The Driving Factors and Path Selection for the Development Level of China’s Mariculture—A Dynamic Analysis Based on the TOE Framework
Abstract
:1. Introduction
2. Literature Review and Research Framework
2.1. Literature Review
2.2. Research Framework
3. Research Methodology and Data Sources
3.1. Research Methodology
3.1.1. Reasons for Choosing QCA
3.1.2. Differences Between Traditional QCA and Dynamic QCA Methods
3.1.3. Key Concepts of Dynamic QCA
3.2. Samples and Data
3.2.1. Variable Measurement and Data Calibration
3.2.2. Data Sources
4. Data Analysis and Empirical Results
4.1. Necessity Analysis of Individual Conditions
4.1.1. Analysis of Between-Group Effects
4.1.2. Necessity Analysis (NCA)
4.2. Sufficiency Analysis of Conditional Grouping
4.2.1. Summary Results
4.2.2. Intergroup Results
4.2.3. Within-Group Results
4.3. Robustness Tests
5. Discussion
5.1. Level of Development of Mariculture in the Context of Synergistic Multidimensional Factors
5.2. Existing Research Pathways Provide Examples for the Sustainable Development of Mariculture
5.3. Research Findings Serve to Identify and Rectify Weaknesses in the Demonstration Area
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Conditional Variable (2013–2021) | High Industrial Development Level Path | ||||||
---|---|---|---|---|---|---|---|
Organizationally Led and Technologically Synergistic | Technology-Organization-Environment Multi-Driven | Dual Technology-Environment Driven | |||||
Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 | Configuration 5 | Configuration 6 | Configuration 7 | |
Intensity of technology diffusion | ★ | ★ | ★ | ★ | |||
Investment in scientific research | ● | ★ | ★ | ★ | ⊗ | ||
Specialization of personnel | ★ | ★ | ★ | ★ | ⊗ | ⊗ | |
industrial intensification | ⊗ | ● | ● | ||||
Water quality in nearshore waters | ⊗ | ★ | ★ | ★ | ⊗ | ⊗ | |
Offshore pollution discharges | ★ | ⊗ | ★ | ★ | ★ | ★ | |
Aggregate consistency | 0.997 | 1 | 0.985 | 0.990 | 0.999 | 0.995 | 1 |
Aggregate PRI | 0.992 | 1 | 0.967 | 0.966 | 0.997 | 0.956 | 0.998 |
Aggregate coverage | 0.289 | 0.341 | 0.267 | 0.235 | 0.289 | 0.174 | 0.182 |
Unique coverage | 0.031 | 0.044 | 0.077 | 0.045 | 0.019 | 0.021 | 0.019 |
Intergroup consistency adjustment distance | 0.011 | 0.000 | 0.040 | 0.018 | 0.004 | 0.011 | 0.000 |
Intra-group consistency adjustment distance | 0.070 | 0.003 | 0.077 | 0.063 | 0.003 | 0.049 | 0.003 |
Overall Consistency | 0.989 | ||||||
Overall PRI | 0.981 | ||||||
Overall coverage | 0.615 |
Appendix B
Intergroup Consistency | Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 | Configuration 5 | Configuration 6 | Configuration 7 |
---|---|---|---|---|---|---|---|
2013 | 1 | 1 | 1 | 1 | 0.991 | 1 | 1 |
2014 | 1 | 1 | 1 | 0.97 | 1 | 1 | 1 |
2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2016 | 0.999 | 0.999 | 0.9 | 0.958 | 0.999 | 0.988 | 0.999 |
2017 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2018 | 1 | 1 | 1 | 0.98 | 1 | 0.976 | 1 |
2019 | 0.998 | 1 | 0.998 | 1 | 1 | 1 | 1 |
2020 | 0.973 | 1 | 0.965 | 1 | 1 | 1 | 1 |
2021 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
References
- Hobday, A.J.; Smith, A.D.M.; Stobutzki, I.C.; Bulman, C.; Daley, R.; Dambacher, J.M.; Deng, R.A.; Dowdney, J.; Fuller, M.; Furlani, D.; et al. Ecological Risk Assessment for the Effects of Fishing. Fish Res. 2011, 108, 372–384. [Google Scholar] [CrossRef]
- Walsh, M.R.; Munch, S.B.; Chiba, S.; Conover, D.O. Maladaptive Changes in Multiple Traits Caused by Fishing: Impediments to Population Recovery. Ecol. Lett. 2006, 9, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.R.; Alleway, H.K.; McAfee, D.; Reis-Santos, P.; Theuerkauf, S.J.; Jones, R.C. Climate-Friendly Seafood: The Potential for Emissions Reduction and Carbon Capture in Marine Aquaculture. Bioscience 2022, 72, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Christensen, V. Primary Production Required to Sustain Global Fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Gjedrem, T.; Robinson, N.; Rye, M. The Importance of Selective Breeding in Aquaculture to Meet Future Demands for Animal Protein: A Review. Aquaculture 2012, 350, 117–129. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Hilborn, R.; Branch, T.A.; Ernst, B.; Magnusson, A.; Minte-Vera, C.V.; Scheuerell, M.D.; Valero, J.L. State of the World’s Fisheries. Annu. Rev. Environ. Resour. 2003, 28, 359–399. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Wei, W.; Wei, Y. Evolutionary Path and Influences on Marine Ecological Farming: Dual Perspective of Government Intervention and Enterprise Participation. Discret. Dyn. Nat. Soc. 2022, 2022, 3250863. [Google Scholar] [CrossRef]
- Pappila, M.; Tynkkynen, M. The Role of MSC Marine Certification in Fisheries Governance in Finland. Sustainability 2022, 14, 7178. [Google Scholar] [CrossRef]
- Lu, J.; Xiao, Y.; Zhang, W. Taste, Sustainability, and Nutrition: Consumers’ Attitude toward Innovations in Aquaculture Products. Aquaculture 2024, 587, 740834. [Google Scholar] [CrossRef]
- Sutherland, J.F.J.; Armbrecht, J. Media Representation of Aquaculture in Sweden. Aquaculture 2024, 583, 740578. [Google Scholar] [CrossRef]
- Cutajar, K.; Gauci, A.; Falconer, L.; Massa-Gallucci, A.; Cox, R.E.; Beltri, M.E.; Bardocz, T.; Deidun, A.; Telfer, T.C. Wind and Shipping Influences on Sea Currents around an Inshore Fish Farm in a Heavily Contested Mediterranean Embayment. Reg. Stud. Mar. Sci. 2023, 62, 102855. [Google Scholar] [CrossRef]
- Hilmi, N.; Farahmand, S.; Lam, V.W.Y.; Cinar, M.; Safa, A.; Gilloteaux, J. The Impacts of Environmental and Socio-Economic Risks on the Fisheries in the Mediterranean Region. Sustainability 2021, 13, 10670. [Google Scholar] [CrossRef]
- Yu, S.; Hou, X.; Huan, C.; Mu, Y. Comments on the Oyster Aquaculture Industry in China: 1985-2020. Thalassas 2023, 39, 875–882. [Google Scholar] [CrossRef]
- Guan, H.; Sun, Z.; Wang, J. Decoupling Analysis of Net Carbon Emissions and Economic Growth of Marine Aquaculture. Sustainability 2022, 14, 5886. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Q. Evaluation of China’s Marine Aquaculture Sector’s Green Development Level Using the Super-Efficiency Slacks-Based Measure and Global Malmquist-Luenberger Index Models. Sustainability 2024, 16, 3441. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, W.; Li, D.; Han, L. Spatial-Temporal Characteristics and Influencing Factors of Marine Fishery Eco-Efficiency in China: Evidence from Coastal Regions. Fishes 2023, 8, 438. [Google Scholar] [CrossRef]
- Zheng, P.; Zhao, L.N. Study on Efficiency Measurement and Spatial Spillover Effect of Marine Fisheries Carbon Sink. Appl. Ecol. Environ. Res. 2024, 22, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Ji, J. Evaluation of Marine Fisheries Vulnerability in China and Its Spatial Effects: Evidence from Coastal Regions. Agriculture 2022, 12, 809. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, C. The Coordination of Aquaculture Development with Environment and Resources: Based on Measurement of Provincial Eco-Efficiency in China. Int. J. Environ. Res. Public Health 2022, 19, 8010. [Google Scholar] [CrossRef]
- Song, X. Analysis on Output Efficiency of Marine Fishery in China’s Coastal Provinces and Cities. J. Coast. Res. 2020, 115, 81–83. [Google Scholar] [CrossRef]
- Zhu, W.; Li, D.; Han, L. Spatial-Temporal Evolution and Sustainable Type Division of Fishery Science and Technology Innovation Efficiency in China. Sustainability 2022, 14, 7277. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, J. Measurement and Analysis of Technological Progress Bias in China’s Mariculture Industry. J. World Aquacult. Soc. 2022, 53, 60–76. [Google Scholar] [CrossRef]
- Nita, V.; Nenciu, M. Using Recirculating Technology in Pilot-System for Mariculture at the Romanian Black Sea Coast. J. Environ. Prot. Ecol. 2017, 18, 255–263. [Google Scholar]
- Wang, J.-H.; Lu, J.; Zhang, Y.-X.; Wu, J.; Zhang, C.; Yu, X.; Zhang, Z.; Liu, H.; Wang, W.-H. High-Throughput Sequencing Analysis of the Microbial Community in Coastal Intensive Mariculture Systems. Aquac. Eng. 2018, 83, 93–102. [Google Scholar] [CrossRef]
- Loayza-Aguilar, R.E.; Huamancondor-Paz, Y.P.; Saldana-Rojas, G.B.; Olivos-Ramirez, G.E. Integrated Multi-Trophic Aquaculture (IMTA): Strategic Model for Sustainable Mariculture in Samanco Bay, Peru. Front. Mar. Sci. 2023, 10, 1151810. [Google Scholar] [CrossRef]
- Wang, B.; Zhai, L.; Han, L.-M.; Zhang, H.-Z. Industrial restructuring, changes in marine spatial resources, and economic growth of marine fisheries. Stat. Decis. 2020, 36, 96–100. [Google Scholar] [CrossRef]
- Wang, B.; Han, L.-M.; Ni, G.-J. Research on the Structural Effect of Marine Fisheries Economic Growth in Industrial Structural Reforms—Based on n Interpretation of the Panel Threshold Model. J. Agrotech. Econ. 2019, 38, 132–144. [Google Scholar] [CrossRef]
- Wang, W.; Mao, W.; Zhu, J.; Wu, R.; Yang, Z.; Liu, Y. Research on Efficiency of Marine Green Aquaculture in China: Regional Disparity, Driving Factors, and Dynamic Evolution. Fishes 2024, 9, 11. [Google Scholar] [CrossRef]
- Firdaus, M.; Hatanaka, K.; Miyaura, R.; Wada, M.; Shimoguchi, N.N.; Saville, R.; Zamroni, A.; Wijaya, R.A.; Huda, H.M.; Triyanti, R.; et al. Key Factors of Sustainable Mariculture Enterprises in Indonesia: Finfish Mariculture Cases from Stakeholder Perspective. Int. J. Conserv. Sci. 2023, 14, 685–704. [Google Scholar] [CrossRef]
- Farahmand, S.; Hilmi, N.; Cinar, M.; Safa, A.; Lam, V.W.Y.; Djoundourian, S.; Shahin, W.; Ben Lamine, E.; Schickele, A.; Guidetti, P.; et al. Climate Change Impacts on Mediterranean Fisheries: A Sensitivity and Vulnerability Analysis for Main Commercial Species. Ecol. Econ. 2023, 211, 107889. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. Processes of Technological Innovation; Lexington Books: Lanham, MD, USA, 1990. [Google Scholar]
- Wang, Y.; Turkina, E.; Khoury, S.; Lemay, N. Causal Configurations of SME Strategic Renewal in Crisis: Qualitative Comparative Analysis (QCA) of Quebec Entrepreneurs amid COVID-19. Entrep. Reg. Dev. 2024, 36, 745–774. [Google Scholar] [CrossRef]
- Zhang, H.; Gui, F. The Application and Research of New Digital Technology in Marine Aquaculture. J. Mar. Sci. Eng. 2023, 11, 401. [Google Scholar] [CrossRef]
- Li, G.; Tan, C.; Zhang, W.; Zheng, W.; Liu, Y. Carbon Emission Efficiency, Technological Progress, and Fishery Scale Expansion: Evidence from Marine Fishery in China. Sustainability 2023, 15, 6331. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.-F.; Fang, X.-H. Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM-Malmquist Model. Fishes 2023, 8, 529. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, W.; Yu, B. Assessing the Vulnerability of Marine Fisheries in China: Towards an Inter-Provincial Perspective. Sustainability 2018, 10, 4302. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Zhou, H. Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective-Based on the TOE Theoretical Framework. Sustainability 2022, 14, 14082. [Google Scholar] [CrossRef]
- Li, W.; Xiao, X.; Yang, X.; Li, L. How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework. Systems 2023, 11, 416. [Google Scholar] [CrossRef]
- Garcia-Castro, R.; Miguel, A. Ariño A General Approach to Panel Data Set-Theoretic Research. Int. J. Manag. Decis. Mak. 2016, 1, 11–41. [Google Scholar] [CrossRef]
- Mao, W.; Liang, B.-B. Study on the Spatiotemporal Differentiation and Obstacle Factors of Chinese-style Study on the Spatiotemporal Differentiation and Obstacle Factors of Chinese-style. Chin. J. Agric. Resour. Reg. Plan. 2024, 45, 1–15. [Google Scholar]
- Qiu, R.-S.; Yin, W.; Han, L.-M. Evaluation and Type Division of High-quality Development Level of Regional Marine Economy in China. Stat. Decis. 2023, 39, 103–108. [Google Scholar] [CrossRef]
- Zhu, A.-F.; Ping, Y. Research on Temporal and Spatial Differentiation of Green Production Efficiency of Marine Fishery in China Based on SFA Model. Ocean. Dev. Manag. 2023, 40, 133–143. [Google Scholar] [CrossRef]
- Qiu, R.-S.; Han, L.-M.; Yin, W. Green development evaluation and time-space evolution characteristics of mariculture industry in China. Sci. Geogr. Sin. 2023, 43, 1793–1802. [Google Scholar] [CrossRef]
- Kemp, W.M.; Boynton, W.R.; Adolf, J.E.; Boesch, D.F.; Boicourt, W.C.; Brush, G.; Cornwell, J.C.; Fisher, T.R.; Glibert, P.M.; Hagy, J.D.; et al. Eutrophication of Chesapeake Bay: Historical Trends and Ecological Interactions. Mar. Ecol.-Prog. Ser. 2005, 303, 1–29. [Google Scholar] [CrossRef]
- Tilman, D. Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Han, Z.-L.; Zhu, W.-C.; Li, B. Synergistic analysis of economic resilience and efficiency of marine fishery in China. Geogr. Res. 2022, 41, 406–419. [Google Scholar]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. AMJ 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Guedes, M.J.; Goncalves, V.d.C.; Soares, N.; Valente, M. UK Evidence for the Determinants of R&D Intensity from a Panel fsQCA. J. Bus. Res. 2016, 69, 5431–5436. [Google Scholar] [CrossRef]
- Chang, H.; Zhao, Y. The Impact of Carbon Trading on the “Quantity” and “Quality” of Green Technology Innovation: A Dynamic QCA Analysis Based on Carbon Trading Pilot Areas. Heliyon 2024, 10, e25668. [Google Scholar] [CrossRef]
- Zang, M.; Du, Y.-Z. Qualitative Comparative Analysis (QCA) in Management and Organization Research:Position, Tactics, and Directions. Chin. J. Manag. 2019, 16, 1312–1323. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Dul, J.; Laan, E.V.D.; Kuik, R. A Statistical Significance Test for Necessary Condition Analysis; Sage Publications: Thousand Oaks, CA, USA, 2020. [Google Scholar] [CrossRef]
- Dul, J. Necessary condition analysis (NCA) logic and methodology of “necessary but not sufficient” causality. Organ. Res. Methods 2016, 19, 10–52. [Google Scholar] [CrossRef]
- Yunzhou, D.; Qiuchen, L.; Jianqing, C. What Kind of Ecosystem for Doing Business Will Contribute to City-Level High Entrepreneurial Activity?A Research Based on Institutional Configurations. J. Manag. World 2020, 36, 141–155. [Google Scholar]
- Campbell, J.T.; Sirmon, D.G.; Schijven, M. Fuzzy Logic and the Market: A Configurational Approach to Investor Perceptions of Acquisition Announcements. Acad. Manag. J. 2016, 59, 163–187. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Notation | |
---|---|---|---|
Outcome variable | Level of industrial development | Y | |
Conditional variable | Technology | Intensity of technology diffusion | A |
Investment in scientific research | B | ||
Organization | Specialization of personnel | C | |
Industrial intensification | D | ||
Environment | Water quality in nearshore waters | E | |
Offshore pollution discharges | F |
Variable Type | Variant | Full Affiliation | Intersection Point | Totally Unaffiliated |
---|---|---|---|---|
Outcome variable | Level of industrial development | 0.720 | 0.180 | 0.009 |
Technology | Intensity of technology diffusion | 0.595 | 0.147 | 0.020 |
Investment in scientific research | 0.673 | 0.100 | 0.002 | |
Organization | Specialization of personnel | 0.979 | 0.222 | 0.005 |
Industrial intensification | 0.609 | 0.211 | 0.037 | |
Environment | Water quality in nearshore waters | 1.000 | 0.830 | 0.208 |
Offshore pollution discharges | 0.997 | 0.930 | 0.531 |
Conditional Variable | High Level of Industrial Development | Non-High Level of Industrial Development | ||||||
---|---|---|---|---|---|---|---|---|
Aggregate Consistency | Aggregate Coverage | Intergroup Consistency Adjustment Distance | Intra-Group Consistency Adjustment Distance | Aggregate Consistency | Aggregate Coverage | Intergroup Consistency Adjustment Distance | Intra-Group Consistency Adjustment Distance | |
A | 0.615 | 0.897 | 0.129 | 0.309 | 0.594 | 0.419 | 0.143 | 0.407 |
~A 1 | 0.602 | 0.754 | 0.119 | 0.363 | 0.854 | 0.518 | 0.056 | 0.163 |
B | 0.635 | 0.946 | 0.227 | 0.538 | 0.554 | 0.399 | 0.259 | 0.534 |
~B | 0.597 | 0.735 | 0.217 | 0.552 | 0.925 | 0.551 | 0.101 | 0.211 |
C | 0.659 | 0.963 | 0.052 | 0.625 | 0.511 | 0.362 | 0.119 | 0.581 |
~C | 0.563 | 0.704 | 0.049 | 0.650 | 0.948 | 0.573 | 0.073 | 0.240 |
D | 0.511 | 0.775 | 0.203 | 0.687 | 0.885 | 0.649 | 0.122 | 0.254 |
~D | 0.769 | 0.933 | 0.147 | 0.396 | 0.693 | 0.407 | 0.196 | 0.349 |
E | 0.709 | 0.89 | 0.119 | 0.512 | 0.649 | 0.394 | 0.101 | 0.454 |
~E | 0.517 | 0.753 | 0.213 | 0.585 | 0.818 | 0.576 | 0.126 | 0.287 |
F | 0.686 | 0.848 | 0.077 | 0.570 | 0.660 | 0.395 | 0.150 | 0.469 |
~F | 0.686 | 0.848 | 0.108 | 0.738 | 0.746 | 0.534 | 0.143 | 0.461 |
Causal Combinations | Vintages | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |||
Scenario 1 | B and Y | Intergroup consistency | 0.468 | 0.563 | 0.526 | 0.564 | 0.525 | 0.789 | 0.793 | 0.769 | 0.726 |
Intergroup coverage | 0.981 | 1 | 0.997 | 0.995 | 0.99 | 0.934 | 0.923 | 0.896 | 0.882 | ||
Scenario 2 | ~B and Y | Intergroup consistency | 0.747 | 0.64 | 0.713 | 0.652 | 0.702 | 0.494 | 0.508 | 0.465 | 0.443 |
Intergroup coverage | 0.744 | 0.639 | 0.824 | 0.631 | 0.812 | 0.752 | 0.776 | 0.718 | 0.733 | ||
Scenario 3 | ~B and ~Y | Intergroup consistency | 0.465 | 0.359 | 0.613 | 0.365 | 0.588 | 0.676 | 0.715 | 0.639 | 0.623 |
Intergroup coverage | 0.469 | 0.36 | 0.456 | 0.386 | 0.439 | 0.401 | 0.427 | 0.376 | 0.324 | ||
Scenario 4 | D and Y | Intergroup consistency | 0.382 | 0.382 | 0.436 | 0.469 | 0.604 | 0.574 | 0.606 | 0.602 | 0.535 |
Intergroup coverage | 0.82 | 0.722 | 0.867 | 0.651 | 0.844 | 0.747 | 0.722 | 0.889 | 0.74 | ||
Scenario 5 | ~E and Y | Intergroup consistency | 0.189 | 0.288 | 0.401 | 0.472 | 0.575 | 0.659 | 0.736 | 0.805 | 0.872 |
Intergroup coverage | 0.75 | 0.749 | 0.942 | 0.749 | 0.834 | 0.741 | 0.738 | 0.757 | 0.804 |
Prerequisite | Methodologies 1 | Precision | Upper Bound | Realm | Effect Size (d) | p-Value 2 |
---|---|---|---|---|---|---|
Intensity of technology diffusion | CR | 97.8% | 0.028 | 0.946 | 0.030 | 0.402 |
CE | 100% | 0.034 | 0.946 | 0.036 | 0.025 | |
Investment in scientific research | CR | 96.7% | 0.018 | 0.925 | 0.020 | 0.407 |
CE | 100% | 0.028 | 0.925 | 0.030 | 0.047 | |
Specialization of personnel | CR | 96.7% | 0.085 | 0.890 | 0.095 | 0.006 |
CE | 100% | 0.063 | 0. 890 | 0.070 | 0.000 | |
industrial intensification | CR | 91.1% | 0.009 | 0.952 | 0.010 | 0.733 |
CE | 100% | 0.008 | 0.952 | 0.008 | 0.785 | |
Water quality in nearshore waters | CR | 87.8% | 0.135 | 0.913 | 0.148 | 0.008 |
CE | 100% | 0.119 | 0.913 | 0.130 | 0.000 | |
Offshore pollution discharges | CR | 74.4% | 0.189 | 0.937 | 0.201 | 0.002 |
CE | 100% | 0.089 | 0.937 | 0.095 | 0.000 |
Level of Industrial Development | Intensity of Technology Diffusion | Investment in Scientific Research | Specialization of Personnel | Industrial Intensification | Water Quality in Nearshore Waters | Offshore Pollution Discharges |
---|---|---|---|---|---|---|
0 | NN | NN | NN | NN | NN | NN |
10 | NN | NN | NN | NN | NN | NN |
20 | NN | NN | NN | NN | NN | NN |
30 | NN | NN | NN | NN | NN | NN |
40 | NN | NN | NN | NN | NN | NN |
50 | NN | NN | NN | NN | NN | NN |
60 | NN | NN | NN | NN | NN | 14.2 |
70 | NN | NN | 9.6 | NN | 13.0 | 31.5 |
80 | NN | NN | 23.6 | NN | 36.4 | 48.9 |
90 | 9.7 | NN | 37.6 | 4.7 | 59.7 | 66.2 |
100 | 46.8 | 99.5 | 51.5 | 11.7 | 83.0 | 83.6 |
Conditional Variable (2013–2021) | High Industrial Development Level Path | ||||||
---|---|---|---|---|---|---|---|
Organizationally Led and Technologically Synergistic | Technology-Organization-Environment Multi-Driven | Dual Technology-Environment Driven | |||||
Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 | Configuration 5 | Configuration 6 | Configuration 7 | |
Intensity of technology diffusion | ★ | ★ | ★ | ★ | |||
Investment in scientific research | ● | ★ | ★ | ★ | ⊗ | ||
Specialization of personnel | ★ | ★ | ★ | ★ | ⊗ | ⊗ | |
industrial intensification | ⊗ | ● | ● | ||||
Water quality in nearshore waters | ⊗ | ★ | ★ | ★ | ⊗ | ⊗ | |
Offshore pollution discharges | ★ | ⊗ | ★ | ★ | ★ | ★ | |
Aggregate consistency | 0.997 | 1 | 0.985 | 0.990 | 0.999 | 0.995 | 1 |
Aggregate PRI | 0.992 | 1 | 0.967 | 0.966 | 0.997 | 0.956 | 0.998 |
Aggregate coverage | 0.289 | 0.341 | 0.267 | 0.235 | 0.289 | 0.174 | 0.182 |
Unique coverage | 0.031 | 0.044 | 0.077 | 0.045 | 0.019 | 0.021 | 0.019 |
Intergroup consistency adjustment distance | 0.011 | 0.000 | 0.040 | 0.018 | 0.004 | 0.011 | 0.000 |
Intra-group consistency adjustment distance | 0.070 | 0.003 | 0.077 | 0.063 | 0.003 | 0.049 | 0.003 |
Overall Consistency | 0.989 | ||||||
Overall PRI | 0.981 | ||||||
Overall coverage | 0.615 |
Conditional Variable (2013–2021) | Low Industry Development Level Configuration Analysis Path |
---|---|
Configuration 8 | |
Intensity of technology diffusion | |
Investment in scientific research | |
Specialization of personnel | ⊗ |
Industrial intensification | ★ |
Water quality in nearshore waters | |
Offshore pollution discharges | |
Aggregate consistency | 0.922 |
Aggregate PRI | 0784 |
Aggregate coverage | 0.533 |
Intergroup consistency adjustment distance | 0.010 |
Intra-group consistency adjustment distance | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, H. The Driving Factors and Path Selection for the Development Level of China’s Mariculture—A Dynamic Analysis Based on the TOE Framework. Sustainability 2024, 16, 9272. https://doi.org/10.3390/su16219272
Zhang Y, Jia H. The Driving Factors and Path Selection for the Development Level of China’s Mariculture—A Dynamic Analysis Based on the TOE Framework. Sustainability. 2024; 16(21):9272. https://doi.org/10.3390/su16219272
Chicago/Turabian StyleZhang, Ying, and Haiyan Jia. 2024. "The Driving Factors and Path Selection for the Development Level of China’s Mariculture—A Dynamic Analysis Based on the TOE Framework" Sustainability 16, no. 21: 9272. https://doi.org/10.3390/su16219272
APA StyleZhang, Y., & Jia, H. (2024). The Driving Factors and Path Selection for the Development Level of China’s Mariculture—A Dynamic Analysis Based on the TOE Framework. Sustainability, 16(21), 9272. https://doi.org/10.3390/su16219272