Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Enumeration of Culturable Heterotrophic Bacteria, Actinomycetes and Fungi
2.3. Microbial Respiration
2.4. Microbial Diversity
2.5. Statistical Analyses
3. Results
3.1. Soil Physicochemical Properties, Plant Growth and Yield
3.2. Enumeration of Culturable Heterotrophs and Soil Microbial Respiration
3.3. Soil Microbial Taxonomic Diversity Using 16S and ITS Gene Sequencing
3.4. Functional Microbes and Correlation Networks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. [Google Scholar] [CrossRef]
- Liebhardt, W.C.; Andrews, R.W.; Culik, M.N.; Harwood, R.R.; Janke, R.R.; Radke, J.K.; Riegerschartz, L.L. Crop production during conversion from conventional to low-input methods. Agron. J. 1989, 81, 150–159. [Google Scholar] [CrossRef]
- Barker, A.V. Science and Technology of Organic Farming; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Francis, C. (Ed.) Organic Farming: The Ecological System. Agronomy Monograph; American Society of Agronomy: Madison, WI, USA, 2009; Volume 54. [Google Scholar]
- Lockeretz, W. (Ed.) Organic Farming: An International History; CAB International Press: Wallingford, UK, 2007. [Google Scholar]
- Pacini, C.; Wossink, A.; Giesen, G.; Huirne, R.J. Ecological-economic modelling to support multi-objective policy making: A farming systems approach implemented for Tuscany. Agric. Ecosyst. Environ. Health Perspect. 2004, 102, 349–364. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Chen, X.; Henriksen, T.M.; Svensson, K.; Korsaeth, A. Long-term effects of agricultural production systems on structure and function of the soil microbial community. Appl. Soil Ecol. 2020, 147, 103387. [Google Scholar] [CrossRef]
- Ding, G.-C.; Bai, M.; Han, H.; Li, H.; Ding, X.; Yang, H.; Xu, T.; Li, J. Microbial taxonomic, nitrogen cycling and phosphorus recycling community composition during long-term organic greenhouse farming. Microbiol. Ecol. 2019, 95, fiz042. [Google Scholar] [CrossRef]
- Suyal, D.C.; Soni, R.; Singh, D.K.; Goel, R. Microbiome change of agricultural soil under organic farming practice. Biologia 2021, 76, 1315–1325. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Xiao, X.; Shi, L.; Chen, K.; Wen, L.; Li, W. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China. Sci. Rep. 2020, 10, 13540. [Google Scholar] [CrossRef]
- Araújo, A.S.F.; Melo, W.J. Soil microbial biomass in organic farming system. Ciência Rural 2010, 40, 2419–2426. [Google Scholar] [CrossRef]
- Jannoura, R.; Bruns, C.; Joergensen, R.G. Organic fertilizer effects on pea yield, nutrient uptake, microbial root colonization and soil microbial biomass indices in organic farming systems. Eur. J. Agron. 2013, 49, 32–41. [Google Scholar] [CrossRef]
- Moeskops, B.; Sukristiyonubowo; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Ge, T.; Chen, X.; Yuan, H.; Li, B.; Zhu, H.; Peng, P.; Li, K.; Jones, D.L.; Wu, J. Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. Eur. J. Soil Biol. 2013, 58, 122–128. [Google Scholar] [CrossRef]
- Velmourougane, K. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity. Scientifica 2016, 2016, 3604026. [Google Scholar] [CrossRef]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacterial found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Köberl, M.; Müller, H.; Ramadan, E.M.; Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS ONE 2011, 6, e24452. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Aparna, K.; Pasha, M.A.; Rao, D.L.N.; Krishnaraj, P.U. Organic amendments as ecosystem engineers: Microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 2014, 71, 268–277. [Google Scholar] [CrossRef]
- Kazerooni, E.A.; Maharachchikumbura, S.N.; Rethinasamy, V.; Al-Mahrouqi, H.; Al-Sadi, A.M. Fungal diversity in tomato rhizosphere soil under conventional and desert farming systems. Front. Microbiol. 2017, 8, 1462. [Google Scholar] [CrossRef] [PubMed]
- Mullath, S.K.; Błaszkowski, J.; Govindan, B.N.; Al Dhaheri, L.; Symanczik, S.; Al-Yahya’ei, M.N. Organic farming practices in a desert habitat increased the abundance, richness and diversity of arbuscular mycorrhizal fungi. Emir. J. Food Agric. 2019, 31, 969–979. [Google Scholar] [CrossRef]
- Symanczik, S.; Błaszkowski, J.; Koegel, S.; Boller, T.; Wiemken, A.; Al-Yahya’ei, M.N. Isolation and identification of desert habituated arbuscular mycorrhizal fungi newly reported from the Arabian Peninsula. J. Arid. Land 2014, 6, 488–497. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere—A critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939.
- Campbell, C.D.; Chapman, S.J.; Cameron, C.M.; Davidson, M.S.; Potts, J.M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 2003, 69, 3593–3599. [Google Scholar] [CrossRef]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 2001, 4, 9. [Google Scholar]
- Köhler, J.; Baumbach, J.; Taubert, J.; Specht, M.; Skusa, A.; Rüegg, A.; Rawlings, C.; Verrier, P.; Philippi, S. Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 2006, 22, 1383–1390. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Orr, C.H.; Leifert, C.; Cooper, J.M.; Cummings, S.P. The effect of organic and conventional farm management practices on the soil microbial community at the phylum level. Asp. Appl. Biol. 2013, 120, 1–7. [Google Scholar]
- Bettiol, W.; Ghini, R.; Galvao, J.A.H.; Ligo, M.A.V.; Mineiro, J.L.C. Soil organisms in organic and conventional cropping systems. Sci. Agric. 2002, 59, 565–572. [Google Scholar] [CrossRef]
- Norgaard, A.E.; Lewis, D.; Borden, K.A.; Krzic, M.; Carrillo, J.; Smukler, S.M. Trade-offs in organic nutrient management strategies across mixed vegetable farms in Southwest British Columbia. Front. Sustain. Food Syst. 2022, 6, 706271. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Ayangbenro, A.S.; Babalola, O.O. Organic farming enhances the diversity and community structure of endophytic archaea and fungi in maize plant: A shotgun approach. J. Soil Sci. Plant Nutr. 2020, 20, 2587–2599. [Google Scholar] [CrossRef]
- Zhang, Q.-C.; Shamsi, I.H.; Xu, D.-T.; Wang, G.-H.; Lin, X.-Y.; Jilani, G.; Hussain, N.; Chaudhry, A.N. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 2012, 57, 1–8. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. Int. Soc. Microb. Ecol. J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Al-Sadi, A.M.; Al-Mazroui, S.S.; Phillips, A.J.L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers. J. Appl. Microbiol. 2015, 119, 500–509. [Google Scholar] [CrossRef]
- Khan, A.L.; Asaf, S.; Abed, R.M.M.; Chai, Y.N.; Al-Rawahi, A.N.; Mohanta, T.K.; Al-Rawahi, A.; Schachtman, D.P.; Al-Harrasi, A. Rhizosphere microbiome of arid land medicinal plants and extra cellular enzymes contribute to their abundance. Microorganisms 2020, 8, 213. [Google Scholar] [CrossRef]
- Kazeeroni, E.A.; Al-Sadi, A.M. 454-Pyrosequencing Reveals Variable Fungal Diversity Across Farming Systems. Front. Plant Sci. 2016, 7, 314. [Google Scholar] [CrossRef]
- Nemec, S.; Menge, J.A.; Platt, R.G.; Johson, E.L.V. Vesicular-arbuscular mycorrhizal fungi associated with citrus in Florida and California and notes on their distribution and ecology. Mycologia 1981, 73, 112–127. [Google Scholar] [CrossRef]
- Ortas, I. Mycorrhiza in citrus: Growth and nutrition. In Advances in Citrus Nutrition; Srivastava, A.K., Ed.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2012; pp. 333–351. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.J.; Shu, B.; Xia, R.X. Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China. Plant Soil Environ. 2012, 58, 302–308. [Google Scholar] [CrossRef]
- Bourazza, M.; Chetto, O.; Talha, A.; Farih, A.; Douira, A.; Benyahia, H. The influence of arbuscular mycorrhizal colonization on key growth parameters of five citrus rootstock cultivars under salt stress. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 125–138. [Google Scholar]
- Al-Sadi, A.M.; Kazerooni, E.A. Illumina-Mi-Seq analysis of fungi in acid lime roots reveals dominance of Fusarium and variation in fungal taxa. Sci. Rep. 2018, 8, 17388. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, S. Arbuscular mycorrhizal fungi benefit mango (Mangifera indica L.) plant growth in the field. Sci. Hortic. 2012, 143, 43–48. [Google Scholar] [CrossRef]
- Govindan, M.; Rajeshkumar, P.P.; Varma, C.K.Y.; Anees, M.M.; Rashmi, C.R.; Nair, A.B. Arbuscular mycorrhizal fungi status of Mango (Mangifera indica) cultivars grown in typic quartzipsamments soil. Agric. Res. 2020, 9, 188–196. [Google Scholar] [CrossRef]
- Jefwa, J.M.; Kahangi, E.; Losenge, T.; Mung’atu, J.; Ngului, W.; Ichami, S.M.; Sanginga, N.; Vanluawe, B. Arbuscular mycorrhizal fungi in the rhizosphere of banana and plantain and the growth of tissue culture cultivars. Agric. Ecosyst. Environ. 2012, 157, 24–31. [Google Scholar] [CrossRef]
- Chebet, D.K.; Wanzala, F.K.; Kariuki, W. Versicular arbuscular mycorrhizal inoculation influences growth, nutrient absorption and hyphae colonization of rough lemon (Citrus limon) seedlings. Afr. J. Educ. Sci. Technol. 2021, 6, 75–85. [Google Scholar]
- Menge, J.A.; Johnson, E.L.V.; Platt, R.G. Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol. 1978, 81, 553–559. [Google Scholar] [CrossRef]
- Chen, K.; Liu, W.; Guo, S.; Liu, R.; Li, M. Diversity of arbuscular mycorrhizal fungi in continuous cropping soils used for pepper production. Afr. J. Microbiol. Res. 2012, 6, 2469–2474. [Google Scholar]
- Liao, J.; Xu, Q.; Xu, H.; Huang, D. Natural farming improves soil quality and alters microbial diversity in a cabbage field in Japan. Sustainability 2019, 11, 3131. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Shu, B.; Liu, J.-F.; Xia, R.-X. Relationships between arbuscular mycorrhizal symbiosis and soil fertility factors in citrus orchards along an altitudinal gradient. Pedosphere 2015, 25, 160–168. [Google Scholar] [CrossRef]
- Khade, S.W.; Rodrigues, B.F. Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. in tropical agro-based ecosystem of Goa, India. Trop. Subtrop. Agroecosystems 2009, 10, 369–381. [Google Scholar]
- Guzman, A.; Montes, M.; Hutchins, L.; DeLaCerda, G.; Yang, P.; Kakouridid, A.; Dahlquist-Willard, R.M.; Firestone, M.K.; Bowles, T.; Kremen, C. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. 2021, 231, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Liang, Y.; Huang, D. Organic farming improves soil microbial abundance and diversity under greenhouse condition: A case study in Shanghai (Eastern China). Sustainability 2018, 10, 3825. [Google Scholar] [CrossRef]
pH | EC | K | Na | Water Holding Capacity | Soil Organic Matter | Olsen Phosphorus | |
---|---|---|---|---|---|---|---|
dS m−1 | ppm | ppm | % | % | mg Kg−1 | ||
Conventional Mono | 8.1 a | 1757 a | 35 a | 283 a | 41.86 a | 2.69 b | 161 ab |
Conventional Diverse | 8.1 a | 1973 a | 37 a | 213 a | 42.41 a | 2.40 b | 142 b |
Organic Mono | 8.1 a | 1818 a | 65 a | 287 a | 51.51 a | 5.81 a | 231 a |
Organic diverse | 8.1 a | 2234 a | 46 a | 277 a | 52.00 a | 5.18 a | 205 ab |
Conventional | 8.1 a | 1865 a | 36 a | 248 a | 42.14 b | 2.55 b | 151 b |
Organic | 8.1 a | 2026 a | 55 a | 282 a | 51.76 a | 5.49 a | 218 a |
Monoculture | 8.1 a | 1787 a | 50 a | 285 a | 46.69 a | 4.25 a | 196 a |
Polyculture | 8.1 a | 2104 a | 42 a | 245 a | 47.21a | 3.79 a | 173 a |
average all | 8.1 | 1946 | 46 | 265 | 46.95 | 4.02 | 185 |
p-values two-way anovas: | |||||||
org vs. conv | 0.780 | 0.685 | 0.076 | 0.598 | 0.018 | 0.000 | 0.023 |
mono vs. diverse | 0.412 | 0.432 | 0.381 | 0.529 | 0.876 | 0.330 | 0.366 |
interaction | 0.780 | 0.801 | 0.287 | 0.634 | 0.994 | 0.712 | 0.896 |
Bacteria | Actinomycetes | Fungi | Resp. DW | SIR DW | MQ Resp. | ||
---|---|---|---|---|---|---|---|
CFU/g | CFU/g | CFU/g | (µg CO2-C /g/h) | (µg CO2-C /g/h) | (µg CO2-C /107 CFU/h) | ||
Conv. Mono | Mean | 1.63 × 107 ab | 0.00 a | 3.48 × 104 a | 0.604 b | 0.804 b | 0.384 b |
Stnd Dev. | 4.27 × 106 | 0.00 | 3.90 × 104 | 0.001 | 0.078 | 0.085 | |
Conv. Diverse | Mean | 6.93 × 106 b | 2.74 × 106 a | 2.43 × 104 a | 0.557 b | 1.295 ab | 0.869 a |
Stnd Dev. | 3.49 × 106 | 5.42 × 106 | 2.38 × 104 | 0.017 | 0.75 | 0.264 | |
Organic mono | Mean | 1.65 × 107 ab | 4.50 × 105 a | 1.32 × 105 a | 0.578 b | 1.329 ab | 0.535 ab |
Stnd Dev. | 2.11 × 107 | 6.51 × 105 | 2.63 × 105 | 0.076 | 0.319 | 0.341 | |
Organic diverse | Mean | 3.65 × 107 a | 4.40 × 104 a | 1.99 × 104 a | 0.760 a | 1.963 a | 0.268 b |
Stnd Dev. | 3.64 × 107 | 1.08 × 105 | 3.17 × 104 | 0.137 | 0.753 | 0.177 | |
p-value - one way | by trt | 0.137 | 0.282 | 0.442 | 0.048 | 0.167 | 0.064 |
p-value two way | org vs conv | 0.101 | 0.326 | 0.409 | 0.087 | 0.101 | 0.140 |
mono vs diverse | 0.548 | 0.308 | 0.279 | 0.175 | 0.118 | 0.450 | |
interaction | 0.106 | 0.174 | 0.367 | 0.036 | 0.829 | 0.025 |
Prokaryotes 16S | # OTU (Taxa) | # Sequences | Shannon H | CI | Equitability | CI |
---|---|---|---|---|---|---|
Conventional Mono | 2193 | 22,588 | 6.62 | 0.021 c | 0.86 | 0.003 a |
Conventional Diverse | 501 | 46,371 | 4.98 | 0.015 d | 0.80 | 0.003 c |
Organic Mono | 7084 | 384,697 | 7.10 | 0.006 a | 0.80 | 0.001 c |
Organic diverse | 4820 | 81,646 | 6.84 | 0.013 b | 0.81 | 0.001 b |
Conventional | 2453 | 68,959 | 6.03 | 0.015 b | 0.77 | 0.002 b |
Organic | 7388 | 466,343 | 7.15 | 0.005 a | 0.80 | 0.001 a |
Monoculture | 7556 | 407,285 | 7.19 | 0.006 a | 0.81 | 0.001 a |
Polyculture | 5064 | 128,017 | 6.75 | 0.010 b | 0.79 | 0.001 b |
All | 7842 | 535,302 | 7.27 | 0.005 | 0.81 | 0.001 |
Eukaryotes ITS | # OTU (Taxa) | # Sequences | Shannon H | CI | Equitability | CI |
Conventional Mono | 361 | 44,518 | 3.71 | 0.020 c | 0.63 | 0.003 c |
Conventional Diverse | 54 | 14,900 | 2.01 | 0.030 d | 0.50 | 0.007 d |
Organic Mono | 410 | 20,601 | 4.57 | 0.020 b | 0.76 | 0.003 a |
Organic diverse | 433 | 20,672 | 4.63 | 0.023 a | 0.76 | 0.004 a |
Conventional | 413 | 59,418 | 3.85 | 0.017 b | 0.64 | 0.003 b |
Organic | 581 | 41,273 | 5.01 | 0.016 a | 0.79 | 0.002 a |
Monoculture | 645 | 65,119 | 4.51 | 0.016 a | 0.70 | 0.002 a |
Polyculture | 485 | 35,572 | 4.21 | 0.022 b | 0.68 | 0.004 b |
All | 813 | 100,691 | 4.83 | 0.013 | 0.72 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janke, R.R.; Menezes-Blackburn, D.; Al Hamdi, A.; Rehman, A. Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems. Sustainability 2024, 16, 9391. https://doi.org/10.3390/su16219391
Janke RR, Menezes-Blackburn D, Al Hamdi A, Rehman A. Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems. Sustainability. 2024; 16(21):9391. https://doi.org/10.3390/su16219391
Chicago/Turabian StyleJanke, Rhonda R., Daniel Menezes-Blackburn, Asma Al Hamdi, and Abdul Rehman. 2024. "Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems" Sustainability 16, no. 21: 9391. https://doi.org/10.3390/su16219391