Iron Silicate Slags in Combined Smelting of WEEE and Copper Concentrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructures of Matte and Tridymite-Saturated Slags
3.2. Matte Composition
3.3. Slag Composition and Isotherms
3.3.1. Slag Composition
3.3.2. Slag Isotherms
3.4. Distributions of Cu, Fe, and S
3.5. Industrial WEEE Smelting for Sustainable Metal Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cucchiella, F.; D’Adamo, I.; Lenny Koh, S.C.; Rosa, P. Recycling of WEEEs: An Economic Assessment of Present and Future e-Waste Streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical Recovery of Metals from Electronic Waste: A Review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Cai, M.; Zhou, Y.; Guo, C.; Han, Y.; Zhang, L. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers 2023, 15, 2741. [Google Scholar] [CrossRef] [PubMed]
- Hagelüken, C. Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery. World Metall. 2006, 59, 152–161. [Google Scholar]
- Avarmaa, K.; Yliaho, S.; Taskinen, P. Recoveries of Rare Elements Ga, Ge, In and Sn from Waste Electric and Electronic Equipment through Secondary Copper Smelting. Waste Manag. 2018, 71, 400–410. [Google Scholar] [CrossRef]
- Mackey, P.J. The Physical Chemistry of Copper Smelting Slags-a Review. Can. Metall. Q. 1982, 21, 221–260. [Google Scholar] [CrossRef]
- Anindya, A.; Swinbourne, D.R.; Reuter, M.A.; Matusewicz, R.W. Distribution of Elements between Copper and FeOx-CaO-SiO2 Slags during Pyrometallurgical Processing of WEEE. Miner. Process. Extr. Metall. 2013, 122, 165–173. [Google Scholar] [CrossRef]
- Sineva, S.; Hayes, P.C.; Jak, E. Experimental Study of the Slag/Matte/Metal (Fe or Cu)/Tridymite Equilibria in the Cu-Fe-O-S-Si-(Ca) System at 1473K (1200 °C): Effect of Ca. Met. Mater. Trans B 2021, 52, 2163–2170. [Google Scholar] [CrossRef]
- Fallah-Mehrjardi, A.; Hayes, P.C.; Jak, E. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm. Met. Mater. Trans B 2018, 49, 602–609. [Google Scholar] [CrossRef]
- Sineva, S.; Fallah-Mehrjardi, A.; Hidayat, T.; Shevchenko, M.; Shishin, D.; Hayes, P.C.; Jak, E. Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si-Al-Ca-Mg System in Controlled Gas Atmosphere: Experimental Results at 1473 K (1200 °C), 1573 K (1300 °C) and p(SO2) = 0.25 Atm. J. Phase Equilib. Diffus. 2020, 41, 243–256. [Google Scholar] [CrossRef]
- Sineva, S.; Fallah-Mehrjardi, A.; Hidayat, T.; Hayes, P.C.; Jak, E. Experimental Study of the Individual Effects of Al2O3, CaO and MgO on Gas/Slag/Matte/Spinel Equilibria in Cu-Fe-O-S-Si-Al-Ca-Mg System at 1473K (1200 °C) and P(SO2) = 0.25 Atm. J. Phase Equilib. Diffus. 2020, 41, 859–869. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Taskinen, P.; Michallik, R.; Jokilaakso, A. Investigation on the Matte/Slag/Spinel/Gas Equilibria in the Cu-Fe-O-S-SiO2-(CaO, Al2O3) System at 1250 °C and pSO2 of 0.25 Atm. Miner. Process. Extr. Metall. Rev. 2022, 44, 313–324. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Taskinen, P.; Klemettinen, L.; Michallik, R.; O’Brien, H.; Jokilaakso, A. Novel Fluxing Strategy of Copper Matte Smelting and Trace Metals in E-Waste Recycling. Miner. Eng. 2023, 191, 107969. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, M.; Balladares, E.; Pizarro, C.; Contreras, L.; Zhao, B. Effect of CaO on the Liquid/Spinel/Matte/Gas Equilibria in the Si-Fe-O-Cu-S System at Controlled P(SO2) 0.3 and 0.6 Atm. Calphad 2020, 69, 101751. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Klemettinen, L.; Shi, J.; Taskinen, P.; Jokilaakso, A. Experimental Study on the Phase Equilibrium of Copper Matte and Silica-Saturated FeOx-SiO2-Based Slags in Pyrometallurgical WEEE Processing. Met. Mater. Trans. B 2020, 51, 1552–1563. [Google Scholar] [CrossRef]
- Chen, M.; Avarmaa, K.; Klemettinen, L.; Shi, J.; Taskinen, P.; Lindberg, D.; Jokilaakso, A. Equilibrium of Copper Matte and Silica-Saturated Iron Silicate Slags at 1300 °C and PSO2 of 0.5 Atm. Met. Mater. Trans. B 2020, 51, 2107–2118. [Google Scholar] [CrossRef]
- Sukhomlinov, D.; Klemettinen, L.; O’Brien, H.; Taskinen, P.; Jokilaakso, A. Behavior of Ga, In, Sn, and Te in Copper Matte Smelting. Met. Mater. Trans. B 2019, 50, 2723–2732. [Google Scholar] [CrossRef]
- Heo, J.H.; Park, S.-S.; Park, J.H. Effect of Slag Composition on the Distribution Behavior of Pb between FetO-SiO2(-CaO, Al2O3) Slag and Molten Copper. Met. Mater. Trans. B 2012, 43, 1098–1105. [Google Scholar] [CrossRef]
- Kim, H.G.; Sohn, H.Y. Effects of CaO, Al2O3, and MgO Additions on the Copper Solubility, Ferric/Ferrous Ratio, and Minor-Element Behavior of Iron-Silicate Slags. Met. Mater. Trans. B 1998, 29, 583–590. [Google Scholar] [CrossRef]
- Tian, M.; Wang, Q.; Wang, Q.; Li, W.; Guo, X. Effect of MgO on Phase Equilibria of Copper Matte and SiO2-Saturated Iron Silicate Slag in Smelting Complicated Copper Resources. Trans. Nonferrous Met. Soc. China 2023, 33, 3544–3559. [Google Scholar] [CrossRef]
- Yazawa, A. Thermodynamic Considerations of Copper Smelting. Can. Metall. Q. 1974, 13, 443–453. [Google Scholar] [CrossRef]
- Abdeyazdan, H.; Fallah-Mehrjardi, A.; Hidayat, T.; Shevchenko, M.; Hayes, P.C.; Jak, E. The Effect of MgO on Gas-Slag-Matte-Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and 1573 K (1300 °C), and P(SO2) = 0.25 Atm. J. Phase Equilib. Diffus. 2020, 41, 44–55. [Google Scholar] [CrossRef]
- Sineva, S.; Shishin, D.; Shevchenko, M.; Hayes, P.C.; Jak, E. Experimental Study of the Combined Effects of Al2O3, CaO and MgO on Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si-Al-Ca-Mg System at 1473K (1200 °C) and p(SO2) = 0.25 Atm. J. Sustain. Metall. 2023, 9, 599–612. [Google Scholar] [CrossRef]
- Nagamori, M.; Mackey, P.J. Thermodynamics of Copper Matte Converting: Part I. Fundamentals of the Noranda Process. Metall. Trans. B 1978, 9, 255–265. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, X.; Wang, S.; Liao, L.; Tian, Q. Multiphase Equilibrium Modeling of Oxygen Bottom-Blown Copper Smelting Process. Trans. Nonferrous Met. Soc. China 2017, 27, 2503–2511. [Google Scholar] [CrossRef]
- Matusewicz, R.W.; Reuter, M.A.; Hughes, S.P.; Lin, S.; Sun, L. Large Scale Copper Smelting Using Ausmelt TSL Technology at the Tongling Jinchang Smelter. In Proceedings of the Copper 2010, Hamburg, Germany, 6–10 June 2010; Volume 3, pp. 961–970. [Google Scholar]
- Shishin, D.; Hidayat, T.; Fallah-Mehrjardi, A.; Hayes, P.C.; Decterov, S.A.; Jak, E. Integrated Experimental and Thermodynamic Modeling Study of the Effects of Al2O3, CaO, and MgO on Slag-Matte Equilibria in the Cu-Fe-O-S-Si-(Al, Ca, Mg) System. J. Phase Equilib. Diffus. 2019, 40, 445–461. [Google Scholar] [CrossRef]
- Henao, H.M.; Nexhip, C.; George-Kennedy, D.P.; Hayes, P.C.; Jak, E. Investigation of Liquidus Temperatures and Phase Equilibria of Copper Smelting Slags in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 System at PO2 10−8 Atm. Met. Mater. Trans. B 2010, 41, 767–779. [Google Scholar] [CrossRef]
- Hidayat, T.; Fallah-Mehrjardi, A.; Hayes, P.C.; Jak, E. Experimental Investigation of Gas/Slag/Matte/Spinel Equilibria in the Cu-Fe-O-S-Si System at 1473K (1200 °C) and P(SO2) = 0.25 Atm. Met. Mater. Trans B 2018, 49, 1750–1765. [Google Scholar] [CrossRef]
Investigators | Slag Type | Additive Concentration | Temperature/°C | p(SO2)/atm | Refs. |
---|---|---|---|---|---|
Matte and FeOx-SiO2-CaO(-Al2O3) slag system | |||||
Present study | SiO2-sat. | 5–10 wt%CaO + 5 wt%Al2O3 | 1300 | 0.1 | - |
Sineva et al. | SiO2-sat. | 1.5, 6, 9, 18 wt% CaO | 1200 | 10−6.9–10−6.5 | [8] |
Fallah-Mehrjardi et al. | SiO2-sat. | 1–4 wt% CaO | 1200 | 0.25 | [8] |
Sineva et al. | SiO2-sat. | 2.4, 3.8 wt% CaO | 1300 | 0.25 | [10] |
Sineva et al. | Spinel-sat. | 2.5, 4 wt% CaO | 1200 | 0.25 | [11] |
Chen et al. | Spinel-sat. | 4–7 wt% CaO | 1250 | 0.25 | [12] |
Sun et al. | Spinel-sat. | 0–6 wt% CaO | 1180–1250 | 0.3, 0.6 | [14] |
Chen et al. | SiO2-sat. | 8 wt%CaO + 8 wt%Al2O3 | 1300 | 0.1, 0.5 | [15,16] |
Sukhomlinov et al. | SiO2-sat. | 5 wt%CaO + 5 wt%Al2O3 | 1300 | 0.1 | [17] |
Copper alloy and FeOx-SiO2-CaO-(Al2O3) slag system | |||||
Heo et al. | SiO2-sat. | 2–6 wt% CaO | 1200 | p(O2) = 10−10 | [18] |
SiO2-sat. | 3 wt%CaO + 1–10 wt%Al2O3 | 1200 | p(O2) = 10−10 | ||
Kim et al. | SiO2-sat. | 4.4 wt%CaO + (4.4 wt%Al2O3) | 1250 | p(O2) = 10−10–10−4 | [19] |
Avarmaa et al. | Spinel-sat. | 5 wt%CaO + 20 wt%Al2O3 | 1300 | p(O2) = 10−10–10−5 | [5] |
Target Matte Grade (Cu-wt%) | Target lg[p(O2)/Pθ] | Target lg[p(S2)/Pθ] | Gas Flowrate (mL/min) | |||
---|---|---|---|---|---|---|
CO | CO2 | SO2 | Ar | |||
55 | −8.14 | −2.11 | 27 | 67 | 47 | 259 |
60 | −8.07 | −2.26 | 22 | 68 | 45 | 265 |
65 | −7.96 | −2.48 | 16 | 71 | 43 | 270 |
70 | −7.80 | −2.79 | 11 | 72 | 42 | 275 |
75 | −7.58 | −3.23 | 8 | 74 | 41 | 278 |
Element | Cu | Fe | S | O | Si | Al | Ca |
---|---|---|---|---|---|---|---|
In Matte | 309 | 185 | 98 | 206 | 67 | 56 | 119 |
In Liquid slag | 219 | 141 | 73 | 334 | 70 | 51 | 103 |
In Tridymite | 179 | 119 | 71 | 361 | 80 | 49 | 82 |
Sample No. | lg[p(O2)/Pθ] | Normalized Matte Composition (wt%) | Original Total Amount (wt%) | |||
---|---|---|---|---|---|---|
Cu | Fe | S | O | |||
1 | −8.14 | 59.90 ± 0.60 | 14.18 ± 0.43 | 23.88 ± 0.47 | 1.02 ± 0.23 | 99.20 ± 0.35 |
2 | −8.14 | 61.19 ± 0.17 | 13.26 ± 0.38 | 24.80 ± 0.47 | 0.47 ± 0.20 | 99.64 ± 0.77 |
3 | −8.07 | 61.66 ± 0.35 | 13.01 ± 0.40 | 23.91 ± 0.43 | 0.83 ± 0.33 | 98.14 ± 0.55 |
4 | −8.07 | 62.17 ± 0.37 | 12.64 ± 0.14 | 24.04 ± 0.39 | 0.78 ± 0.14 | 98.87 ± 0.57 |
5 | −7.96 | 68.60 ± 0.52 | 7.92 ± 0.46 | 22.07 ± 0.47 | 0.59 ± 0.15 | 100.51 ± 0.34 |
6 | −7.96 | 69.12 ± 0.98 | 7.51 ± 0.76 | 22.12 ± 0.31 | 0.54 ± 0.19 | 100.66 ± 0.66 |
7 | −7.8 | 72.74 ± 0.12 | 4.42 ± 0.10 | 20.35 ± 0.13 | 0.52 ± 0.04 | 99.54 ± 0.42 |
8 | −7.8 | 73.73 ± 0.18 | 3.95 ± 0.14 | 20.14 ± 0.13 | 0.45 ± 0.04 | 98.46 ± 0.38 |
9 | −7.58 | 75.54 ± 0.15 | 2.41 ± 0.05 | 19.67 ± 0.15 | 0.53 ± 0.04 | 97.68 ± 0.31 |
10 | −7.58 | 75.73 ± 0.18 | 2.27 ± 0.10 | 19.91 ± 0.11 | 0.36 ± 0.04 | 97.08 ± 0.34 |
11 | −8.14 | 63.11 ± 0.29 | 12.09 ± 0.35 | 23.83 ± 0.19 | 0.72 ± 0.10 | 97.82 ± 0.37 |
12 | −8.14 | 63.98 ± 0.23 | 11.40 ± 0.26 | 23.55 ± 0.15 | 0.81 ± 0.10 | 99.41 ± 0.40 |
13 | −8.07 | 66.39 ± 0.35 | 9.51 ± 0.44 | 23.17 ± 0.17 | 0.59 ± 0.06 | 97.10 ± 0.54 |
14 | −8.07 | 66.58 ± 0.42 | 9.44 ± 0.10 | 23.09 ± 0.33 | 0.54 ± 0.06 | 98.84 ± 0.25 |
15 | −7.96 | 70.01 ± 0.80 | 6.76 ± 0.47 | 21.73 ± 0.22 | 0.70 ± 0.16 | 99.16 ± 0.47 |
16 | −7.96 | 73.49 ± 0.39 | 3.94 ± 0.28 | 19.66 ± 0.22 | 0.60 ± 0.09 | 98.68 ± 0.45 |
17 | −7.8 | 74.07 ± 0.23 | 3.76 ± 0.13 | 20.82 ± 0.13 | 0.38 ± 0.06 | 99.82 ± 0.44 |
18 | −7.8 | 75.32 ± 0.69 | 2.76 ± 0.42 | 19.59 ± 0.27 | 0.35 ± 0.25 | 99.65 ± 0.71 |
19 | −7.58 | 76.11 ± 0.17 | 1.98 ± 0.06 | 19.51 ± 0.13 | 0.47 ± 0.02 | 97.92 ± 0.41 |
20 | −7.58 | 76.23 ± 0.24 | 2.02 ± 0.12 | 19.65 ± 0.11 | 0.29 ± 0.13 | 98.19 ± 0.38 |
Sample No. | Normalized Slag Composition (wt%) | Original Total Amount (wt%) | Cu in Slag (wt%) | S in Slag (wt%) | |||
---|---|---|---|---|---|---|---|
Al2O3 | CaO | SiO2 | FeO | ||||
1 | 4.71 ± 0.50 | 5.61 ± 0.11 | 43.89 ± 0.42 | 45.79 ± 0.43 | 98.87 ± 0.67 | 0.33 ± 0.03 | 0.23 ± 0.03 |
2 | 5.14 ± 0.28 | 5.70 ± 0.29 | 43.11 ± 0.31 | 46.05 ± 0.26 | 98.94 ± 0.68 | 0.25 ± 0.02 | 0.15 ± 0.02 |
3 | 5.91 ± 0.32 | 5.48 ± 0.23 | 44.46 ± 0.37 | 44.16 ± 0.32 | 99.22 ± 0.57 | 0.32 ± 0.06 | 0.20 ± 0.01 |
4 | 4.76 ± 0.23 | 5.44 ± 0.12 | 45.52 ± 0.30 | 44.28 ± 0.27 | 99.02 ± 0.47 | 0.32 ± 0.04 | 0.23 ± 0.01 |
5 | 5.59 ± 0.05 | 4.33 ± 0.08 | 46.51 ± 0.17 | 43.56 ± 0.16 | 99.30 ± 0.34 | 0.44 ± 0.03 | 0.25 ± 0.02 |
6 | 5.80 ± 0.08 | 4.46 ± 0.05 | 45.90 ± 0.23 | 43.83 ± 0.25 | 98.71 ± 0.54 | 0.46 ± 0.13 | 0.23 ± 0.03 |
7 | 4.49 ± 0.16 | 4.23 ± 0.14 | 46.05 ± 0.34 | 45.23 ± 0.34 | 97.96 ± 0.26 | 0.49 ± 0.08 | 0.13 ± 0.02 |
8 | 4.76 ± 0.25 | 4.10 ± 0.10 | 45.43 ± 0.13 | 45.70 ± 0.18 | 98.72 ± 0.36 | 0.69 ± 0.02 | 0.17 ± 0.02 |
9 | 5.09 ± 0.15 | 4.07 ± 0.11 | 46.29 ± 0.53 | 44.55 ± 0.46 | 98.40 ± 0.48 | 0.87 ± 0.06 | 0.10 ± 0.01 |
10 | 5.49 ± 0.08 | 5.05 ± 0.25 | 45.47 ± 0.39 | 43.99 ± 0.36 | 98.17 ± 0.56 | 0.88 ± 0.06 | 0.11 ± 0.01 |
11 | 5.74 ± 0.20 | 10.00 ± 0.14 | 46.67 ± 0.15 | 37.59 ± 0.17 | 98.56 ± 0.25 | 0.21 ± 0.04 | 0.15 ± 0.01 |
12 | 5.58 ± 0.39 | 9.62 ± 0.13 | 46.45 ± 0.34 | 38.34 ± 0.39 | 98.39 ± 0.68 | 0.23 ± 0.02 | 0.14 ± 0.02 |
13 | 5.34 ± 0.12 | 9.16 ± 0.29 | 48.68 ± 0.35 | 36.82 ± 0.33 | 99.26 ± 0.42 | 0.25 ± 0.05 | 0.20 ± 0.02 |
14 | 5.76 ± 0.29 | 10.27 ± 0.12 | 48.26 ± 0.28 | 35.71 ± 0.29 | 99.10 ± 0.32 | 0.23 ± 0.03 | 0.17 ± 0.02 |
15 | 5.44 ± 0.16 | 9.46 ± 0.17 | 49.66 ± 0.27 | 35.44 ± 0.34 | 99.15 ± 0.52 | 0.36 ± 0.02 | 0.13 ± 0.01 |
16 | 4.94 ± 0.12 | 9.36 ± 0.20 | 50.40 ± 0.38 | 35.30 ± 0.35 | 99.68 ± 0.24 | 0.76 ± 0.04 | 0.07 ± 0.01 |
17 | 5.12 ± 0.07 | 10.23 ± 0.14 | 50.03 ± 0.50 | 34.62 ± 0.42 | 98.60 ± 0.33 | 0.37 ± 0.04 | 0.08 ± 0.01 |
18 | 5.02 ± 0.26 | 9.99 ± 0.07 | 49.86 ± 0.65 | 35.13 ± 0.46 | 98.77 ± 0.32 | 0.56 ± 0.03 | 0.08 ± 0.02 |
19 | 5.13 ± 0.21 | 10.76 ± 0.20 | 48.80 ± 0.55 | 35.31 ± 0.43 | 98.57 ± 0.35 | 0.75 ± 0.05 | 0.06 ± 0.00 |
20 | 4.83 ± 0.26 | 9.29 ± 0.30 | 50.02 ± 0.39 | 35.86 ± 0.18 | 98.09 ± 0.87 | 0.79 ± 0.04 | 0.06 ± 0.01 |
Technique | Matte Grade (wt%) | Slag Composition (wt%) | Temperature (°C) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Cu | S | Fe | SiO2 | CaO | Al2O3 | ||||
Present study | 60–76 | 0.25–0.88 | 0.10–0.25 | 46 | 45 | 5 | 5 | 1300 | |
Present study | 63–76 | 0.21–0.79 | 0.06–0.20 | 38 | 50 | 10 | 5 | 1300 | |
Inco flash smelting | - | 0.62 | 1.1 | 39 | 37.1 | 1.73 | 4.72 | 1250 | [6] |
Outokumpu flash smelting | 64.9 | 0.53 | 1.2 | 38.7 | 29.7 | 1.2 | - | 1250 | [6] |
Noranda continuous smelting | 78.5 | 5.0 | 1.7 | 38.2 | 23.1 | 1.5 | 5.0 | 1200 | [24] |
Oxygen bottom-blown smelting | 70.83 | 3.16 | 0.86 | 42.58 | 25.24 | - | - | 1200 | [25] |
Tongling Ausmelt smelting | 48–52 | 0.6–0.8 | - | - | - | - | - | 1250–1300 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Wang, Q.; Wang, S.; Wan, X.; Wang, Q.; Guo, X. Multiphase Equilibrium Relationships between Copper Matte and CaO-Al2O3-Bearing Iron Silicate Slags in Combined Smelting of WEEE and Copper Concentrates. Sustainability 2024, 16, 890. https://doi.org/10.3390/su16020890
Tian M, Wang Q, Wang S, Wan X, Wang Q, Guo X. Multiphase Equilibrium Relationships between Copper Matte and CaO-Al2O3-Bearing Iron Silicate Slags in Combined Smelting of WEEE and Copper Concentrates. Sustainability. 2024; 16(2):890. https://doi.org/10.3390/su16020890
Chicago/Turabian StyleTian, Miao, Qiongqiong Wang, Songsong Wang, Xingbang Wan, Qinmeng Wang, and Xueyi Guo. 2024. "Multiphase Equilibrium Relationships between Copper Matte and CaO-Al2O3-Bearing Iron Silicate Slags in Combined Smelting of WEEE and Copper Concentrates" Sustainability 16, no. 2: 890. https://doi.org/10.3390/su16020890
APA StyleTian, M., Wang, Q., Wang, S., Wan, X., Wang, Q., & Guo, X. (2024). Multiphase Equilibrium Relationships between Copper Matte and CaO-Al2O3-Bearing Iron Silicate Slags in Combined Smelting of WEEE and Copper Concentrates. Sustainability, 16(2), 890. https://doi.org/10.3390/su16020890