Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection
2.3. Identification of Suitable Locations for Deploying Firefighting Water Reservoirs
2.4. Water Reservoir Allocation Criteria
2.4.1. Fire Risk Criterion (FRC)
2.4.2. Distance from Existing Water Intake Points Criterion (EWC)
2.4.3. Optimal Route Area Coverage Criterion (ACC)
2.5. Analytical Hierarchy Process (AHP)
2.6. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
2.7. Final Selection
3. Results
3.1. Selection of Potential Sites for the Installation of Fire Suppression Water Tanks
3.2. Evaluation of Allocation Criteria
3.3. Implementation of the AHP Method
3.4. Implementation of the TOPSIS Method
3.5. Final Selection of Water Reservoir Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | FRC | EWC | ACC | ID | FRC | EWC | ACC | ID | FRC | EWC | ACC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.1278 | 0.1666 | 0.0969 | 35 | 0.0365 | 0.0537 | 0.2325 | 69 | 0.1439 | 0.0464 | 0.0662 |
2 | 0.0949 | 0.1502 | 0.1055 | 36 | 0.0929 | 0.1772 | 0.0598 | 70 | 0.0565 | 0.1617 | 0.0264 |
3 | 0.0870 | 0.1628 | 0.0909 | 37 | 0.1063 | 0.1994 | 0.0597 | 71 | 0.1818 | 0.0655 | 0.0482 |
4 | 0.0842 | 0.1443 | 0.0811 | 38 | 0.0668 | 0.2124 | 0.0743 | 72 | 0.0785 | 0.0922 | 0.0275 |
5 | 0.0444 | 0.1243 | 0.0891 | 39 | 0.1068 | 0.1918 | 0.0790 | 73 | 0.1169 | 0.0540 | 0.0719 |
6 | 0.0347 | 0.1037 | 0.0912 | 40 | 0.1079 | 0.1026 | 0.0752 | 74 | 0.1280 | 0.1192 | 0.0315 |
7 | 0.0530 | 0.0653 | 0.0546 | 41 | 0.0495 | 0.0854 | 0.0706 | 75 | 0.0641 | 0.0673 | 0.0874 |
8 | 0.1483 | 0.0474 | 0.0583 | 42 | 0.0574 | 0.0669 | 0.0811 | 76 | 0.0685 | 0.0809 | 0.0404 |
9 | 0.1594 | 0.0479 | 0.0659 | 43 | 0.1418 | 0.0491 | 0.1020 | 77 | 0.1396 | 0.0482 | 0.1979 |
10 | 0.0814 | 0.0646 | 0.0653 | 44 | 0.1131 | 0.0719 | 0.0544 | 78 | 0.0598 | 0.0478 | 0.2399 |
11 | 0.0623 | 0.1055 | 0.0309 | 45 | 0.1161 | 0.1059 | 0.0534 | 79 | 0.0449 | 0.0601 | 0.2048 |
12 | 0.1054 | 0.0506 | 0.0850 | 46 | 0.0711 | 0.0860 | 0.1031 | 80 | 0.0626 | 0.0665 | 0.1638 |
13 | 0.0860 | 0.0936 | 0.0766 | 47 | 0.1107 | 0.1293 | 0.0853 | 81 | 0.1630 | 0.0526 | 0.1394 |
14 | 0.0926 | 0.0546 | 0.1181 | 48 | 0.0750 | 0.1129 | 0.0872 | 82 | 0.0740 | 0.0511 | 0.1336 |
15 | 0.1451 | 0.0564 | 0.0674 | 49 | 0.0711 | 0.0937 | 0.0943 | 83 | 0.1154 | 0.0650 | 0.1256 |
16 | 0.0856 | 0.0569 | 0.0807 | 50 | 0.0716 | 0.0759 | 0.0774 | 84 | 0.0322 | 0.0789 | 0.1239 |
17 | 0.0391 | 0.1107 | 0.0529 | 51 | 0.0605 | 0.0595 | 0.0685 | 85 | 0.0373 | 0.0917 | 0.1070 |
18 | 0.0284 | 0.1277 | 0.0346 | 52 | 0.1358 | 0.0424 | 0.1017 | 86 | 0.0956 | 0.0501 | 0.2283 |
19 | 0.1020 | 0.0881 | 0.0607 | 53 | 0.2074 | 0.0506 | 0.1063 | 87 | 0.2116 | 0.0490 | 0.2269 |
20 | 0.0902 | 0.1170 | 0.0405 | 54 | 0.0783 | 0.0677 | 0.1001 | 88 | 0.0657 | 0.1951 | 0.0441 |
21 | 0.1066 | 0.1479 | 0.0357 | 55 | 0.0676 | 0.0890 | 0.1012 | 89 | 0.1062 | 0.0842 | 0.0759 |
22 | 0.0720 | 0.1622 | 0.0362 | 56 | 0.0743 | 0.1019 | 0.0713 | 90 | 0.0475 | 0.0572 | 0.1620 |
23 | 0.0378 | 0.1344 | 0.0400 | 57 | 0.0805 | 0.1204 | 0.0620 | 91 | 0.1036 | 0.0587 | 0.1022 |
24 | 0.0449 | 0.1067 | 0.0555 | 58 | 0.1401 | 0.1390 | 0.0646 | 92 | 0.0612 | 0.0659 | 0.0937 |
25 | 0.0408 | 0.0741 | 0.1011 | 59 | 0.0726 | 0.1554 | 0.0719 | 93 | 0.0740 | 0.0789 | 0.0912 |
26 | 0.0422 | 0.0561 | 0.1876 | 60 | 0.1771 | 0.0707 | 0.0438 | 94 | 0.0835 | 0.0566 | 0.1055 |
27 | 0.0410 | 0.0817 | 0.1080 | 61 | 0.0744 | 0.0636 | 0.1188 | 95 | 0.1400 | 0.1095 | 0.0569 |
28 | 0.0441 | 0.0792 | 0.0746 | 62 | 0.0696 | 0.0835 | 0.0864 | 96 | 0.0551 | 0.0565 | 0.0825 |
29 | 0.0732 | 0.1070 | 0.0464 | 63 | 0.0380 | 0.0735 | 0.1354 | 97 | 0.1010 | 0.0927 | 0.1006 |
30 | 0.0785 | 0.0887 | 0.0651 | 64 | 0.1089 | 0.1061 | 0.0694 | 98 | 0.0552 | 0.1307 | 0.0903 |
31 | 0.1259 | 0.1071 | 0.0506 | 65 | 0.0813 | 0.1349 | 0.0303 | 99 | 0.1309 | 0.1020 | 0.0240 |
32 | 0.0769 | 0.0814 | 0.0925 | 66 | 0.0925 | 0.0431 | 0.1484 | 100 | 0.1145 | 0.0501 | 0.0759 |
33 | 0.0954 | 0.0864 | 0.0902 | 67 | 0.1147 | 0.0810 | 0.0824 | ||||
34 | 0.0638 | 0.0752 | 0.1377 | 68 | 0.2694 | 0.0683 | 0.0522 |
ID | FRC | EWC | ACC | ID | FRC | EWC | ACC | ID | FRC | EWC | ACC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0639 | 0.0333 | 0.0291 | 35 | 0.0182 | 0.0107 | 0.0697 | 69 | 0.0719 | 0.0093 | 0.0199 |
2 | 0.0474 | 0.0300 | 0.0316 | 36 | 0.0465 | 0.0354 | 0.0179 | 70 | 0.0282 | 0.0323 | 0.0079 |
3 | 0.0435 | 0.0326 | 0.0273 | 37 | 0.0531 | 0.0399 | 0.0179 | 71 | 0.0909 | 0.0131 | 0.0145 |
4 | 0.0421 | 0.0289 | 0.0243 | 38 | 0.0334 | 0.0425 | 0.0223 | 72 | 0.0393 | 0.0184 | 0.0083 |
5 | 0.0222 | 0.0249 | 0.0267 | 39 | 0.0534 | 0.0384 | 0.0237 | 73 | 0.0584 | 0.0108 | 0.0216 |
6 | 0.0174 | 0.0207 | 0.0274 | 40 | 0.0539 | 0.0205 | 0.0226 | 74 | 0.0640 | 0.0238 | 0.0095 |
7 | 0.0265 | 0.0131 | 0.0164 | 41 | 0.0248 | 0.0171 | 0.0212 | 75 | 0.0321 | 0.0135 | 0.0262 |
8 | 0.0741 | 0.0095 | 0.0175 | 42 | 0.0287 | 0.0134 | 0.0243 | 76 | 0.0342 | 0.0162 | 0.0121 |
9 | 0.0797 | 0.0096 | 0.0198 | 43 | 0.0709 | 0.0098 | 0.0306 | 77 | 0.0698 | 0.0096 | 0.0594 |
10 | 0.0407 | 0.0129 | 0.0196 | 44 | 0.0565 | 0.0144 | 0.0163 | 78 | 0.0299 | 0.0096 | 0.0720 |
11 | 0.0312 | 0.0211 | 0.0093 | 45 | 0.0580 | 0.0212 | 0.0160 | 79 | 0.0224 | 0.0120 | 0.0614 |
12 | 0.0527 | 0.0101 | 0.0255 | 46 | 0.0356 | 0.0172 | 0.0309 | 80 | 0.0313 | 0.0133 | 0.0491 |
13 | 0.0430 | 0.0187 | 0.0230 | 47 | 0.0553 | 0.0259 | 0.0256 | 81 | 0.0815 | 0.0105 | 0.0418 |
14 | 0.0463 | 0.0109 | 0.0354 | 48 | 0.0375 | 0.0226 | 0.0262 | 82 | 0.0370 | 0.0102 | 0.0401 |
15 | 0.0726 | 0.0113 | 0.0202 | 49 | 0.0355 | 0.0187 | 0.0283 | 83 | 0.0577 | 0.0130 | 0.0377 |
16 | 0.0428 | 0.0114 | 0.0242 | 50 | 0.0358 | 0.0152 | 0.0232 | 84 | 0.0161 | 0.0158 | 0.0372 |
17 | 0.0196 | 0.0221 | 0.0159 | 51 | 0.0303 | 0.0119 | 0.0206 | 85 | 0.0187 | 0.0183 | 0.0321 |
18 | 0.0142 | 0.0255 | 0.0104 | 52 | 0.0679 | 0.0085 | 0.0305 | 86 | 0.0478 | 0.0100 | 0.0685 |
19 | 0.0510 | 0.0176 | 0.0182 | 53 | 0.1037 | 0.0101 | 0.0319 | 87 | 0.1058 | 0.0098 | 0.0681 |
20 | 0.0451 | 0.0234 | 0.0122 | 54 | 0.0392 | 0.0135 | 0.0300 | 88 | 0.0329 | 0.0390 | 0.0132 |
21 | 0.0533 | 0.0296 | 0.0107 | 55 | 0.0338 | 0.0178 | 0.0304 | 89 | 0.0531 | 0.0168 | 0.0228 |
22 | 0.0360 | 0.0324 | 0.0109 | 56 | 0.0371 | 0.0204 | 0.0214 | 90 | 0.0238 | 0.0114 | 0.0486 |
23 | 0.0189 | 0.0269 | 0.0120 | 57 | 0.0402 | 0.0241 | 0.0186 | 91 | 0.0518 | 0.0117 | 0.0307 |
24 | 0.0225 | 0.0213 | 0.0167 | 58 | 0.0701 | 0.0278 | 0.0194 | 92 | 0.0306 | 0.0132 | 0.0281 |
25 | 0.0204 | 0.0148 | 0.0303 | 59 | 0.0363 | 0.0311 | 0.0216 | 93 | 0.0370 | 0.0158 | 0.0274 |
26 | 0.0211 | 0.0112 | 0.0563 | 60 | 0.0886 | 0.0141 | 0.0131 | 94 | 0.0418 | 0.0113 | 0.0317 |
27 | 0.0205 | 0.0163 | 0.0324 | 61 | 0.0372 | 0.0127 | 0.0356 | 95 | 0.0700 | 0.0219 | 0.0171 |
28 | 0.0221 | 0.0158 | 0.0224 | 62 | 0.0348 | 0.0167 | 0.0259 | 96 | 0.0276 | 0.0113 | 0.0248 |
29 | 0.0366 | 0.0214 | 0.0139 | 63 | 0.0190 | 0.0147 | 0.0406 | 97 | 0.0505 | 0.0185 | 0.0302 |
30 | 0.0392 | 0.0177 | 0.0195 | 64 | 0.0545 | 0.0212 | 0.0208 | 98 | 0.0276 | 0.0261 | 0.0271 |
31 | 0.0630 | 0.0214 | 0.0152 | 65 | 0.0406 | 0.0270 | 0.0091 | 99 | 0.0654 | 0.0204 | 0.0072 |
32 | 0.0385 | 0.0163 | 0.0277 | 66 | 0.0463 | 0.0086 | 0.0445 | 100 | 0.0573 | 0.0100 | 0.0228 |
33 | 0.0477 | 0.0173 | 0.0271 | 67 | 0.0573 | 0.0162 | 0.0247 | ||||
34 | 0.0319 | 0.0150 | 0.0413 | 68 | 0.1347 | 0.0137 | 0.0156 |
ID | S+ | S− | Pi | ID | S+ | S− | Pi | ID | S+ | S− | Pi |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0833 | 0.0597 | 0.4175 | 35 | 0.1207 | 0.0627 | 0.3418 | 69 | 0.0881 | 0.0591 | 0.4017 |
2 | 0.0970 | 0.0465 | 0.3244 | 36 | 0.1037 | 0.0434 | 0.2950 | 70 | 0.1247 | 0.0277 | 0.1818 |
3 | 0.1021 | 0.0429 | 0.2960 | 37 | 0.0979 | 0.0512 | 0.3432 | 71 | 0.0780 | 0.0772 | 0.4973 |
4 | 0.1050 | 0.0386 | 0.2685 | 38 | 0.1129 | 0.0419 | 0.2706 | 72 | 0.1173 | 0.0270 | 0.1872 |
5 | 0.1226 | 0.0267 | 0.1790 | 39 | 0.0947 | 0.0520 | 0.3545 | 73 | 0.0968 | 0.0466 | 0.3249 |
6 | 0.1274 | 0.0238 | 0.1575 | 40 | 0.0972 | 0.0443 | 0.3130 | 74 | 0.0962 | 0.0522 | 0.3517 |
7 | 0.1252 | 0.0160 | 0.1135 | 41 | 0.1238 | 0.0195 | 0.1363 | 75 | 0.1161 | 0.0266 | 0.1862 |
8 | 0.0879 | 0.0608 | 0.4090 | 42 | 0.1198 | 0.0230 | 0.1609 | 76 | 0.1199 | 0.0220 | 0.1554 |
9 | 0.0827 | 0.0667 | 0.4465 | 43 | 0.0828 | 0.0614 | 0.4257 | 77 | 0.0738 | 0.0762 | 0.5080 |
10 | 0.1116 | 0.0296 | 0.2097 | 44 | 0.1000 | 0.0437 | 0.3042 | 78 | 0.1099 | 0.0666 | 0.3775 |
11 | 0.1229 | 0.0213 | 0.1474 | 45 | 0.0973 | 0.0465 | 0.3235 | 79 | 0.1168 | 0.0550 | 0.3199 |
12 | 0.0997 | 0.0426 | 0.2996 | 46 | 0.1102 | 0.0331 | 0.2309 | 80 | 0.1099 | 0.0455 | 0.2929 |
13 | 0.1066 | 0.0344 | 0.2440 | 47 | 0.0934 | 0.0483 | 0.3409 | 81 | 0.0690 | 0.0757 | 0.5233 |
14 | 0.1008 | 0.0428 | 0.2981 | 48 | 0.1093 | 0.0332 | 0.2329 | 82 | 0.1077 | 0.0400 | 0.2709 |
15 | 0.0867 | 0.0599 | 0.4085 | 49 | 0.1109 | 0.0317 | 0.2222 | 83 | 0.0893 | 0.0533 | 0.3736 |
16 | 0.1082 | 0.0334 | 0.2359 | 50 | 0.1136 | 0.0277 | 0.1961 | 84 | 0.1265 | 0.0309 | 0.1963 |
17 | 0.1297 | 0.0170 | 0.1162 | 51 | 0.1204 | 0.0212 | 0.1496 | 85 | 0.1250 | 0.0272 | 0.1784 |
18 | 0.1364 | 0.0174 | 0.1129 | 52 | 0.0857 | 0.0586 | 0.4060 | 86 | 0.0928 | 0.0699 | 0.4296 |
19 | 0.1025 | 0.0395 | 0.2781 | 53 | 0.0601 | 0.0929 | 0.6070 | 87 | 0.0438 | 0.1100 | 0.7153 |
20 | 0.1094 | 0.0347 | 0.2407 | 54 | 0.1083 | 0.0342 | 0.2401 | 88 | 0.1176 | 0.0363 | 0.2359 |
21 | 0.1027 | 0.0446 | 0.3027 | 55 | 0.1119 | 0.0318 | 0.2211 | 89 | 0.0987 | 0.0427 | 0.3022 |
22 | 0.1166 | 0.0326 | 0.2186 | 56 | 0.1121 | 0.0295 | 0.2083 | 90 | 0.1176 | 0.0426 | 0.2658 |
23 | 0.1313 | 0.0196 | 0.1299 | 57 | 0.1101 | 0.0324 | 0.2277 | 91 | 0.0976 | 0.0444 | 0.3128 |
24 | 0.1269 | 0.0180 | 0.1241 | 58 | 0.0846 | 0.0604 | 0.4163 | 92 | 0.1167 | 0.0270 | 0.1879 |
25 | 0.1248 | 0.0248 | 0.1657 | 59 | 0.1112 | 0.0347 | 0.2380 | 93 | 0.1107 | 0.0313 | 0.2205 |
26 | 0.1189 | 0.0496 | 0.2945 | 60 | 0.0800 | 0.0748 | 0.4834 | 94 | 0.1060 | 0.0369 | 0.2585 |
27 | 0.1237 | 0.0271 | 0.1799 | 61 | 0.1082 | 0.0368 | 0.2539 | 95 | 0.0873 | 0.0582 | 0.4000 |
28 | 0.1259 | 0.0186 | 0.1287 | 62 | 0.1130 | 0.0290 | 0.2043 | 96 | 0.1212 | 0.0222 | 0.1550 |
29 | 0.1159 | 0.0267 | 0.1873 | 63 | 0.1231 | 0.0343 | 0.2180 | 97 | 0.0970 | 0.0441 | 0.3125 |
30 | 0.1117 | 0.0294 | 0.2084 | 64 | 0.0975 | 0.0444 | 0.3127 | 98 | 0.1173 | 0.0298 | 0.2026 |
31 | 0.0939 | 0.0511 | 0.3524 | 65 | 0.1142 | 0.0323 | 0.2206 | 99 | 0.0974 | 0.0526 | 0.3508 |
32 | 0.1091 | 0.0327 | 0.2307 | 66 | 0.0986 | 0.0492 | 0.3329 | 100 | 0.0973 | 0.0458 | 0.3201 |
33 | 0.1011 | 0.0399 | 0.2832 | 67 | 0.0944 | 0.0472 | 0.3333 | ||||
34 | 0.1107 | 0.0390 | 0.2604 | 68 | 0.0633 | 0.1209 | 0.6565 |
References
- Kolanek, A.; Szymanowski, M.; Małysz, M. Spatio-Temporal Dynamics of Forest Fires in Poland and Consequences for Fire Protection Systems: Seeking a Balance between Efficiency and Costs. Sustainability 2023, 15, 16829. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre; San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artés Vivancos, T.; et al. Forest fires in Europe, Middle East and North Africa 2018; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Kartsios, S.; Karacostas, T.; Pytharoulis, I.; Dimitrakopoulos, A.P. Numerical investigation of atmosphere-fire interactions during high-impact wildland fire events in Greece. Atmos. Res. 2021, 247, 105253. [Google Scholar] [CrossRef]
- Posavec, S.; Barčić, D.; Vuletić, D.; Vučetić, V.; Čavlina Tomašević, I.; Pezdevšek Malovrh, Š. Forest Fires, Stakeholders’ Activities, and Economic Impact on State-Level Sustainable Forest Management. Sustainability 2023, 15, 16080. [Google Scholar] [CrossRef]
- Kleinman, J.S.; Goode, J.D.; Fries, A.C.; Hart, J.L. Ecological consequences of compound disturbances in forest ecosystems: A systematic review. Ecosphere 2019, 10, e02962. [Google Scholar] [CrossRef]
- Tampekis, S.; Sakellariou, S.; Palaiologou, P.; Arabatzis, G.; Kantartzis, A.; Malesios, C.; Stergiadou, A.; Fafalis, D.; Tsiaras, E. Building wildland–urban interface zone resilience through performance-based wildfire engineering. A holistic theoretical framework. Euro-Mediterr. J. Environ. Integr. 2023, 8, 675–689. [Google Scholar] [CrossRef]
- Siry, J.P.; Cubbage, F.W.; Potter, K.M.; McGinley, K. Current Perspectives on Sustainable Forest Management: North America. Curr. For. Rep. 2018, 4, 138–149. [Google Scholar] [CrossRef]
- Tzamtzis, I.; Ganatsas, P.; Kokkoris, I.P.; Samaritakis, V.; Botsis, D.; Tsakaldimi, M.; Tziritis, I.; Kalevra, N.; Georgiadis, N.M. A Sustainable Strategy for Reforestation and Restoration of Burnt Natural Areas in Mediterranean Regions: A Case Study from Greece. Sustainability 2023, 15, 15986. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Athanasiou, M.; Nikiforaki, A.; Kaoukis, K.; Mantakas, G.; Xanthopoulos, P.; Papoutsakis, C.; Christopoulou, A.; Sofronas, S.; Gletsos, M.; et al. Innovative Action for Forest Fire Prevention in Kythira Island, Greece, through Mobilization and Cooperation of the Population: Methodology and Challenges. Sustainability 2022, 14, 594. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, C.-H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.-K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Kalabokidis, K.; Xanthopoulos, G.; Moore, P.; Caballero, D.; Kallos, G.; Llorens, J.; Roussou, O.; Vasilakos, C. Decision support system for forest fire protection in the Euro-Mediterranean region. Eur. J. For. Res. 2012, 131, 597–608. [Google Scholar] [CrossRef]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Chapter 5—Forest Fires in Europe: Facts and Challenges. In Wildfire Hazards, Risks and Disasters; Shroder, J.F., Paton, D., Eds.; Elsevier: Oxford, UK, 2015; pp. 77–99. [Google Scholar] [CrossRef]
- Kalabokidis, K.; Palaiologou, P.; Gerasopoulos, E.; Giannakopoulos, C.; Kostopoulou, E.; Zerefos, C. Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece. Forests 2015, 6, 2214–2240. [Google Scholar] [CrossRef]
- Evelpidou, N.; Tzouxanioti, M.; Gavalas, T.; Spyrou, E.; Saitis, G.; Petropoulos, A.; Karkani, A. Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land 2022, 11, 21. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Mallinis, G.; Dimitrakopoulos, A.; Xanthopoulos, G.; Eftychidis, G.; Goldammer, J.G. Vulnerability of peri-urban and residential areas to landscape fires in Greece: Evidence by wildland-urban interface data. Data Brief 2020, 31, 106025. [Google Scholar] [CrossRef]
- Karasmanaki, E.; Mallinis, G.; Mitsopoulos, I.; Karteris, A.; Chrysafis, I.; Bakaloudis, D.; Kokkoris, I.P.; Maris, F.; Arianoutsou, M.; Goldammer, J.G.; et al. Proposing a Governance Model for Environmental Crises. Land 2023, 12, 597. [Google Scholar] [CrossRef]
- Kolkos, G.; Stergiadou, A.; Kantartzis, A.; Tampekis, S.; Arabatzis, G. Effects of forest roads and an assessment of their disturbance of the natural enviroment based on GIS spatial multi-criteria analysis: Case study of the University Forest of Taxiarchis, Chalkidiki, Greece. Euro Mediterr. J. Environ. Integr. 2023, 8, 425–440. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Kadi, F.; Yildirim, F.; Saralioglu, E. Risk analysis of forest roads using landslide susceptibility maps and generation of the optimum forest road route: A case study in Macka, Turkey. Geocarto Int. 2021, 36, 1612–1629. [Google Scholar] [CrossRef]
- Thompson, M.P.; Gannon, B.M.; Caggiano, M.D. Forest Roads and Operational Wildfire Response Planning. Forests 2021, 12, 110. [Google Scholar] [CrossRef]
- Kataeva, L.Y.; Ilicheva, M.N.; Loshchilov, A.A. Mathematical Modeling for Extinguishing Forest Fires Using Water Capsules with a Thermoactive Shell. J. Appl. Mech. Tech. Phys. 2022, 63, 1227–1242. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Pacheco, A.P.; Almeida, R.; Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 2016, 135, 253–262. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Alegre, S.P.; Coelho, C.O.A.; Shakesby, R.A.; Páscoa, F.M.; Ferreira, C.S.S.; Keizer, J.J.; Ritsema, C. Strategies to prevent forest fires and techniques to reverse degradation processes in burned areas. CATENA 2015, 128, 224–237. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Zhdanova, A.O.; Strizhak, P.A.; Atroshenko, Y.K. Influence of the Method of Water Supply to the Zone of a Forest Fire on the Efficiency of its Extinguishing. J. Eng. Phys. Thermophys. 2020, 93, 1460–1469. [Google Scholar] [CrossRef]
- Yocom, L.L.; Jenness, J.; Fulé, P.Z.; Thode, A.E. Previous fires and roads limit wildfire growth in Arizona and New Mexico, USA. For. Ecol. Manag. 2019, 449, 117440. [Google Scholar] [CrossRef]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Appl. Geogr. 2012, 32, 878–888. [Google Scholar] [CrossRef]
- Ramalho, A.H.C.; da Silva, E.F.; Silva, J.P.M.; Fiedler, N.C.; Maffioletti, F.D.; Biazatti, L.D.; Moreira, T.R.; Juvanhol, R.S.; dos Santos, A.R. Allocation of water reservoirs to fight forest fires according to the risk of occurrence. J. Environ. Manag. 2021, 296, 113122. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.S.; Patriquin, M.N.; Wang, S.; McFarlane, B.L.; Wotton, B.M. Economic evaluation of research to improve the Canadian forest fire danger rating system. For. Int. J. For. Res. 2012, 86, 317–329. [Google Scholar] [CrossRef]
- Češljar, G.; Stevović, S. Small reservoirs and their sustainable role in fires protection of forest resources. Renew. Sustain. Energy Rev. 2015, 47, 496–503. [Google Scholar] [CrossRef]
- Chvanov, S.V.; Kuznetsov, G.V.; Strizhak, P.A.; Volkov, R.S. The necessary water discharge density to suppress fires in premises. Powder Technol. 2022, 408, 117707. [Google Scholar] [CrossRef]
- Liu, H.; Cachinho Cordeiro, I.M.D.; Yin Yuen, A.C.; Chan, Q.N.; Kook, S.; Yeoh, G.H. Application of multi-parametric characterization to water-based fire suppression systems in compartment fire scenarios. Numer. Heat Transf. Part A Appl. 2023, 83, 1111–1129. [Google Scholar] [CrossRef]
- Basso, M.; Mateus, M.; Ramos, T.B.; Vieira, D.C.S. Potential Post-Fire Impacts on a Water Supply Reservoir: An Integrated Watershed-Reservoir Approach. Front. Environ. Sci. 2021, 9, 684703. [Google Scholar] [CrossRef]
- Collar, N.M.; Earles, T.A. Unique challenges posed by fire disturbance to water supply management and transfer agreements in a headwaters region. J. Environ. Manag. 2023, 339, 117956. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Sindhu, S.; Nehra, V.; Luthra, S. Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renew. Sustain. Energy Rev. 2017, 73, 496–511. [Google Scholar] [CrossRef]
- Chakraborty, S. TOPSIS and Modified TOPSIS: A comparative analysis. Decis. Anal. J. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Chakraborty, S.; Yeh, C.-H. A simulation comparison of normalization procedures for TOPSIS. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; pp. 1815–1820. [Google Scholar] [CrossRef]
- Kyrgiakos, L.S.; Vlontzos, G.; Pardalos, P.M. Assessing the efficiency of cotton farms considering qualitative factors under a DEA TOPSIS model. IJSAMI 2021, 7, 343. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, J.; Yang, X.; Yuan, J. Social and Economic Impact Assessment of Coal Power Phase-Down at the Provincial Level: An Entropy-Based TOPSIS Approach. Sustainability 2023, 15, 16175. [Google Scholar] [CrossRef]
- Alaoui, M.E.; Yassini, K.E.; Azza, H.B. Type 2 fuzzy TOPSIS for agriculture MCDM problems. IJSAMI 2019, 5, 112. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.; Yan, Y.; Lu, Y.; Zhang, X. Evaluation Method for Green Construction Demonstration Projects in China Based on G-TOPSIS. Sustainability 2023, 15, 15828. [Google Scholar] [CrossRef]
- Atenidegbe, O.F.; Mogaji, K.A. Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain using TOPSIS-entropy developed vulnerability data mining technique. Heliyon 2023, 9, e18371. [Google Scholar] [CrossRef]
- Velmurugan, K.; Saravanasankar, S.; Venkumar, P.; Sudhakarapandian, R.; Bona, G.D. Hybrid fuzzy AHP-TOPSIS framework on human error factor analysis: Implications to developing optimal maintenance management system in the SMEs. Sustain. Futures 2022, 4, 100087. [Google Scholar] [CrossRef]
- Alghassab, M. Quantitative assessment of sustainable renewable energy through soft computing: Fuzzy AHP-TOPSIS method. Energy Rep. 2022, 8, 12139–12152. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Belhadi, A.; Touriki, F.E.; El fezazi, S. Prioritizing the solutions of lean implementation in SMEs to overcome its barriers. J. Manuf. Technol. Manag. 2017, 28, 1115–1139. [Google Scholar] [CrossRef]
- Kumar, D.; Garg, C.P. Evaluating sustainable supply chain indicators using fuzzy AHP. Benchmarking Int. J. 2017, 24, 1742–1766. [Google Scholar] [CrossRef]
- Das, P.; Amin, S.M.M.; Lipu, M.S.H.; Urooj, S.; Ashique, R.H.; Al Mansur, A.; Islam, M.T. Assessment of Barriers to Wind Energy Development Using Analytic Hierarchy Process. Sustainability 2023, 15, 15774. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Bentekhici, N.; Bellal, S.-A.; Zegrar, A. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Nat. Hazards 2020, 104, 811–831. [Google Scholar] [CrossRef]
- Çevik, E.; Topal, T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Fatemi Aghda, S.M. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Sari, F. Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: A comparative analysis of VIKOR and TOPSIS. For. Ecol. Manag. 2021, 480, 118644. [Google Scholar] [CrossRef]
- Senouci, R.; Taibi, N.-E.; Teodoro, A.C.; Duarte, L.; Mansour, H.; Yahia Meddah, R. GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria. Sustainability 2021, 13, 630. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Schmoldt, D.L., Kangas, J., Mendoza, G.A., Pesonen, M., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 15–35. [Google Scholar] [CrossRef]
- Rezaei-Moghaddam, K.; Karami, E. A multiple criteria evaluation of sustainable agricultural development models using AHP. Environ. Dev. Sustain. 2008, 10, 407–426. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making, SpringerBriefs in Operations Research; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G. A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; García-Cascales, M.S. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Özcan, E.C.; Ünlüsoy, S.; Eren, T. A combined goal programming—AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renew. Sustain. Energy Rev. 2017, 78, 1410–1423. [Google Scholar] [CrossRef]
- Kahraman, C.; Öztayşi, B.; Onar, S.C. An Integrated Intuitionistic Fuzzy AHP and TOPSIS Approach to Evaluation of Outsource Manufacturers. J. Intell. Syst. 2018, 29, 283–297. [Google Scholar] [CrossRef]
- Papapostolou, A.; Karakosta, C.; Doukas, H. Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy Environ. 2017, 28, 88–109. [Google Scholar] [CrossRef]
- Dhall, A.; Dhasade, A.; Nalwade, A.; Mohan, R.V.K.; Kulkarni, V. A survey on systematic approaches in managing forest fires. Appl. Geogr. 2020, 121, 102266. [Google Scholar] [CrossRef]
- Akay, A.E.; Wing, M.G.; Sivrikaya, F.; Sakar, D. A GIS-based decision support system for determining the shortest and safest route to forest fires: A case study in Mediterranean Region of Turkey. Environ. Monit. Assess. 2012, 184, 1391–1407. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zlatanova, S.; Moreno, A.; van Oosterom, P.; Toro, C. A data model for route planning in the case of forest fires. Comput. Geosci. 2014, 68, 1–10. [Google Scholar] [CrossRef]
- Martin-Fernández, S.; Martínez-Falero, E.; Pérez-González, J.M. Optimization of the Resources Management in Fighting Wildfires. Environ. Manag. 2002, 30, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Kim, S.; Lee, S.-W.; An, K. Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability 2020, 12, 5468. [Google Scholar] [CrossRef]
- Şahin, T.; Ocak, S.; Top, M. Analytic hierarchy process for hospital site selection. Health Policy Technol. 2019, 8, 42–50. [Google Scholar] [CrossRef]
- Mohajeri, N.; Amin, G.R. Railway station site selection using analytical hierarchy process and data envelopment analysis. Comput. Ind. Eng. 2010, 59, 107–114. [Google Scholar] [CrossRef]
- Ho, W. Integrated analytic hierarchy process and its applications—A literature review. Eur. J. Oper. Res. 2008, 186, 211–228. [Google Scholar] [CrossRef]
- Barić, D.; Pilko, H.; Strujić, J. An Analytic Hierarchy Process Model to Evaluate Road Section Design. Transport 2016, 31, 312–321. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Kheybari, S.; Rezaie, F.M.; Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 2020, 367, 124780. [Google Scholar] [CrossRef]
- Whitaker, R. Validation examples of the Analytic Hierarchy Process and Analytic Network Process. Math. Comput. Model. 2007, 46, 840–859. [Google Scholar] [CrossRef]
- Mehdi Rajabi Asadabadi, E.C.; Saberi, M. Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP). Cogent Eng. 2019, 6, 1623153. [Google Scholar] [CrossRef]
- Wijayanti, O.I.; Ashar, K.; Badriyah, N. The Implementation of the Analytical Network Process (ANP) and Simple Additive Weighting (SAW) in the Decision Support System for Determining Village Development Planning. IJCATR 2022, 11, 308–314. [Google Scholar] [CrossRef]
- Tamba, E. Decision Support System for Foundation Beneficiaries Using the Simple Additive Weighting (SAW) Method. J. Komput. 2021, 12, 69–75. [Google Scholar] [CrossRef]
- Micale, R.; Fata, C.M.L.; Scalia, G.L. A combined interval-valued ELECTRE TRI and TOPSIS approach for solving the storage location assignment problem. Comput. Ind. Eng. 2019, 135, 199–210. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J. Clean. Prod. 2016, 127, 387–398. [Google Scholar] [CrossRef]
- Durucasu, H.; Aytekin, A.; Saraç, B.; Orakçi, E. Current Application Fields of ELECTRE and PROMETHEE: A Literature Review. Alphanumeric J. 2017, 5, 229–270. [Google Scholar] [CrossRef]
Importance Value | Description | |
---|---|---|
1 | Equal importance | Both factors contribute equally to the goal |
3 | Medium importance | The first criterion is slightly more important than the second |
5 | Strong importance | The first criterion is more important than the second |
7 | Very strong importance | The first criterion is much more important than the second |
9 | Maximum importance | The first criterion, in relation to the second, has the strongest specification and preference |
2, 4, 6, 8 | Intermediate values | When a compromise between the above values is necessary |
Number of AHP Criteria (n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI (random index) value | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Criteria | Fire Risk (FRC) | Optimal Route Area Coverage (ACC) | Distance from Existing Water Intake Points (EWC) |
---|---|---|---|
Fire Risk (FRC) | 1/1 = 1.00 | 2/1 = 2.00 | 2/1 = 2.00 |
Optimal route area coverage (ACC) | 1/2 = 0.50 | 1/1 = 1.00 | 2/1 = 2.00 |
Distance from existing water intake points (EWC) | 1/2 = 0.50 | 1/2 = 0.50 | 1/1 = 1.00 |
Total | 2.00 | 3.50 | 5.00 |
Criteria | Fire Risk (FRC) | Optimal Route Area Coverage (ACC) | Distance from Existing Water Intake Points (EWC) | Weighting Factor |
---|---|---|---|---|
Fire risk (FRC) | 0.50 | 0.5714 | 0.40 | 0.4905 |
Optimal route area coverage (ACC) | 0.25 | 0.2857 | 0.40 | 0.3119 |
Distance from existing water intake points (EWC) | 0.25 | 0.1428 | 0.20 | 0.1976 |
Total | 1.00 | 1.00 | 1.00 | 1.00 |
Criteria | Fire Risk (FRC) | Optimal Route Area Coverage (ACC) | Distance from Existing Water Intake Points (EWC) | Weighted Sum | Consistency Ratio (λ) |
---|---|---|---|---|---|
Fire risk (FRC) | 0.49047619 | 0.623809524 | 0.395238095 | 1.50952381 | 3.08 |
Optimal route area coverage (ACC) | 0.245238095 | 0.311904762 | 0.395238095 | 0.952380952 | 3.053435115 |
Distance from existing water intake points (EWC) | 0.245238095 | 0.155952381 | 0.197619048 | 0.598809524 | 3.030120482 |
Criteria | Unit of Measurement | Importance/Weighting Coefficient | Goal |
---|---|---|---|
Fire risk (FRC) | risk value (0–100) | 0.50 | Maximization |
Distance from existing water intake points (EWC) | min | 0.20 | Maximization |
Optimal route area coverage (ACC) | m2 | 0.30 | Maximization |
ID | FRC | EWC | ACC | ID | FRC | EWC | ACC | ID | FRC | EWC | ACC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3,212,822 | 20.3 | 1,203,102 | 35 | 917,295 | 6.5 | 2,886,077 | 69 | 3,617,901 | 5.7 | 821,536 |
2 | 2,385,303 | 18.3 | 1,309,427 | 36 | 2,337,134 | 21.6 | 741,995 | 70 | 1,419,607 | 19.7 | 327,493 |
3 | 2,187,077 | 19.8 | 1,128,893 | 37 | 2,671,818 | 24.3 | 740,768 | 71 | 4,571,321 | 8.0 | 598,756 |
4 | 2,116,156 | 17.6 | 1,007,428 | 38 | 1,678,670 | 25.9 | 922,896 | 72 | 1,974,293 | 11.2 | 341,659 |
5 | 1,115,617 | 15.2 | 1,106,200 | 39 | 2,684,400 | 23.4 | 981,198 | 73 | 2,938,645 | 6.6 | 892,430 |
6 | 872,978 | 12.6 | 1,132,734 | 40 | 2,712,487 | 12.5 | 934,218 | 74 | 3,219,017 | 14.5 | 391,312 |
7 | 1,333,436 | 8.0 | 677,627 | 41 | 1,244,679 | 10.4 | 876,940 | 75 | 1,612,080 | 8.2 | 1,085,650 |
8 | 3,727,688 | 5.8 | 724,229 | 42 | 1,443,025 | 8.2 | 1,006,936 | 76 | 1,722,296 | 9.9 | 501,833 |
9 | 4,007,134 | 5.8 | 818,684 | 43 | 3,565,180 | 6.0 | 1,266,489 | 77 | 3,509,765 | 5.9 | 2,457,152 |
10 | 2,047,951 | 7.9 | 810,412 | 44 | 2,843,260 | 8.8 | 674,809 | 78 | 1,503,198 | 5.8 | 2,978,463 |
11 | 1,567,156 | 12.9 | 383,879 | 45 | 2,918,964 | 12.9 | 663,468 | 79 | 1,127,982 | 7.3 | 2,542,315 |
12 | 2,649,277 | 6.2 | 1,055,086 | 46 | 1,788,780 | 10.5 | 1,280,203 | 80 | 1,572,776 | 8.1 | 2,033,136 |
13 | 2,163,026 | 11.4 | 951,457 | 47 | 2,783,012 | 15.8 | 1,059,562 | 81 | 4,099,482 | 6.4 | 1,730,501 |
14 | 2,327,642 | 6.7 | 1,465,811 | 48 | 1,885,155 | 13.8 | 1,083,188 | 82 | 1,859,964 | 6.2 | 1,658,971 |
15 | 3,648,403 | 6.9 | 837,428 | 49 | 1,786,998 | 11.4 | 1,170,524 | 83 | 2,900,722 | 7.9 | 1,558,944 |
16 | 2,151,431 | 6.9 | 1,002,467 | 50 | 1,799,725 | 9.2 | 961,485 | 84 | 809,805 | 9.6 | 1,538,274 |
17 | 984,078 | 13.5 | 656,349 | 51 | 1,522,324 | 7.2 | 850,659 | 85 | 939,001 | 11.2 | 1,328,901 |
18 | 713,554 | 15.6 | 430,148 | 52 | 3,415,376 | 5.2 | 1,262,182 | 86 | 2,404,440 | 6.1 | 2,833,987 |
19 | 2,565,405 | 10.7 | 753,356 | 53 | 5,215,097 | 6.2 | 1,319,392 | 87 | 5,321,574 | 6.0 | 2,817,079 |
20 | 2,267,974 | 14.3 | 502,938 | 54 | 1,969,790 | 8.3 | 1,243,077 | 88 | 1,652,688 | 23.8 | 547,209 |
21 | 2,680,939 | 18.0 | 442,841 | 55 | 1,700,821 | 10.9 | 1,256,737 | 89 | 2,670,123 | 10.3 | 942,700 |
22 | 1,809,132 | 19.8 | 449,603 | 56 | 1,867,715 | 12.4 | 885,012 | 90 | 1,195,099 | 7.0 | 2,010,743 |
23 | 950,392 | 16.4 | 496,802 | 57 | 2,023,894 | 14.7 | 769,511 | 91 | 2,605,058 | 7.2 | 1,268,552 |
24 | 1,129,663 | 13.0 | 689,542 | 58 | 3,523,738 | 16.9 | 801,607 | 92 | 1,539,475 | 8.0 | 1,163,560 |
25 | 1,025,929 | 9.0 | 1,255,516 | 59 | 1,824,746 | 18.9 | 892,626 | 93 | 1,861,537 | 9.6 | 1,132,242 |
26 | 1,061,740 | 6.8 | 2,328,545 | 60 | 4,453,917 | 8.6 | 543,374 | 94 | 2,099,642 | 6.9 | 1,310,113 |
27 | 1,031,579 | 10.0 | 1,340,808 | 61 | 1,871,197 | 7.8 | 1,475,288 | 95 | 3,519,206 | 13.3 | 705,874 |
28 | 1,108,938 | 9.7 | 926,076 | 62 | 1,749,303 | 10.2 | 1,072,820 | 96 | 1,385,637 | 6.9 | 1,024,284 |
29 | 1,840,084 | 13.0 | 575,478 | 63 | 954,972 | 9.0 | 1,681,158 | 97 | 2,538,628 | 11.3 | 1,248,698 |
30 | 1,973,160 | 10.8 | 807,823 | 64 | 2,738,592 | 12.9 | 861,390 | 98 | 1,388,736 | 15.9 | 1,121,564 |
31 | 3,166,216 | 13.1 | 628,717 | 65 | 2,043,592 | 16.4 | 375,886 | 99 | 3,290,468 | 12.4 | 298,591 |
32 | 1,933,679 | 9.9 | 1,147,900 | 66 | 2,325,916 | 5.3 | 1,842,954 | 100 | 2,879,846 | 6.1 | 942,097 |
33 | 2,399,474 | 10.5 | 1,119,559 | 67 | 2,883,142 | 9.9 | 1,022,844 | ||||
34 | 1,605,352 | 9.2 | 1,709,419 | 68 | 6,774,593 | 8.3 | 647,573 |
Fire Risk Criterion (FRC) | Distance from Existing Water Intake Points (EWC) | Optimal Route Area Coverage (ACC) | |
---|---|---|---|
Max value (+) | 0.1347 | 0.0425 | 0.0720 |
Min value (−) | 0.0142 | 0.0085 | 0.0072 |
Rank | ID | Pi | Rank | ID | Pi | Rank | ID | Pi |
---|---|---|---|---|---|---|---|---|
1 | 18 | 0.11287 | 35 | 49 | 0.22223 | 69 | 100 | 0.32010 |
2 | 7 | 0.11351 | 36 | 57 | 0.22766 | 70 | 45 | 0.32347 |
3 | 17 | 0.11618 | 37 | 32 | 0.23070 | 71 | 2 | 0.32438 |
4 | 24 | 0.12407 | 38 | 46 | 0.23094 | 72 | 73 | 0.32493 |
5 | 28 | 0.12869 | 39 | 48 | 0.23290 | 73 | 66 | 0.33285 |
6 | 23 | 0.12987 | 40 | 88 | 0.23587 | 74 | 67 | 0.33329 |
7 | 41 | 0.13625 | 41 | 16 | 0.23592 | 75 | 47 | 0.34088 |
8 | 11 | 0.14743 | 42 | 59 | 0.23795 | 76 | 35 | 0.34178 |
9 | 51 | 0.14960 | 43 | 54 | 0.24011 | 77 | 37 | 0.34317 |
10 | 96 | 0.15499 | 44 | 20 | 0.24065 | 78 | 99 | 0.35080 |
11 | 76 | 0.15536 | 45 | 13 | 0.24400 | 79 | 74 | 0.35170 |
12 | 6 | 0.15746 | 46 | 61 | 0.25391 | 80 | 31 | 0.35238 |
13 | 42 | 0.16086 | 47 | 94 | 0.25846 | 81 | 39 | 0.35446 |
14 | 25 | 0.16565 | 48 | 34 | 0.26040 | 82 | 83 | 0.37365 |
15 | 85 | 0.17840 | 49 | 90 | 0.26584 | 83 | 78 | 0.37755 |
16 | 5 | 0.17897 | 50 | 4 | 0.26850 | 84 | 95 | 0.39996 |
17 | 27 | 0.17991 | 51 | 38 | 0.27056 | 85 | 69 | 0.40165 |
18 | 70 | 0.18176 | 52 | 82 | 0.27095 | 86 | 52 | 0.40602 |
19 | 75 | 0.18624 | 53 | 19 | 0.27812 | 87 | 15 | 0.40850 |
20 | 72 | 0.18717 | 54 | 33 | 0.28318 | 88 | 8 | 0.40897 |
21 | 29 | 0.18725 | 55 | 80 | 0.29291 | 89 | 58 | 0.41633 |
22 | 92 | 0.18788 | 56 | 26 | 0.29447 | 90 | 1 | 0.41748 |
23 | 50 | 0.19610 | 57 | 36 | 0.29504 | 91 | 43 | 0.42571 |
24 | 84 | 0.19632 | 58 | 3 | 0.29597 | 92 | 86 | 0.42956 |
25 | 98 | 0.20265 | 59 | 14 | 0.29813 | 93 | 9 | 0.44653 |
26 | 62 | 0.20431 | 60 | 12 | 0.29962 | 94 | 60 | 0.48342 |
27 | 56 | 0.20825 | 61 | 89 | 0.30217 | 95 | 71 | 0.49730 |
28 | 30 | 0.20840 | 62 | 21 | 0.30275 | 96 | 77 | 0.50805 |
29 | 10 | 0.20971 | 63 | 44 | 0.30418 | 97 | 81 | 0.52326 |
30 | 63 | 0.21805 | 64 | 97 | 0.31251 | 98 | 53 | 0.60699 |
31 | 22 | 0.21855 | 65 | 64 | 0.31272 | 99 | 68 | 0.65654 |
32 | 93 | 0.22051 | 66 | 91 | 0.31285 | 100 | 87 | 0.71525 |
33 | 65 | 0.22064 | 67 | 40 | 0.31299 | |||
34 | 55 | 0.22109 | 68 | 79 | 0.31993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabatzis, G.; Kolkos, G.; Stergiadou, A.; Kantartzis, A.; Tampekis, S. Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis. Sustainability 2024, 16, 936. https://doi.org/10.3390/su16020936
Arabatzis G, Kolkos G, Stergiadou A, Kantartzis A, Tampekis S. Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis. Sustainability. 2024; 16(2):936. https://doi.org/10.3390/su16020936
Chicago/Turabian StyleArabatzis, Garyfallos, Georgios Kolkos, Anastasia Stergiadou, Apostolos Kantartzis, and Stergios Tampekis. 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis" Sustainability 16, no. 2: 936. https://doi.org/10.3390/su16020936
APA StyleArabatzis, G., Kolkos, G., Stergiadou, A., Kantartzis, A., & Tampekis, S. (2024). Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis. Sustainability, 16(2), 936. https://doi.org/10.3390/su16020936