Digital Transformation and Carbon Intensity: Evidence from Chinese Tourism Companies
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Literature Review
2.1.1. Consequences of Digital Transformation
2.1.2. Digital Transformation in Tourism
2.1.3. Measurements of Tourism Carbon Emissions
2.1.4. Influential Factors of Tourism Carbon Emissions
2.1.5. Summary
2.2. Research Hypothesis
2.2.1. Digital Transformation and Company Carbon Intensity
2.2.2. Mediating Effect of Managerial Myopia
2.2.3. Mediating Effect of Resource Attraction
2.2.4. Mediating Effect of Collaborative Culture
3. Methodology
3.1. Sample Selection and Data Collection
3.2. Variable Definition
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variables
3.3. Model Construction
4. Empirical Results
4.1. Benchmark Regression
4.2. Robustness Test
4.3. Endogeneity Test
5. Further Discussion
5.1. Mediating Effect Analysis
5.2. Heterogeneity Analysis
5.2.1. Company Ownership Heterogeneity
5.2.2. Board Diversity Heterogeneity
5.2.3. Business Environment Heterogeneity
6. Conclusions and Implications
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Managerial Implications
6.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.Y.; Higham, J. Overcoming information asymmetry in tourism carbon management: The application of a new reporting architecture to Aotearoa New Zealand. Tour. Manag. 2021, 83, 104231. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Gössling, S.; Humpe, A.; Sun, Y.Y. On track to net-zero? Large tourism enterprises and climate change. Tour. Manag. 2024, 100, 104842. [Google Scholar] [CrossRef]
- Powell, R.; Kellert, S.; Ham, S. Antarctic tourists: Ambassadors or consumers? Polar Rec. 2008, 44, 233–241. [Google Scholar] [CrossRef]
- Hanelt, A.; Bohnsack, R.; Marz, D.; Antunes Marante, C. A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change. J. Manag. Stud. 2021, 58, 1159–1197. [Google Scholar] [CrossRef]
- Guo, T.; Chen, H.; Zhou, X.; Ai, S.; Wang, S. Does corporate digital transformation affect the level of corporate tax avoidance? Empirical evidence from Chinese listed tourism companies. Financ. Res. Lett. 2023, 57, 104271. [Google Scholar]
- Hu, B.; Fan, S.; Zhang, K. Does digital transformation exacerbate or mitigate maturity mismatch in hospitality and tourism firms? Int. J. Hosp. Manag. 2024, 123, 103915. [Google Scholar] [CrossRef]
- Siebel, T.M. Digital Transformation: Survive and Thrive in an Era of Mass Extinction; RosettaBooks: New York, NY, USA, 2019. [Google Scholar]
- Cheng, Y.; Zhou, X.; Li, Y. The effect of digital transformation on real economy enterprises’ total factor productivity. Int. Rev. Econ. Financ. 2023, 85, 488–501. [Google Scholar] [CrossRef]
- Chen, W.; Srinivasan, S. Going digital: Implications for firm value and performance. Rev. Account. Stud. 2024, 29, 1619–1665. [Google Scholar] [CrossRef]
- Sigala, M. The information and communication technologies productivity impact on the UK hotel sector. Int. J. Oper. Prod. Manag. 2003, 23, 1224–1245. [Google Scholar] [CrossRef]
- Wu, L.; Hitt, L.M.; Lou, B.J.M.S. Data Analytics, Innovation, and Firm Productivity. Manag. Sci. 2020, 66, 2017–2039. [Google Scholar] [CrossRef]
- Skiti, T.; Luo, X.; Lin, Z. When More is Less: Quality and Variety Trade-off in Sharing Economy Platforms. J. Manag. Stud. 2022, 59, 1817–1838. [Google Scholar] [CrossRef]
- Moyer, J.D.; Hughes, B.B. ICTs: Do they contribute to increased carbon emissions? Technol. Forecast. Soc. Change 2012, 79, 919–931. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W. Carbon Reduction Effects of Digital Technology Transformation: Evidence from the Listed Manufacturing Firms in China. Technol. Forecast. Soc. Change 2024, 198, 122999. [Google Scholar] [CrossRef]
- Malmodin, J.; Moberg, Å.; Lundén, D.; Finnveden, G.; Lövehagen, N. Greenhouse Gas Emissions and Operational Electricity Use in the ICT and Entertainment & Media Sectors. J. Ind. Ecol. 2010, 14, 770–790. [Google Scholar]
- Galvin, R. The ICT/electronics question: Structural change and the rebound effect. Ecol. Econ. 2015, 120, 23–31. [Google Scholar] [CrossRef]
- Capriello, A.; Riboldazzi, S. How can a travel agency network survive in the wake of digitalization? Evidence from the Robintur case study. Curr. Issues Tour. 2020, 23, 1049–1052. [Google Scholar] [CrossRef]
- Sarmah, B.; Kamboj, S.; Rahman, Z. Co-creation in hotel service innovation using smart phone apps: An empirical study. Int. J. Contemp. Hosp. Manag. 2017, 29, 2647–2667. [Google Scholar] [CrossRef]
- Thakran, K.; Verma, R. The Emergence of Hybrid Online Distribution Channels in Travel, Tourism and Hospitality. Cornell Hosp. Q. 2013, 54, 240–247. [Google Scholar] [CrossRef]
- Xiang, Z.; Dan, W.; O'Leary, J.; Fesenmaier, D.R. Adapting to the Internet: Trends in Travelers' Use of the Web for Trip Planning. J. Travel Res. 2014, 54, 511–527. [Google Scholar] [CrossRef]
- Buhalis, D.; Law, R. Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tour. Manag. 2008, 29, 609–623. [Google Scholar] [CrossRef]
- Tsai, K.-T.; Lin, T.-P.; Hwang, R.-L.; Huang, Y.-J. Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan. Tour. Manag. 2014, 42, 13–21. [Google Scholar] [CrossRef]
- Becken, S.; Simmons, D.G. Understanding energy consumption patterns of tourist attractions and activities in New Zealand. Tour. Manag. 2002, 23, 343–354. [Google Scholar] [CrossRef]
- Gössling, S. Global environmental consequences of tourism. Glob. Environ. Change 2002, 12, 283–302. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Chen, P.-H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach. J. Clean. Prod. 2009, 17, 1324–1330. [Google Scholar] [CrossRef]
- Meng, W.; Xu, L.; Hu, B.; Zhou, J.; Wang, Z. Reprint of: Quantifying direct and indirect carbon dioxide emissions of the Chinese tourism industry. J. Clean. Prod. 2017, 163, S401–S409. [Google Scholar] [CrossRef]
- Munday, M.; Turner, K.; Jones, C. Accounting for the carbon associated with regional tourism consumption. Tour. Manag. 2013, 36, 35–44. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper No.3914; MIT Press: Cambridge, UK, 1991. [Google Scholar]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, A.; Wang, C.; Shi, Y. Spatial and temporal evolution and influencing factors of tourism eco-efficiency in Fujian province under the target of carbon peak. Sci. Rep. 2023, 13, 23074. [Google Scholar] [CrossRef]
- Sun, Y.Y. Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions. Tour. Manag. 2016, 55, 326–336. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Ma, K.; Song, M. Different effects of technological progress on China's carbon emissions based on sustainable development. Bus. Strategy Environ. 2020, 29, 481–492. [Google Scholar] [CrossRef]
- Tang, R. Digital economy and total factor productivity of tourism enterprises in China: The perspective of market competition theory. Curr. Issues Tour. 2024, 27, 76–91. [Google Scholar] [CrossRef]
- Lundstrum, L.L. Corporate investment myopia: A horserace of the theories. J. Corp. Financ. 2002, 8, 353–371. [Google Scholar] [CrossRef]
- Stein, J.C. Takeover threats and managerial myopia. J. Political Econ. 1988, 96, 61–80. [Google Scholar] [CrossRef]
- Schipper, K. Commentary on earnings management. Account. Horiz. 1989, 3, 91–102. [Google Scholar]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technol. Forecast. Soc. Change 2021, 165, 120557. [Google Scholar] [CrossRef]
- Antonio Duro, J.; Perez-Laborda, A.; Turrion-Prats, J.; Fernandez-Fernandez, M. COVID-19 and tourism vulnerability. Tour. Manag. Perspect. 2021, 38, 100819. [Google Scholar]
- Colombo, M.G.; Croce, A.; Guerini, M. The effect of public subsidies on firms' investment-cash flow sensitivity: Transient or persistent? Res. Policy 2013, 42, 1605–1623. [Google Scholar] [CrossRef]
- Gray, E.R.; Balmer, J.M.T. Managing corporate image and corporate reputation. Long Range Plan. 1998, 31, 695–702. [Google Scholar] [CrossRef]
- Suno Wu, J.; Barbrook-Johnson, P.; Font, X. Participatory complexity in tourism policy: Understanding sustainability programmes with participatory systems mapping. Ann. Tour. Res. 2021, 90, 103269. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. The impact of artificial intelligence on employment: The role of virtual agglomeration. Humanit. Soc. Sci. Commun. 2024, 11, 122. [Google Scholar] [CrossRef]
- Cassar, A.; Rigdon, M. Trust and trustworthiness in networked exchange. Games Econ. Behav. 2011, 71, 282–303. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, L.; Xu, J. Cooperative Strategies of Low-carbon Differential Game in Tourism Supply Chain in China. Tour. Trib. 2016, 31, 38–49. [Google Scholar]
- Bai, Y.; O'Brien, G.C. The strategic motives behind firm's engagement in cooperative research and development: A new explanation from four theoretical perspectives. J. Model. Manag. 2008, 3, 162–181. [Google Scholar] [CrossRef]
- Mu, J.; Peng, G.; Love, E. Interfirm networks, social capital, and knowledge flow. J. Knowl. Manag. 2008, 12, 86–100. [Google Scholar] [CrossRef]
- Qiu, S.; Jiang, J.; Liu, X.; Chen, M.H.; Yuan, X. Can corporate social responsibility protect firm value during the COVID-19 pandemic? Int. J. Hosp. Manag. 2021, 93, 102759. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Zhong, S.; Li, P. Corporate governance, technical efficiency and financial performance: Evidence from Chinese listed tourism firms. J. Hosp. Tour. Manag. 2021, 48, 163–173. [Google Scholar] [CrossRef]
- Li, J.; Li, M. On the Calculation of Tourism Industry and Tourist Adding Value. Tour. Trib. 1999, 5, 16–19+76. [Google Scholar]
- Wang, L.; Zhao, H.; Liu, J.; He, T.; Zhu, H.; Liu, Y. How does the digital economy affect carbon emissions from tourism? Empirical evidence from China. J. Clean. Prod. 2024, 469, 143175. [Google Scholar] [CrossRef]
- Paustian, K.; Ravindranath, N.H.; Van Amstel, A. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the IPCC: Hayama, Japan, 2006; p. 3. [Google Scholar]
- Huang, Y. Digital transformation of enterprises: Job creation or job destruction? Technol. Forecast. Soc. Change 2024, 208, 123733. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Flannery, M.J.; Rangan, K.P. Partial adjustment toward target capital structures. J. Financ. Econ. 2006, 79, 469–506. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, S.h.; Cao, W. “Internet Plus” Information Disclosure: Substantive Statement or Strategic Manipulation—Evidence Based on the Risk of Stock Price Crash. China Ind. Econ. 2020, 3, 174–192. [Google Scholar]
- Chen, W. Can low-carbon development force enterprises to make digital transformation? Bus. Strategy Environ. 2023, 32, 1292–1307. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Wang, D.; Wang, S.; Bao, H. Decoding enterprise digital transformation: External oversight and carbon emission reduction performance. J. Environ. Manag. 2024, 359, 121039. [Google Scholar] [CrossRef]
- Hu, N.; Xue, F.; Wang, H. Does Managerial Myopia Affect Long-term Investment? Based on Text Analysis and Machine Learning. J. Manag. World 2021, 37, 139–156+11+19-21. [Google Scholar]
- Li, K.; Mai, F.; Shen, R.; Yan, X. Measuring Corporate Culture Using Machine Learning. Rev. Financ. Stud. 2020, 34, 3265–3315. [Google Scholar] [CrossRef]
- Bai, F.; Shang, M.; Huang, Y. Corporate culture and ESG performance: Empirical evidence from China. J. Clean. Prod. 2024, 437, 140732. [Google Scholar] [CrossRef]
- Song, Z.; Storesletten, K.; Zilibotti, F. Growing Like China. Am. Econ. Rev. 2011, 101, 196–233. [Google Scholar] [CrossRef]
- Hambrick, D.C.; Cho, T.S.; Chen, M.J. The influence of top management team heterogeneity on firms' competitive moves. Adm. Sci. Q. 1996, 41, 659–684. [Google Scholar] [CrossRef]
- Guo, P.; He, Y.; Scrimgeour, F.; Shao, S.; Yu, Y. The impact of natural resource dependency on green economic growth: A business environment perspective. Technol. Forecast. Soc. Change 2024, 208, 123680. [Google Scholar] [CrossRef]
- Chen, Y.; Puttitanun, T. Intellectual property rights and innovation in developing countries. J. Dev. Econ. 2005, 78, 474–493. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Lin, S.; Zhang, J.; Zeng, J. Does high-speed railway promote regional innovation growth or innovation convergence? Technol. Soc. 2021, 64, 101472. [Google Scholar] [CrossRef]
Variables | Obs | Definition | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
carbon_tour | 16 | Refer to 3.2.1 | 3935.859 | 2052.552 | 1562.653 | 7145.033 |
carbon_com | 478 | Refer to 3.2.1 | 11.896 | 25.523 | 0.048 | 204.592 |
CCI | 478 | Refer to 3.2.1 | 4.693 | 3.062 | 0.320 | 21.981 |
DT | 478 | Refer to 3.2.2 | 1.610 | 1.257 | 0.000 | 5.112 |
ALR | 478 | The ratio of total liabilities to total assets. | 0.376 | 0.185 | 0.025 | 1.282 |
CS | 478 | The natural logarithm of the total assets of the company. | 21.645 | 1.196 | 18.157 | 26.847 |
CA | 478 | The natural logarithm of the number of years of company inception. | 2.846 | 0.377 | 0.693 | 3.526 |
CF | 478 | The ratio of cash flow to total assets. | 0.061 | 0.076 | −0.447 | 0.359 |
CG | 478 | The growth rate of revenue. | 0.729 | 5.465 | −2.897 | 71.473 |
OS | 478 | The difference in shareholding ratio between the top two shareholders. | 26.279 | 16.901 | −8.040 | 67.500 |
LSE | 478 | The ratio of other receivables to total assets. | 0.035 | 0.063 | 0.000 | 0.508 |
GMD | 478 | Dummy variable, which is 1 if the chairman and general manager are combined and 0 otherwise. | 0.096 | 0.295 | 0.000 | 1.000 |
RD1 | 478 | The natural logarithm of R&D, the missing data is replaced by 0. | 3.435 | 6.723 | 0.000 | 20.530 |
RD2 | 478 | Dummy variable, which is 1 if R&D is missing and 0 otherwise. | 0.789 | 0.409 | 0.000 | 1.000 |
Variables | CCI | ||
---|---|---|---|
(1) | (2) | (3) | |
DT | −0.638 *** | −0.361 ** | −0.258 ** |
(0.172) | (0.141) | (0.108) | |
ALR | 0.093 | ||
(0.840) | |||
CS | 0.098 | ||
(0.255) | |||
CA | −0.299 | ||
(1.692) | |||
CF | −3.039 * | ||
(1.503) | |||
CG | −0.012 * | ||
(0.007) | |||
OS | 0.023 | ||
(0.018) | |||
LSE | 5.658 ** | ||
(2.235) | |||
GMD | 0.520 | ||
(0.355) | |||
RD1 | −0.243 ** | ||
(0.110) | |||
RD2 | −3.711 ** | ||
(1.646) | |||
Individual | No | Yes | Yes |
Year | No | Yes | Yes |
Industry | No | Yes | Yes |
Constant | 5.721 *** | 5.275 *** | 6.897 |
(0.488) | (0.227) | (8.867) | |
R-squared | 0.069 | 0.823 | 0.844 |
N | 478 | 478 | 478 |
Variables | CCI | ES | CCI | CCI | CCI | CCI | CCI |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
DIA | −0.276 *** | ||||||
(0.055) | |||||||
DT | 0.098 * | −0.227 ** | −0.264 ** | −0.297 *** | −0.453 * | −0.604 *** | |
(0.052) | (0.105) | (0.105) | (0.103) | (0.216) | (0.222) | ||
Control | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
year | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 12.504 ** | −0.158 | 5.842 | −8.671 | 8.508 | −19.314 | 2.700 |
(5.413) | (1.880) | (9.104) | (10.865) | (5.952) | (13.160) | (11.770) | |
R-squared | 0.830 | 0.568 | 0.853 | 0.848 | 0.889 | 0.938 | 0.895 |
N | 327 | 407 | 450 | 438 | 367 | 87 | 214 |
Variables | The First Stage: DT | The Second Stage: CCI |
---|---|---|
(1) | (2) | |
iv1 | 0.896 *** | |
(0.057) | ||
iv2 | 0.129 *** | |
(0.047) | ||
DT | −0.301 * | |
(0.166) | ||
Control | Yes | Yes |
Individual | Yes | Yes |
year | Yes | Yes |
industry | Yes | Yes |
Kleibergen-Paap rk LM stat. | 18.141 *** | |
Cragg-Donald Wald F stat. | 152.926 | |
Hansen J stat. | 0.789 | |
(P) | (0.374) | |
N | 478 |
Variables | MM | CCI | RA | CCI | CC | CCI |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
DT | −0.022 ** | 0.014 * | 0.249 *** | |||
(0.009) | (0.008) | (0.042) | ||||
MM | 2.006 *** | |||||
(0.732) | ||||||
RA | −0.830 * | |||||
(0.454) | ||||||
CC | −0.572 *** | |||||
(0.201) | ||||||
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Individual | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 0.221 | 6.004 | 0.153 | 6.505 | 1.324 | 7.411 |
(0.438) | (8.789) | (0.348) | (9.297) | (1.570) | (8.594) | |
R-squared | 0.381 | 0.845 | 0.492 | 0.842 | 0.787 | 0.848 |
N | 478 | 478 | 478 | 478 | 478 | 478 |
Variables | CCI | |||||
---|---|---|---|---|---|---|
Private | State-Owned | Low Diversity | High Diversity | Low-Level Business Environment | High-Level Business Environment | |
(1) | (2) | (3) | (4) | (5) | (6) | |
DT | 0.093 | −0.314 ** | −0.166 | −0.425 *** | −0.185 | −0.330 ** |
(0.207) | (0.139) | (0.176) | (0.135) | (0.146) | (0.132) | |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Individual | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 34.841 | 4.627 | 13.057 ** | 6.662 | −16.680 | 7.646 |
(40.201) | (9.030) | (5.481) | (18.167) | (12.846) | (6.454) | |
R-squared | 0.839 | 0.887 | 0.894 | 0.849 | 0.861 | 0.864 |
N | 129 | 349 | 207 | 240 | 216 | 262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Qi, X.; Wang, L. Digital Transformation and Carbon Intensity: Evidence from Chinese Tourism Companies. Sustainability 2024, 16, 9454. https://doi.org/10.3390/su16219454
Lin Y, Qi X, Wang L. Digital Transformation and Carbon Intensity: Evidence from Chinese Tourism Companies. Sustainability. 2024; 16(21):9454. https://doi.org/10.3390/su16219454
Chicago/Turabian StyleLin, Yi, Xin Qi, and Lijuan Wang. 2024. "Digital Transformation and Carbon Intensity: Evidence from Chinese Tourism Companies" Sustainability 16, no. 21: 9454. https://doi.org/10.3390/su16219454
APA StyleLin, Y., Qi, X., & Wang, L. (2024). Digital Transformation and Carbon Intensity: Evidence from Chinese Tourism Companies. Sustainability, 16(21), 9454. https://doi.org/10.3390/su16219454