City Boundaries—Utilizing Fuzzy Set Theory for the Identification and Localization of the Urban–Rural Transition Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Methodology
3. Results
4. Discussion
- ✓
- The application of fuzzy set theory: In contrast to the conventional delineation of sharp boundaries between urban and rural areas, this study employs a fuzzy boundary approach that more accurately reflects the gradual transitions in land use. The concepts of urban or rural function set memberships with values in the range [0, 1] are introduced, thus enabling the analysis of complex, hybrid areas with greater accuracy;
- ✓
- The dynamics of spatial change: The study monitors spatial change and the extent of urbanisation across selected time periods (2005, 2010, 2017, 2022), examining the rate and trajectory of urban development, thereby facilitating more accurate forecasting of future urban development;
- ✓
- The utilisation of sophisticated geospatial data analytics techniques: the application of photogrammetric techniques, GIS, and spatial data derived from orthophotomaps and remote terrain reconnaissance enabled the precise location of land use changes and the identification of conflict areas;
- ✓
- Monitoring of transition zones: The study focuses on the continuous monitoring of urban–rural transition zones, which is crucial for the prevention of urban sprawl and the degradation of green spaces.
5. Conclusions
- Determining the purpose of the analysis—clearly defining the research problem, e.g., identifying and locating urban investment boundaries and transition zones that can be used to forecast urban development; establishing the temporal and spatial scope of the study;
- Acquisition of geospatial data collection of precise satellite data, aerial photographs and GIS data;
- Land use classification—assigning individual lands to specific land use categories adopted for the analysis;
- Development of an urban and transition zone model—creation of a detailed spatial model including urban and rural transition areas;
- Analysis of land use change—study of the dynamics of land use change over specific time intervals;
- Visualisation of results—preparation of detailed maps showing land use changes, such as conversion of agricultural land to urban;
- Validation of results—carrying out validation of results using statistical and field methods;
- Interpretation and inference—analysing the causes of observed changes and assessing their impact on the study area;
- Visualising results—graphical presentation of the results obtained to facilitate interpretation and communication;
- Inference, forecasting of change and updating of planning policy—formulation of forecasts of future change and updating of planning policy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gratz, N.G. Urbanization, Arthropod and Rodent Pests and Human Health. In Proceedings of the 3rd International Conference on Urban Pests; Grafické Závody: Prague, Czech Republic, 1999. [Google Scholar]
- United Nations World Urbanization Prospects—Population Division. United Nations; United Nations World Urbanization Prospects—Population Division: New York, NY, USA, 2019. [Google Scholar]
- Węcławowicz, G. Geografia społeczna miast w Polsce = Urban social geography in Poland. Prz. Geogr. 2017, 89, 535–563. [Google Scholar] [CrossRef]
- Antrop, M.; Van Eetvelde, V. Holistic Aspects of Suburban Landscapes: Visual Image Interpretation and Landscape Metrics. Landsc. Urban Plan. 2000, 50, 43–58. [Google Scholar] [CrossRef]
- Acevedo, W.; Masuoka, P. Time-Series Animation Techniques for Visualizing Urban Growth. Comput. Geosci. 1997, 23, 423–435. [Google Scholar] [CrossRef]
- Antrop, M. Why Landscapes of the Past Are Important for the Future. In Landscape and Urban Planning; Elsevier: Amsterdam, The Netherlands, 2005; Volume 70. [Google Scholar]
- Paddison, R. Handbook of Urban Studies; SAGE Publications: Washington, DC, USA, 1998; pp. 1–512. [Google Scholar]
- van den Berg, L.; Drewett, R.; Klaassen, L.H. A Study of Growth and Decline: Urban Europe; Elsevier: Amsterdam, The Netherlands, 1982; ISBN 978-1-4831-5743-6. [Google Scholar]
- Champion, A.G. The Stages of Urban Development Model Applied to Upper-Tier Regions in the British Urban System. Area 1986, 18, 239–245. [Google Scholar]
- Szmytkie, R. Suburbanisation Processes within and Outside the City: The Development of Intra-Urban Suburbs in Wrocław, Poland. Morav. Geogr. Rep. 2021, 29, 149–165. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ahani, S. Land Tenure-Related Conflicts in Peri-Urban Areas: A Review. Land Use Policy 2019, 85, 218–229. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M.; Biłozor, A. Optimization of the Variables Selection in the Process of Real Estate Markets Rating. Oeconomia Copernic. 2015, 6, 139. [Google Scholar] [CrossRef]
- Bilozor, A.; Renigier-Bilozor, M.; Cellmer, R. Assessment Procedure of Suburban Land Attractiveness and Usability for Housing. In Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; pp. 91–96. [Google Scholar]
- Ready, R.; Abdalla, C. GIS Analysis of Land Use on the Rural-Urban Fringe: The Impact of Land Use and Potential Local Disamenities on Residential Property Values and on the Location of Residential Development in Berks County, Pennsylvania; Northeast Regional Center for Rural Development, Pennsylvania State University: University Park, PA, USA, 2003. [Google Scholar]
- Hasse, J.E.; Lathrop, R.G. Land Resource Impact Indicators of Urban Sprawl. Appl. Geogr. 2003, 23, 159–175. [Google Scholar] [CrossRef]
- Biłozor, A.; Renigier-Biłozor, M. Procedure of Assessing Usefulness of the Land in the Process of Optimal Investment Location for Multi-Family Housing Function. Procedia Eng. 2016, 161, 1868–1873. [Google Scholar] [CrossRef]
- Gumma, M.K.; Mohammad, I.; Nedumaran, S.; Whitbread, A.; Lagerkvist, C.J. Urban Sprawl and Adverse Impacts on Agricultural Land: A Case Study on Hyderabad, India. Remote Sens. 2017, 9, 1136. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M.; Biłozor, A.; Wisniewski, R. Rating Engineering of Real Estate Markets as the Condition of Urban Areas Assessment. Land Use Policy 2017, 61, 511–525. [Google Scholar] [CrossRef]
- Altrock, U. New (Sub)Urbanism? How German Cities Try to Create Urban Neighborhoods in Their Outskirts as a Contribution to Solving Their Recent Housing Crises. Urban Gov. 2022, 2, 130–143. [Google Scholar] [CrossRef]
- Biłozor, A.; Czyża, S.; Bajerowski, T. Identification and Location of a Transitional Zone between an Urban and a Rural Area Using Fuzzy Set Theory, CLC, and HRL Data. Sustainability 2019, 11, 7014. [Google Scholar] [CrossRef]
- Simon, D. Urban Environments: Issues on the Peri-Urban Fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Siemiński, J.L. Kontinuum miejsko-wiejskie i niektóre jego problemy infrastrukturalne. Infrastrukt. Ekol. Teren. Wiej. 2010, 2, 215–228. [Google Scholar]
- Sobotka, S. Przekształcenia historycznych układów przestrzennych wsi w strefie podmiejskiej Olsztyna, ze szczególnym uwzględnieniem Brąswałdu, Dorotowa i Jonkowa. Acta Sci. Pol. Adm. Locorum 2014, 13, 39–57. [Google Scholar]
- Szmytkie, R. Metody Analizy Morfologii i Fizjonomii Jednostek Osadniczych; Instytut Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego: Wrocław, Poland, 2014; ISBN 978-83-62673-45-2. [Google Scholar]
- Konecka-Szydłowska, B. Najmniejsze Miasta w Polsce w Ujęciu Koncepcji Kontinuum Miejsko-Wiejskiego. Rozw. Reg. Polityka Reg. 2018, 41, 151–165. [Google Scholar] [CrossRef]
- Labbé, D. Facing the Urban Transition in Hanoi: Recent Urban Planning Issues and Initiatives; Institut National de la Recherche Scientifique-Urbanisation Centre de Documentation: Quebec, QC, Canada, 2010. [Google Scholar]
- Loibl, W.; Piorr, A.P.; Ravetz, J. Concepts and Methods. In Life Sciences; University of Copenhagen: Copenhagen, Denmark, 2011. [Google Scholar]
- Ravetz, J.; Warhurst, P. Manchester: Re-Inventing the Local–Global in the Peri-Urban City-Region. In Peri-Urban Futures: Scenarios and Models for Land Use Change in Europe; Nilsson, K., Pauleit, S., Bell, S., Aalbers, C., Sick Nielsen, T.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 169–207. ISBN 978-3-642-30528-3. [Google Scholar]
- Degórska, B. Urbanizacja Przestrzenna Terenów Wiejskich na Obszarze Metropolitalnym Warszawy: Kontekst Ekologiczno-Krajobrazowy; IGiPZ PAN: Warszawa, Poland, 2017; ISBN 978-83-61590-86-6. [Google Scholar]
- Cieślak, I.; Biłozor, A. A Dynamic Evaluation of Landscape Transformations Based on Land Cover Data. Landsc. Online 2022, 97, 1097. [Google Scholar] [CrossRef]
- Ma, D.; Xiong, H.; Zhang, F.; Gao, L.; Zhao, N.; Yang, G.; Yang, Q. China’s Industrial Green Total-Factor Energy Efficiency and Its Influencing Factors: A Spatial Econometric Analysis. Environ. Sci. Pollut. Res. 2022, 29, 18559–18577. [Google Scholar] [CrossRef]
- Moreira-Muñoz, A.; Río, C.D.; Leguia-Cruz, M.; Mansilla-Quiñones, P. Spatial Dynamics in the Urban-Rural-Natural Interface within a Social-Ecological Hotspot. Appl. Geogr. 2023, 159, 103060. [Google Scholar] [CrossRef]
- Tacoli, C. The Links between Urban and Rural Development. Environ. Urban. 2003, 15, 3–12. [Google Scholar] [CrossRef]
- Gallent, N. The Rural–Urban Fringe: A New Priority for Planning Policy? Plan. Pract. Res. 2006, 21, 383–393. [Google Scholar] [CrossRef]
- Nabielek, K.; Kronberger-Nabielek, P.; Hamers, D. The Rural-Urban Fringe in the Netherlands: Recent Developments and Future Challenges. Spool 2013, 1, 101–120. [Google Scholar]
- Hoffmann, E.; Jose, M.; Nölke, N.; Möckel, T. Construction and Use of a Simple Index of Urbanisation in the Rural–Urban Interface of Bangalore, India. Sustainability 2017, 9, 2146. [Google Scholar] [CrossRef]
- Gallent, N.; Shaw, D. Spatial Planning, Area Action Plans and the Rural-Urban Fringe. J. Environ. Plan. Manag. 2007, 50, 617–638. [Google Scholar] [CrossRef]
- Gant, R.L.; Robinson, G.M.; Fazal, S. Land-Use Change in the Edgelands: Policies and Pressures in London’s Rural–Urban Fringe. Land Use Policy 2011, 28, 266–279. [Google Scholar] [CrossRef]
- Hao, P.; Geertman, S.; Hooimeijer, P.; Sliuzas, R. The Land-Use Diversity in Urban Villages in Shenzhen. Environ. Plan A 2012, 44, 2742–2764. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- De Toro, P.; Formato, E.; Fierro, N. Sustainability Assessments of Peri-Urban Areas: An Evaluation Model for the Territorialization of the Sustainable Development Goals. Land 2023, 12, 1415. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the Relationship between Morphological Spatial Pattern of Green Space and Urban Heat Island Using Machine Learning Methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Nechyba, T.J.; Walsh, R.P. Urban Sprawl. J. Econ. Perspect. 2004, 18, 177–200. [Google Scholar] [CrossRef]
- Antrop, M. Rural-Urban Conflicts and Opportunities. In The New Dimensions of the European Landscape; Wageningen UR Frontis Series; Jongman, R.H.G., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 4, pp. 83–91. ISBN 978-1-4020-2910-3. [Google Scholar]
- Yang, Y.; Ye, L. Peri-Urban Development. In Urban Studies; Oxford University Press: Oxford, UK, 2020; ISBN 978-0-19-092248-1. [Google Scholar]
- Qviström, M. Landscapes out of Order: Studying the Inner Urban Fringe beyond the Rural—Urban Divide. Geogr. Ann. Ser. B Hum. Geogr. 2007, 89, 269–282. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H. A Harmonised Definition of Cities and Rural Areas: The New Degree of Urbanisation. In Regional Policy Working Papers; Word Bank: Washington, DC, USA, 2014. [Google Scholar]
- Almusaed, A.; Almssad, A. City Phenomenon between Urban Structure and Composition. In Sustainability in Urban Planning and Design; Almusaed, A., Almssad, A., Truong-Hong, L., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-351-3. [Google Scholar]
- Sahana, M.; Ravetz, J.; Patel, P.P.; Dadashpoor, H.; Follmann, A. Where Is the Peri-Urban? A Systematic Review of Peri-Urban Research and Approaches for Its Identification and Demarcation Worldwide. Remote Sens. 2023, 15, 1316. [Google Scholar] [CrossRef]
- Al-Bilbisi, H. Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan. Sustainability 2019, 11, 2260. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Sustainable Urban Land-Use Optimization Using GIS-Based Multicriteria Decision-Making (GIS-MCDM) Approach. ISPRS Int. J. Geo-Inf. 2022, 11, 313. [Google Scholar] [CrossRef]
- Śleszyński, P.; Gibas, P.; Sudra, P. The Problem of Mismatch between the CORINE Land Cover Data Classification and the Development of Settlement in Poland. Remote Sens. 2020, 12, 2253. [Google Scholar] [CrossRef]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef]
- Balz, T.; Washaya, P.; Jendryke, M. Urban Change Monitoring Using Globally Available Sentinel-1 Imagery. In Proceedings of the 2018 International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018; pp. 1–4. [Google Scholar]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Schug, F.; Okujeni, A.; Hauer, J.; Hostert, P.; Nielsen, J.Ø.; van der Linden, S. Mapping Patterns of Urban Development in Ouagadougou, Burkina Faso, Using Machine Learning Regression Modeling with Bi-Seasonal Landsat Time Series. Remote Sens. Environ. 2018, 210, 217–228. [Google Scholar] [CrossRef]
- Benedetti, A.; Picchiani, M.; Del Frate, F. Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1962–1965. [Google Scholar]
- Akay, S.S.; Sertel, E. Urban Land Cover/Use Change Detection Using High Resolution Spot 5 and Spot 6 Images and Urban Atlas Nomenclature. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 789–796. [Google Scholar] [CrossRef]
- Che, M.; Gamba, P. Intra-Urban Change Analysis Using Sentinel-1 and Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1134–1142. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the Dynamics of Urban Expansion in China Using DMSP-OLS Nighttime Light Data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Washaya, P.; Balz, T. Sar Coherence Change Detection of Urban Areas Affected by Disasters Using Sentinel-1 Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 1857–1861. [Google Scholar] [CrossRef]
- Kuc, G.; Chormański, J. Sentinel-2 Imagery for Mapping and Monitoring Imperviousness in Urban Areas. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 43–47. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative Estimation of Urbanization Dynamics Using Time Series of DMSP/OLS Nighttime Light Data: A Comparative Case Study from China’s Cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Dou, Y. Similarities and Differences of City-Size Distributions in Three Main Urban Agglomerations of China from 1992 to 2015: A Comparative Study Based on Nighttime Light Data. J. Geogr. Sci. 2017, 27, 533–545. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban Mapping Using DMSP/OLS Stable Night-Time Light: A Review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-Temporal Dynamics of Urban Residential CO2 Emissions and Their Driving Forces in China Using the Integrated Two Nighttime Light Datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Cantor, G. Ueber eine elementare Frage der Mannigfaltigketislehre. Jahresber. Dtsch. Math. Ver. 1890, 1, 72–78. [Google Scholar]
- Zadeh, L. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy Set Theory. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 317–332. [Google Scholar] [CrossRef]
- Piegat, A. Fuzzy Modeling and Control: With 96 Tables. In Studies in Fuzziness and Soft Computing; Physica-Verl: Heidelberg, Germany, 2001; ISBN 978-3-7908-1385-2. [Google Scholar]
- Biłozor, A.; Cieślak, I.; Czyza, S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory-A Case Study of the City of Olsztyn. Remote Sens. 2020, 12, 1784. [Google Scholar] [CrossRef]
- Cieślak, I.; Górecka, K. An Evaluation of Urbanisation Processes in Suburban Zones Using Land-Cover Data and Fuzzy Set Theory. Bull. Geogr. Socio. Econ. Ser. 2021, 54, 49–62. [Google Scholar] [CrossRef]
- Davis, J.S.; Nelson, A.C.; Dueker, K.J. The New’ Burbs the Exurbs and Their Implications for Planning Policy. J. Am. Plan. Assoc. 1994, 60, 45–59. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A New Approach for Urban-Rural Fringe Identification: Integrating Impervious Surface Area and Spatial Continuous Wavelet Transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Cieślak, I. Identification of Areas Exposed to Land Use Conflict with the Use of Multiple-Criteria Decision-Making Methods. Land Use Policy 2019, 89, 104225. [Google Scholar] [CrossRef]
- Gottero, E.; Larcher, F.; Cassatella, C. Defining and Regulating Peri-Urban Areas through a Landscape Planning Approach: The Case Study of Turin Metropolitan Area (Italy). Land 2023, 12, 217. [Google Scholar] [CrossRef]
- Biłozor, A.; Cieślak, I.; Czyża, S.; Szuniewicz, K.; Bajerowski, T. Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn. Sustainability 2024, 16, 2923. [Google Scholar] [CrossRef]
- Łachwa, A. Rozmyty Świat Zbiorów, Liczb, Relacji, Faktów, Reguł i Decyzji; Akademicka Oficyna Wydawnicza EXIT: Warsaw, Poland, 2001; ISBN 978-83-87674-21-2. [Google Scholar]
- Hall, L.O.; Szabo, S.; Kandel, A. On the Derivation of Memberships for Fuzzy Sets in Expert Systems. Inf. Sci. 1986, 40, 39–52. [Google Scholar] [CrossRef]
- Cieślak, M.; Smoluk, A. Zbiory Rozmyte; Rozpoznawanie Obrazów; Teoria Katastrof: Wybór Tekstów. 1988. Available online: http://www.bb.wz.uw.edu.pl/index.php?KatID=1&typ=record&001=vtls000025485 (accessed on 29 August 2024).
- Hoogerbrugge, M.; Burger, M. Selective Migration and Urban–Rural Differences in Subjective Well-Being: Evidence from the United Kingdom. Urban Stud. 2022, 59, 2092–2109. [Google Scholar] [CrossRef]
- Isaia, M.; Siniscalco, C.; Badino, G. From Rural to Urban: Landscape Changes in North-West Italy over Two Centuries. Landsc. Hist. 2014, 35, 73–76. [Google Scholar] [CrossRef]
- Bieda, A. Increase in the Number of Submitted Maps for Design Purposes as a Determinant of Proper Spatial Planning Policy. J. Water Land Dev. 2017, 34, 65–75. [Google Scholar] [CrossRef]
- Computing Archaeology for Understanding the Past—CAA 2000: Computer Applications and Quantitative Methods in Archaeology: Proceedings of the 28th Conference, Ljubljana, Slovenia, April 2000; Stancic, Z.; Veljanovski, T. (Eds.) University of Michigan Press: Ann Arbor, MI, USA, 2001; ISBN 978-1-84171-225-3. [Google Scholar]
- Linder, W. Digital Photogrammetry; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-50462-8. [Google Scholar]
- Tiwari, V.; Kumar, A.; Mukherjee, M. GIS and AHP-Based Groundwater Recharge Potential Zones in Urban Region: A Study of Ajmer City, Rajasthan, India. In Urban Climate; Elsevier: Amsterdam, The Netherlands, 2024; Volume 54, p. 101840. ISSN 2212-0955. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Frazier, A.E.; Liu, Y. Urban Boundary Extraction and Sprawl Analysis Using Landsat Images: A Case Study in Wuhan, China. In Habitat International; Elsevier: Amsterdam, The Netherlands, 2015; Volume 47, pp. 183–195. ISSN 0197-3975. [Google Scholar] [CrossRef]
- Cieślak, I.; Czyża, S.; Szuniewicz, K.; Ogrodniczak, M. Assessment of Residential Areas of City on the Example of Olsztyn. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 102001. [Google Scholar] [CrossRef]
- Lisini, G.; Salentinig, A.; Du, P.; Gamba, P. SAR-Based Urban Extents Extraction: From ENVISAT to Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2683–2691. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Multi-Temporal SAR Image Classification of Coastal Plain Wetlands Using a New Feature Selection Method and Random Forests. Remote Sens. Lett. 2019, 10, 312–321. [Google Scholar] [CrossRef]
No | Land-Use Types | Degree of Alignment with Urban Functions |
---|---|---|
1 | Single-family homes | 0.69 |
2 | Multi-family housing | 1.00 |
3 | Services | 0.92 |
4 | Sports and recreational areas | 0.66 |
5 | Commercial facilities with a sales area larger than 2000 m2 | 0.90 |
6 | Agricultural land | 0.09 |
7 | Orchards and horticulture farms | 0.26 |
8 | Auxiliary services for farms, breeding centres, horticulture farms, forests, and fish farms | 0.10 |
9 | Farmstead buildings in crop, livestock, and horticulture farms | 0.16 |
10 | Industrial plants and warehouses | 0.97 |
11 | Mining areas | 0.34 |
12 | Forests | 0.20 |
13 | Organized green spaces | 0.68 |
14 | Natural (unorganized) green spaces | 0.35 |
15 | Gardens | 0.45 |
16 | Cemeteries | 0.51 |
17 | Marine surface waters | 0.20 |
18 | Inland surface waters | 0.20 |
19 | Public roads | 0.82 |
20 | Internal roads | 0.80 |
21 | Water transport routes | 0.52 |
22 | Technical infrastructure | 0.66 |
23 | Special areas—military, police | 0.76 |
24 | Construction sites | 0.64 |
0.30–0.50 Fields/Area (ha) | 0.35–0.50 Fields/Area (ha) | 0.40–0.50 Fields/Area (ha) | 0.45–0.50 Fields/Area (ha) | |||||
---|---|---|---|---|---|---|---|---|
2005 | 234 | 4680 | 169 | 3380 | 100 | 2000 | 45 | 900 |
2010 | 234 | 4680 | 164 | 3280 | 88 | 1760 | 44 | 880 |
2017 | 253 | 5060 | 185 | 3700 | 99 | 1980 | 50 | 1000 |
2022 | 271 | 5420 | 197 | 3940 | 109 | 2180 | 51 | 1020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biłozor, A.; Czyża, S.; Cieślak, I.; Szuniewicz, K. City Boundaries—Utilizing Fuzzy Set Theory for the Identification and Localization of the Urban–Rural Transition Zone. Sustainability 2024, 16, 9490. https://doi.org/10.3390/su16219490
Biłozor A, Czyża S, Cieślak I, Szuniewicz K. City Boundaries—Utilizing Fuzzy Set Theory for the Identification and Localization of the Urban–Rural Transition Zone. Sustainability. 2024; 16(21):9490. https://doi.org/10.3390/su16219490
Chicago/Turabian StyleBiłozor, Andrzej, Szymon Czyża, Iwona Cieślak, and Karol Szuniewicz. 2024. "City Boundaries—Utilizing Fuzzy Set Theory for the Identification and Localization of the Urban–Rural Transition Zone" Sustainability 16, no. 21: 9490. https://doi.org/10.3390/su16219490
APA StyleBiłozor, A., Czyża, S., Cieślak, I., & Szuniewicz, K. (2024). City Boundaries—Utilizing Fuzzy Set Theory for the Identification and Localization of the Urban–Rural Transition Zone. Sustainability, 16(21), 9490. https://doi.org/10.3390/su16219490