Rooted in Sustainability: Developing an Integrated Assessment Framework for Horticulture—The Example of Potted Plants
Abstract
:1. Introduction
2. Methodology
3. Sustainability in Floriculture Production
4. Results
- Indicators: Individual indicators can be aggregated to create a sustainability index [58,94]. Methods can be additive (equally weighted addition of the individual indicators to an overall result), linear, geometric/multiplicative (multiplication of the individual indicators to an overall result) or non-compensatory [89,94]. Aggregation should reflect the individual relevance of indicators in the measured system [83]. Although equal weighting of indicators [108] is the simplest way, it is usually not recommended. Some indicators are more important than others because their topic poses a higher potential risk to nature, people and company, which should be taken into account in their weighting. The weighting could be performed by an expert or stakeholder groups [87,109].
- Dimensions: In terms of bringing the dimensions together, there are two key concepts: strong sustainability and weak sustainability. Weak sustainability describes the situation when natural and manufactured capital are replaceable and only the entire capital stock needs to be maintained [63]. In contrast, strong sustainability describes the situation where natural capital is not replaceable and the loss of natural capital cannot be compensated by manufactured capital [63]. Following the TBL, these definitions mean that substitution between the three dimensions corresponds to weak sustainability, but for strong sustainability, there must be no compensation between the three dimensions [100]. So, good results from the social dimension cannot compensate for bad results from the environmental dimension. Thus, when producing an overall outcome that includes all dimensions, substitution between the dimensions may occur. An overall result including all dimensions is not advisable [81], as equal weighting of the dimensions would lead to a higher consideration of the dimension that contains the most indicators [62]. An unequal weighting of the dimensions, on the other hand, would also lead to unequal treatment [110]. In the formation of an overall result, an equal weighting of the dimensions would offer the possibility of compensating poor results of one dimension with good results of another dimension. However, this problem also occurs when forming a result within a dimension [110], as in such a case that the indicators can compensate for each other. Therefore, it is essential to look at each indicator and its outcome. If the dimensions are treated separately, if they are not compared with each other and if the indicators of one dimension are not summed up, the individual problem areas for the company become recognisable and substitutions are prevented. In essence, different tools follow different strategies in dividing sustainability into dimensions and indicators [93].
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosen, M.A. The Future of Sustainable Development: Welcome to the European Journal of Sustainable Development Research. Eur. J. Sustain. Dev. Res. 2017, 1, 1–2. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our Common Future; World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Johnston, P.; Everard, M.; Santillo, D.; Ròbert, K.-H. Reclaiming the Definition of Sustainability. Environ. Sci. Pollut. Res. Int. 2007, 14, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, A.; Groot, A.; Nieuwenhuizen, W. Glasshouse Horticulture in the Netherlands: Governance for Resilient and Sustainable Economies. In Proceedings of the European Conference of the Regional Studies Association, Izmir, Turkey, 15–18 June 2014; pp. 1–24. [Google Scholar]
- Van Passel, S.; Nevens, F.; Mathijs, E.; Van Huylenbroeck, G. Measuring Farm Sustainability and Explaining Differences in Sustainable Efficiency. Ecol. Econ. 2007, 62, 149–161. [Google Scholar] [CrossRef]
- Sachs, J.D. From Millennium Development Goals to Sustainable Development Goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef]
- Stichnothe, H. Nachhaltige Entwicklung Messen. Ein Überblick. In Methoden der Nachhaltigkeitsbewertung in der Landwirtschaft. Möglichkeiten und Grenzen; Senat der Bundesforschungsinstitute des Bundesministeriums: Berlin, Germany, 2014; pp. 6–12. [Google Scholar]
- Acosta-Alba, I.; Van der Werf, H.M.G. The Use of Reference Values in Indicator-Based Methods for the Environmental Assessment of Agricultural Systems. Sustainability 2011, 3, 424–442. [Google Scholar] [CrossRef]
- Elkington, J. Enter the Triple Bottom Line. In The Triple Bottom Line. Does It All Add Up; Henriques, A., Richardson, J., Eds.; Routledge: London, UK, 2004; pp. 1–16. [Google Scholar]
- Bitter, J.; Printz, S.; Lahl, K.; Vossen, R.; Jeschke, S. Fuzzy Logic Approach for Sustainability Assessment Based on the Integrative Sustainability Triangle—An Application for a Wind Power Plant. In Proceedings of the 7th International ENERGY Conference & Workshop REMOO, Venice, Italy, 10–12 May 2017. [Google Scholar]
- Kleine, A.; von Hauff, M. Sustainability-Driven Implementation of Corporate Social Responsibility: Application of the Integrative Sustainability Triangle. J. Bus. Ethics 2009, 85, 517–533. [Google Scholar] [CrossRef]
- Bitsch, V. Sustainability as Innovation: Challenges and Perspectives in Measurement and Implementation. In Diffusion and Transfer of Knowledge in Agriculture, Matière à Débattre Décider; Huyghe, C., Bergeret, P., Svedin, U., Eds.; Éditions Quae: Versailles, France, 2016. [Google Scholar]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An Overview of Sustainability Assessment Methodologies. Ecol. Indic. 2012, 15, 281–299. [Google Scholar] [CrossRef]
- Forin, S.; Martinez-Blanco, J.; Finkbeiner, M. Die Organisationsbezogene Ökobilanz (OLCA). In Betriebliche Nachhaltigkeitsleistung Messen und Steuern; Baumast, A., Pape, J., Weihofen, S., Wellge, S., Eds.; Eugen Ulmer: Stuttgart, Germany, 2019; pp. 127–157. [Google Scholar]
- Schultheiß, U.; Zapf, R.; Döhler, H. Bewertung der Nachhaltigkeit landwirtschaftlicher Betriebe. Landtechnik 2008, 63, 293–295. [Google Scholar] [CrossRef]
- Ehrmann, M.; Kleinhanss, W. Review of Concepts for the Evaluation of Sustainable Agriculture in Germany and Comparison of Measurement Schemes for Farm Sustainability; Arbeitsberichte aus der vTI-Agrarökonomie: Braunschweig, Germany, 2008. [Google Scholar]
- Wustenberghs, H.; Coteur, I.; Debruyne, L.; Marchand, F. Survey of Sustainability Assessment Methods; Flanders Research Institute for Agriculture, Fisheries and Food: Brussels, Belgium, 2015. [Google Scholar]
- Krug, B.A.; Burnett, S.E.; Dennis, J.H.; Lopez, R.G. Growers Look at Operating a Sustainable Greenhouse. GMPro 2008, 28, 43–45. [Google Scholar]
- Sánchez-Bravo, P.; Chambers, V.E.; Noguera-Artiaga, L.; Sendra, E.; Chambers IV, E.; Carbonell-Barrachina, Á.A. Consumer Understanding of Sustainability Concept in Agricultural Products. Food Qual. Prefer. 2021, 89, 104136. [Google Scholar] [CrossRef]
- Freebairn, D.M.; King, C.A. Reflections on Collectively Working toward Sustainability: Indicators for Indicators! Aust. J. Exp. Agric. 2003, 43, 223–238. [Google Scholar] [CrossRef]
- Damij, N. Business Process Modelling Using Diagrammatic and Tabular Techniques. Bus. Process Manag. J. 2007, 13, 70–90. [Google Scholar] [CrossRef]
- Aguilar-Savén, R.S. Business Process Modelling: Review and Framework. Int. J. Prod. Econ. 2004, 90, 129–149. [Google Scholar] [CrossRef]
- Winkelmann, A.; Weiß, B. Automatic Identification of Structural Process Weaknesses in Flow Chart Diagrams. Bus. Process Manag. J. 2011, 17, 787–807. [Google Scholar] [CrossRef]
- Xia, Y.; Deng, X.; Zhou, P.; Shima, K.; Teixeira da Silva, J.A. The World Floriculture Industry: Dynamics of Production and Markets. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues; Teixeira da Silva, J.A., Ed.; Global Science Books: Bexhill-On-Sea, UK, 2006; Volume 4, pp. 336–347. [Google Scholar]
- Poincelot, R.P. Sustainable Horticulture. Today and Tomorrow; Prentice Hall: Hoboken, NJ, USA, 2004; ISBN 0-13-618554-1. [Google Scholar]
- Agrarmarkt Informations-Gesellschaft mbH. Warenstromanalyse 2018. Blumen, Zierpflanzen & Gehölze; Agrarmarkt Informations-Gesellschaft mbH: Bonn, Germany, 2020. [Google Scholar]
- Havardi-Burger, N.; Mempel, H.; Bitsch, V. Driving Forces and Characteristics of the Value Chain of Flowering Potted Plants for the German Market. Eur. J. Hortic. Sci. 2020, 85, 267–278. [Google Scholar] [CrossRef]
- Berghage, R.D.; MacNeal, E.P.; Wheeler, E.F.; Zachritz, W.H. “Green” Water Treatment for the Green Industries: Opportunities for Biofiltration of Greenhouse and Nursery Irrigation Water and Runoff with Constructed Wetlands. HortScience 1999, 34, 50–54. [Google Scholar] [CrossRef]
- Campiotti, C.; Viola, C.; Alonzo, G.; Bibbiani, C.; Giagnacovo, G.; Scoccianti, M.; Tumminelli, G. Sustainable Greenhouse Horticulture in Europe. J. Sustain. Energy 2012, 3. Available online: https://arpi.unipi.it/retrieve/handle/11568/788029/92641/v3-n3-7.pdf (accessed on 11 November 2024).
- Hewett, E.W. High-Value Horticulture in Developing Countries: Barriers and Opportunities. CABI Rev. 2012, 7, 1–16. [Google Scholar] [CrossRef]
- Luer, R.; Hecht, J.; Hermann, A. Kennzahlen für den Betriebsvergleich im Gartenbau 2023; Centre for Business Management in Horticulture and Applied Research: Stutggart, Germany, 2023; Volume 66. [Google Scholar]
- Samaranayake, P.; Liang, W.; Chen, Z.-H.; Tissue, D.; Lan, Y.-C. Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production. Energies 2020, 13, 4468. [Google Scholar] [CrossRef]
- Dominguez, G.B.; Mibus-Schoppe, H.; Sparke, K. Evaluation of Existing Research Concerning Sustainability in the Value Chain of Ornamental Plants. Eur. J. Sustain. Dev. 2017, 6, 11–19. [Google Scholar] [CrossRef]
- Blanke, M.M.; Golombek, S.D. Innovative Strategy to Reduce Single-Use Plastics in Sustainable Horticulture by a Refund Strategy for Flowerpots. Sustainability 2021, 13, 8532. [Google Scholar] [CrossRef]
- Lütken, H.; Clarke, J.L.; Müller, R. Genetic Engineering and Sustainable Production of Ornamentals: Current Status and Future Directions. Plant Cell Rep. 2012, 31, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable Greenhouse Systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 1–79. ISBN 978-1-60876-269-9. [Google Scholar]
- Allera, C.; Bastianoni, S.; Guda, C.; Farina, E.; Ficarra, L.; Gentile, G.; Ilariuzzi, E.; Lanteri, A.; Mariotti, M.; Martini, P.; et al. Sustainable Floriculture. Handbook and Guidelines; Mariotti, M.G., Roccotiello, E., Eds.; Del Gallo editori s.r.l. Green Printing: Spoleto, Italy, 2013; ISBN 788-8-9073-845-6. [Google Scholar]
- Isaak, M.; Brenneke, I.; Lentz, W. The Reputation of Horticulture—An Internal View of the Industry. Int. Food Agribus. Man. 2021, 24, 233–247. [Google Scholar] [CrossRef]
- Ludwig-Ohm, S.; Dirksmeyer, W. Ausgewählte Analysen zu den Rahmenbedingungen und zur Wettbewerbsfähigkeit des Gartenbaus in Deutschland; Del Gallo editori s.r.l. Green Printing: Spoleto, Italy, 2013; Volume 6. [Google Scholar]
- Agrarmarkt Informations-Gesellschaft mbh. Warenstromanalyse 2022. Blumen, Zierpflanzen & Gehölze; Agrarmarkt Informations-Gesellschaft mbh: Bonn, Germany, 2023. [Google Scholar]
- Zentralverband Gartenbau e.V. Jahresbericht 2020; Zentralverband Gartenbau e.V.: Berlin, Germany, 2021. [Google Scholar]
- Zentralverband Gartenbau e.V. Jahresbericht 2022; Zentralverband Gartenbau e.V.: Berlin, Germany, 2023. [Google Scholar]
- Trade Map. Bilateral Trade between Germany and Kenya Product: 06 Live Trees and Other Plants; Bulbs, Roots and the Like; Cut Flowers and Ornamental Foliage. Available online: https://www.trademap.org/Bilateral_TS.aspx?nvpm=1%7c276%7c%7c404%7c%7c06%7c%7c%7c4%7c1%7c1%7c1%7c2%7c1%7c1%7c1%7c1%7c1 (accessed on 4 November 2024).
- Trade Map. Bilateral Trade between Germany and Uganda Product: 06 Live Trees and Other Plants; Bulbs, Roots and the Like; Cut Flowers and Ornamental Foliage. Available online: https://www.trademap.org/Bilateral_TS.aspx?nvpm=1%7c276%7c%7c800%7c%7c06%7c%7c%7c4%7c1%7c1%7c1%7c2%7c1%7c1%7c1%7c1%7c1 (accessed on 4 November 2024).
- Havardi-Burger, N.; Mempel, H.; Bitsch, V. Framework for Sustainability Assessment of the Value Chain of Flowering Potted Plants for the German Market. J. Clean. Prod. 2021, 329, 129684. [Google Scholar] [CrossRef]
- SCS Global Services. Sustainably Grown Veriflora. A Sustainability Standard for Cut Flowers and Potted Plants; SCS Global Services: Emeryville, CA, USA, 2019. [Google Scholar]
- SCS Global Services. VERIFLORA. The Leading Sustainability Certification for Cut Flowers and Potted Plants; SCS Global Services: Emeryville, CA, USA.
- MPS Group. MPS-ABS. Available online: https://my-mps.com/diensten/mps-abc/?lang=en (accessed on 20 April 2023).
- MPS Group. MPS-Socially Qualified. Available online: https://my-mps.com/diensten/mps-socially-qualified/?lang=en (accessed on 23 August 2024).
- GlobalG.A.P. Integrated Farm Assurance for Flowers and Ornamentals. Available online: https://www.globalgap.org/what-we-offer/solutions/ifa-flowers-and-ornamentals/ (accessed on 13 November 2024).
- FSI. FSI 2025. Floriculture Sustainability Initiative. Available online: https://www.fsi2025.com/ (accessed on 15 June 2023).
- Luer, R. Unabhängige Nachhaltigkeitsbewertung mit dem Betriebsvergleich 4.0. In Proceedings of the 61. Betriebswirtschaftlichen Fachtagung Gartenbau vom 11, Seddiner See, Germany, 14 September 2023; Neustadt a. d. Weinstraße. Centre for Business Management in Horticulture and Applied Research: Stuttgart, Germany, 2023; pp. 249–261. [Google Scholar]
- Bell, S.; Morse, S. Sustainability Indicators. Measuring the Immeasureable? 2nd ed.; Routledge: London, UK, 2008; ISBN 978-1-13655-602-9. [Google Scholar]
- Breitschuh, G.; Eckert, H.; Matthes, I.; Strümpfel, J. Kriteriensystem Nachhaltige Landwirtschaft (KSNL); Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.: Darmstadt, Germany, 2008; Volume 466. [Google Scholar]
- Gallopin, G.C. Indicators and Their Use: Information for Decision-Making. Part One—Introduction. In Sustainability Indicators. A Report on the Project on Indicators of Sustainable Development; Moldan, B., Bilharz, S., Eds.; Wiley: Chichester, UK, 1997; pp. 13–27. [Google Scholar]
- Boone, K.; Dolman, M. Monitoring Sustainability of Dutch Agriculture. In Proceedings of the 18th International Workshop on Micro-Economic Databases in Agriculture, Ghent, Belgium, 5–8 September 2010; Boone, K., Teeuwen, C., Eds.; Proceedings of the Pacioli 18. The Hague, The Netherlands, 2010; pp. 171–177. [Google Scholar]
- Coteur, I.; Marchand, F.; Van Passel, S.; Schader, C.; Debruyne, L.; Wustenberghs, H.; Keszthelyi, S. Benchmarking Sustainability Farm Performance at Different Levels and for Different Purposes: Elucidating the State of the Art. In Proceedings of the 12th European IFSA Symposium, Newport, UK, 12–15 July 2016; pp. 1–10. [Google Scholar]
- Dumanski, J.; Pieri, C. Application of the Pressure-State-Response Framework for the Land Quality Indicators (LQI) Programme. In Proceedings of the Land Quality Indicators and Their Use in Sustainable Agriculture and Rural Development, Proceedings of the Workshop, Singapore, 25–26 January 1996; FAO: Rome, Italy, 1997; pp. 35–56. [Google Scholar]
- Knauber, L.; Müller, L.; Luer, R.; Lentz, W. Communication of Sustainability in Horticulture—What Messages Do Consumers Currently Perceive and What Expectations Do They Have Regarding Sustainability? Acta Hortic. 2023, 1380, 31–38. [Google Scholar] [CrossRef]
- Wustenberghs, H.; Coteur, I.; Debruyne, L.; Marchand, F. Discerning the Stars: Characterising the Myriad of Sustainability Assessment Methods. In Proceedings of the 12th European IFSA Symposium, Newport, UK, 12–15 July 2016; p. 14. [Google Scholar]
- Derksen, D.M.; Mithöfer, D. EIP-Agri: Nachhaltiger Topfpflanzenanbau NRW. Bemessung von Nachhaltigkeit Im Gartenbau. Anpassung Der Methode RISE. Abschlussbericht Arbeitspaket 2.2; Kleve, Germany, 2018. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for Composite Indicators Building; Institute for the Protection and Security of the Citizen: Ispra, Italy, 2005. [Google Scholar]
- Neumayer, E. Human Development and Sustainability. J. Hum. Dev. Capabil. 2012, 13, 561–579. [Google Scholar] [CrossRef]
- Russillo, A.; Pintér, L. Linking Farm-Level Measurement Systems to Environmental Sustainability Outcomes: Challenges and Ways Forward; 2009. Available online: https://www.iisd.org/system/files/publications/linking_farm_level_measurement_systems.pdf (accessed on 11 November 2024).
- UNAIDS. An Introduction to Indicators; UNAIDS: Geneva, Switzerland, 2010. [Google Scholar]
- DLG e.V. Bewertungskriterien. Available online: https://www.dlg-nachhaltigkeit.info/de/dlg-standard/dlg-standard-ackerbau (accessed on 19 April 2023).
- GRI. Resource Center. Available online: https://www.globalreporting.org/how-to-use-the-gri-standards/resource-center (accessed on 3 May 2023).
- INL GmbH. REPRO. Available online: https://nachhaltige-landbewirtschaftung.de/nachhaltigkeit/unser-ansatz/repro/ (accessed on 20 April 2023).
- de Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Halloy, S.; Barber, A.; Benge, J.; Bockstaller, C.; et al. When Experts Disagree: The Need to Rethink Indicator Selection for Assessing Sustainability of Agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef]
- Allain, S.; Plumecocq, G.; Leenhardt, D. Spatial Aggregation of Indicators in Sustainability Assessments: Descriptive and Normative Claims. Land Use Policy 2018, 76, 577–588. [Google Scholar] [CrossRef]
- Dantsis, T.; Douma, C.; Giourga, C.; Loumou, A.; Polychronaki, E.A. A Methodological Approach to Assess and Compare the Sustainability Level of Agricultural Plant Production Systems. Ecol. Indic. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A Modeling Framework to Evaluate Sustainability of Building Construction Based on LCSA. Int. J. Life Cycle Assess. 2016, 21, 555–568. [Google Scholar] [CrossRef]
- Farrell, A.; Hart, M. What Does Sustainability Really Mean?: The Search for Useful Indicators. Environment 1998, 40, 4–31. [Google Scholar] [CrossRef]
- Gatti, L.; Pizzetti, M.; Seele, P. Green Lies and Their Effect on Intention to Invest. J. Bus. Res. 2021, 127, 228–240. [Google Scholar] [CrossRef]
- Grenz, J.; Thalmann, C.; Stänpfli, A.; Studer, C.; Häni, F. RISE—A Method for Assessing the Sustainability of Agricultural Production at Farm Level. Rural Dev. News 2009, 1, 5–9. [Google Scholar]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a Tool for Holistic Sustainability Assessment at the Farm Level. Int. Food Agribus. Man. 2003, 6, 78–90. [Google Scholar] [CrossRef]
- Isaak, M.; Lentz, W. Consumer Preferences for Sustainability in Food and Non-Food Horticulture Production. Sustainability 2020, 12, 7004. [Google Scholar] [CrossRef]
- Lewandowski, I.; Härdtlein, M.; Kaltschmitt, M. Sustainable Crop Production: Definition and Methodological Approach for Assessing and Implementing Sustainability. Crop Sci. 1999, 39, 184–193. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Bierbaum, R.; Oldekop, J.A.; Agrawal, A. Bridging the Practitioner-Researcher Divide: Indicators to Track Environmental, Economic, and Sociocultural Sustainability of Agricultural Commodity Production. Glob. Environ. Chang. 2017, 42, 33–46. [Google Scholar] [CrossRef]
- Roesch, A.; Gaillard, G.; Isenring, J.; Jurt, C.; Keil, N.; Nemecek, T.; Rufener, C.; Schüpbach, B.; Umstätter, C.; Waldvogel, T.; et al. Umfassende Beurteilung der Nachhaltigkeit von Landwirtschaftsbetrieben. Agroscope Sci. 2016, 33, 1–277. [Google Scholar]
- Roesch, A.; Gaillard, G.; Isenring, J.; Jurt, C.; Keil, N.; Nemecek, T.; Rufener, C.; Schüpbach, B.; Umstätter, C.; Waldvogel, T.; et al. Comprehensive Farm Sustainability Assessment. Agroscope Sci. 2017, 47, 1–248. [Google Scholar] [CrossRef]
- Roesch, A.; Nyfeler-Brunner, A.; Gaillard, G. Sustainability Assessment of Farms Using SALCAsustain Methodology. Sustain. Prod. Consum. 2021, 27, 1392–1405. [Google Scholar] [CrossRef]
- Saisana, M.; Saltelli, A. Rankings and Ratings: Instructions for Use. Hague J. Rule Law 2011, 3, 247–268. [Google Scholar] [CrossRef]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A Systemic Framework for Sustainability Assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef]
- Schader, C. Nachhaltigkeit messen und bewerten. Okol. Landbau 2016, 2, 12–15. Available online: https://orgprints.org/id/eprint/29958/1/schader-2016-OEL178_p12-15.pdf (accessed on 11 November 2024).
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and Precision of Sustainability Assessment Approaches to Food Systems. Ecol. Soc. 2014, 19, 15. [Google Scholar] [CrossRef]
- Schader, C.; Curran, M.; Heidenreich, A.; Landert, J.; Blockeel, J.; Baumgart, L.; Ssebunya, B.; Moakes, S.; Marton, S.; Lazzarini, G.; et al. Accounting for Uncertainty in Multi-Criteria Sustainability Assessments at the Farm Level: Improving the Robustness of the SMART-Farm Tool. Ecol. Indic. 2019, 106, 105503. [Google Scholar] [CrossRef]
- Speelman, E.N.; López-Ridaura, S.; Colomer, N.A.; Astier, M.; Masera, O.R. Ten Years of Sustainability Evaluation Using the MESMIS Framework: Lessons Learned from Its Application in 28 Latin American Case Studies. Int. J. Sustain. Dev. World Ecol. 2007, 14, 345–361. [Google Scholar] [CrossRef]
- Talukder, B.; Hipel, K.W.; vanLoon, G. Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques. Resources 2017, 6, 66–92. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A Hierarchical Framework for Assessing the Sustainability of Agricultural Systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Weaver, P.M.; Rotmans, J. Integrated Sustainability Assessment: What Is It, Why Do It and How? Int. J. Innov. Sustain. Dev. 2006, 1, 284–303. [Google Scholar] [CrossRef]
- Wolf, J. Improving the Sustainable Development of Firms: The Role of Employees. Bus. Strategy Environ. 2013, 22, 92–108. [Google Scholar] [CrossRef]
- Chopin, P.; Mubaya, C.P.; Descheemaeker, K.; Öborn, I.; Bergkvist, G. Avenues for Improving Farming Sustainability Assessment with Upgraded Tools, Sustainability Framing and Indicators. A Review. Agron. Sustain. Dev. 2021, 41, 19. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to Use What: Methods for Weighting and Aggregating Sustainability Indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability Indicators for Livestock Farming. A Review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Nadaraja, D.; Lu, C.; Islam, M.M. The Sustainability Assessment of Plantation Agriculture—A Systematic Review of Sustainability Indicators. Sustain. Prod. Consum. 2021, 26, 892–910. [Google Scholar] [CrossRef]
- Payraudeau, S.; van der Werf, H.M.G. Environmental Impact Assessment for a Farming Region: A Review of Methods. Agric. Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- Schindler, J.; Graef, F.; König, H.J. Methods to Assess Farming Sustainability in Developing Countries. A Review. Agron. Sustain. Dev. 2015, 35, 1043–1057. [Google Scholar] [CrossRef]
- Becker, B. Sustainability Assessment: A Review of Values, Concepts, and Methodological Approaches; The World Bank: Washington, DC, USA, 1997. [Google Scholar]
- Christinck, A.; Camacho-Henriquez, A.; Doluschitz, R. Stand und Perspektiven der Nachhaltigkeitsbewertung Landwirtschaftlicher Systeme und des Agrarsektors—In Deutschland und International; Gersfeld, Germany, 2017; Available online: https://dserver.bundestag.de/btd/19/317/1931714.pdf (accessed on 13 November 2024).
- Christen, O.; Deumelandt, P.; Erdle, K.; Packeiser, M.; Reinicke, F.; von Daniels-Spangenberg, H. Sustainable Arable Farming. Boosting Efficiency, Maintaining the Image, Conserving Resourced; DLG e.V.: Frankfurt am Main, Germany, 2013; Volume 369. [Google Scholar]
- Dillon, E.J.; Hennessy, T.; Hynes, S. Assessing the Sustainability of Irish Agriculture. Int. J. Agric. Sustain. 2010, 8, 131–147. [Google Scholar] [CrossRef]
- Huffman, E. Workgroup Issue Paper: Indicators and Assessment of Agricultural Sustainability—Methods of Assessing Agricultural Sustainability. Environ. Monit. Assess. 1990, 15, 303–305. [Google Scholar] [CrossRef]
- Norman, D.; Janke, R.; Freyenberger, S.; Schurle, B.; Kok, H. Defining and Implementing Sustainable Agriculture; Kansas Sustainable Agriculture Series; Kansas State University: Manhattan, KS, USA, 1997. [Google Scholar]
- Hoque, N.; Biswas, W.; Mazhar, I.; Howard, I. LCSA Framework for Assessing Sustainability of Alternative Fuels for Transport Sector. Chem. Eng. Trans. 2019, 72, 103–108. [Google Scholar] [CrossRef]
- Zapf, R.; Schultheiß, U.; Döhler, H.; Doluschitz, R. The Potential of Methods for Assessing Sustainability of Farms. Landtechnik 2009, 64, 406–408. [Google Scholar] [CrossRef]
- Gavrilescu, C.; Toma, C.; Turtoi, C. Assessment of the Sustainability Degree of Agricultural Holdings in Macroregion 1 Using the IDEA Method. Bull. UASVM Hortic. 2012, 69, 122–130. [Google Scholar]
- Meul, M.; Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Hauwermeiren, A. MOTIFS: A Monitoring Tool for Integrated Farm Sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef]
- BASF SE. AgBalance. A Clearer View of Agricultural Sustainability; BASF SE: Limburgerhof, Germany.
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing Farm Sustainability with the IDEA Method—From the Concept of Agriculture Sustainability to Case Studies on Farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
Author | Year | Title | Type of Study | Sector |
---|---|---|---|---|
Bell and Morse [53] | 2008 | Sustainability indicators. Measuring the immeasureable? | Book | Cross-sector |
Breitschuh et al. [54] | 2008 | Kriteriensystem nachhaltige Landwirtschaft (KSNL) | Book | Agriculture |
Bitsch [12] | 2016 | Sustainability as innovation: challenges and perspectives in measurement and implementation | Book section | Agriculture |
Gallopin [55] | 1997 | Indicators and Their Use: Information for Decision-making | Book section | Cross-sector |
Boone and Dolman [56] | 2010 | Monitoring sustainability of Dutch agriculture | Conference Proceedings | Agriculture |
Coteur et al. [57] | 2016 | Benchmarking sustainability farm performance at different levels and for different purposes: elucidating the state of the art | Conference proceedings | Agriculture |
Dumanski and Pieri [58] | 1997 | Application of the pressure-state-response framework for the land quality indicators (LQI) programme | Conference proceedings | Agriculture |
Knauber et al. [59] | 2023 | Communication of sustainability in horticulture—what messages do consumers currently perceive and what expectations do they have regarding sustainability? | Conference proceedings | Agriculture (Horticulture) |
Wustenberghs et al. [60] | 2016 | Discerning the stars: characterising the myriad of sustainability assessment methods | Conference Proceedings | Agriculture |
Derksen and Mithöfer [61] | 2018 | Bemessung von Nachhaltigkeit im Gartenbau | Report | Agriculture (horticulture) |
Nardo et al. [62] | 2005 | Tools for Composite Indicators Building | Report | Cross-sector |
Neumayer [63] | 2012 | Human Development and Sustainability | Report | Cross-sector |
Russillo and Pintér [64] | 2009 | Linking Farm-Level Measurement Systems to Environmental Sustainability Outcomes: Challenges and Ways Forward | Report | Agriculture |
UNAIDS [65] | 2010 | An introduction to indicators | Report | Cross-sector |
DLG e.V. [66] | n.d. | (not applicable) | Reports from assessment systems | Agriculture |
GRI [67] | n.d. | (not applicable) | Reports from assessment systems | Cross-sector |
INL GmbH [68] | n.d. | (not applicable) | Reports from assessment systems | Agriculture |
De Olde et al. [69] | 2017 | When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture | Research article | Agriculture |
Dominguez et al. [33] | 2017 | Evaluation of Existing Research Concerning Sustainability in the Value Chain of Ornamental Plants | Research article | Cross-sector |
Allain et al. [70] | 2018 | Spatial aggregation of indicators in sustainability assessments: Descriptive and normative claims | Research article | Cross-sector |
Dantsis et al. [71] | 2010 | A methodological approach to assess and compare the sustainability level of agricultural plant production systems | Research article | Agriculture |
Dong and Ng [72] | 2016 | A modeling framework to evaluate sustainability of building construction based on LCSA | Research article | Building construction |
Farrell and Hart [73] | 1998 | What Does Sustainability Really Mean? The Search for Useful Indicators | Research article | Cross-sector |
Gatti et al. [74] | 2021 | Green lies and their effect on intention to invest | Research article | Cross-sector |
Grenz et al. [75] | 2009 | RISE—a method for assessing the sustainability of agricultural production at farm level | Research article | Agriculture |
Häni et al. [76] | 2003 | RISE, a Tool for Holistic Sustainability Assessment at the Farm Level | Research article | Agriculture |
Havardi-Burger et al. [45] | 2021 | Framework for sustainability assessment of the value chain of flowering potted plants for the German market | Research article | Agriculture (Horticulture) |
Isaak and Lentz [77] | 2020 | Consumer Preferences for Sustainability in Food and Non-Food Horticulture Production | Research article | Agriculture (Horticulture) |
Lewandowski et al. [78] | 1999 | Sustainable Crop Production: Definition and Methodological Approach for Assessing and Implementing Sustainability | Research article | Agriculture |
Rasmussen et al. [79] | 2017 | Bridging the practitioner-researcher divide: Indicators to track environmental, economic, and sociocultural sustainability of agricultural commodity production | Research article | Agriculture |
Roesch et al. [80] | 2016 | Umfassende Beurteilung der Nachhaltigkeit von Landwirtschaftsbetrieben | Research article | Agriculture |
Roesch et al. [81] | 2017 | Comprehensive Farm Sustainability Assessment | Research article | Agriculture |
Roesch et al. [82] | 2021 | Sustainability assessment of farms using SALCAsustain methodology | Research article | Agriculture |
Saisana and Saltelli [83] | 2011 | Rankings and Ratings: Instructions for Use | Research article | Cross-sector |
Sala et al. [84] | 2015 | A systemic framework for sustainability assessment | Research article | Cross-sector |
Schader [85] | 2016 | Nachhaltigkeit messen und bewerten | Research article | Agriculture |
Schader et al. [86] | 2014 | Scope and precision of sustainability assessment approaches to food systems | Research article | Agriculture |
Schader et al. [87] | 2019 | Accounting for uncertainty in multi-criteria sustainability assessments at the farm level: Improving the robustness of the SMART-Farm Tool | Research article | Agriculture |
Speelman et al. [88] | 2007 | Ten years of sustainability evaluation using the MESMIS framework: Lessons learned from its application in 28 Latin American case studies | Research article | Agriculture |
Talukder et al. [89] | 2017 | Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques | Research article | Agriculture |
Van Cauwenbergh et al. [90] | 2007 | SAFE—A hierarchical framework for assessing the sustainability of agricultural systems | Research article | Agriculture |
Weaver and Rotmans [91] | 2006 | Integrated sustainability assessment: what is it, why do it and how? | Research article | Cross-sector |
Wolf [92] | 2013 | Improving the Sustainable Development of Firms: The Role of Employees | Research article | Cross-sector |
Acosta-Alba and Van der Werf [8] | 2011 | The Use of Reference Values in Indicator-Based Methods for the Environmental Assessment of Agricultural Systems | Review | Agriculture |
Chopin et al. [93] | 2021 | Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review | Review | Agriculture |
Ehrmann and Kleinhanss [16] | 2008 | Review of concepts for the evaluation of sustainable agriculture in Germany and comparison of measurement schemes for farm sustainability | Review | Agriculture |
Gan et al. [94] | 2017 | When to use what: Methods for weighting and aggregating sustainability indicators | Review | Cross-sector |
Lebacq et al. [95] | 2013 | Sustainability indicators for livestock farming. A review | Review | Agriculture (livestock) |
Nadaraja et al. [96] | 2021 | The Sustainability Assessment of Plantation Agriculture—A Systematic Review of Sustainability Indicators | Review | Agriculture |
Pavraudeau and van der Werf [97] | 2005 | Environmental impact assessment for a farming region: a review of methods | Review | Agriculture |
Schindler et al. [98] | 2015 | Methods to assess farming sustainability in developing countries. A review | Review | Agriculture |
Becker [99] | 1997 | Sustainability Assessment: A Review of Values, Concepts, and Methodological Approaches | Review | Agriculture |
Christinck et al. [100] | 2017 | Stand und Perspektiven der Nachhaltigkeitsbewertung landwirtschaftlicher Systeme und des Agrarsektors | Unpublished report | Agriculture |
Christen et al. [101] | 2013 | Sustainable arable farming. Boosting efficiency, maintaining the image, conserving resources | Working paper | Agriculture |
Dillon et al. [102] | 2010 | Assessing the Sustainability of Irish Agriculture | Working paper | Agriculture |
Huffman [103] | 1990 | Indicators and assessment of agricultural sustainability | Working paper | Agriculture |
Norman et al. [104] | 1997 | Defining and implementing sustainable agriculture | Working paper | Agriculture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knauber, L. Rooted in Sustainability: Developing an Integrated Assessment Framework for Horticulture—The Example of Potted Plants. Sustainability 2024, 16, 10077. https://doi.org/10.3390/su162210077
Knauber L. Rooted in Sustainability: Developing an Integrated Assessment Framework for Horticulture—The Example of Potted Plants. Sustainability. 2024; 16(22):10077. https://doi.org/10.3390/su162210077
Chicago/Turabian StyleKnauber, Luise. 2024. "Rooted in Sustainability: Developing an Integrated Assessment Framework for Horticulture—The Example of Potted Plants" Sustainability 16, no. 22: 10077. https://doi.org/10.3390/su162210077
APA StyleKnauber, L. (2024). Rooted in Sustainability: Developing an Integrated Assessment Framework for Horticulture—The Example of Potted Plants. Sustainability, 16(22), 10077. https://doi.org/10.3390/su162210077