Possibilities of Implementing Sustainable Production of Chicken Meat by Applying an Innovative Device for Poultry Electric Stunning
Abstract
:1. Introduction
2. Materials and Methods
- ✓
- differential quality of raw material (good- and low-quality)—assessed on the basis of the following criteria adopted by the plant: percentage of birds killed during transport, the degree of their peeling, and variation in weight,
- ✓
2.1. pH Measurements
- » 15 min after slaughter (pH15min), n = 30 carcasses,
- » approx. 2 h of cooling (pH2h), n = 30 carcasses,
- » approx. 9 h after slaughter (pH9h), n = 30 fillets.
2.2. Visual Assessment of the Number of Hemorrhages in/on the Fillets and Their Defects
2.3. Color Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in the pH of Meat After Slaughter
3.2. Meat Color
3.3. Quantitative Assessment of Hemorrhages in/on the Fillet
4. Conclusions
- The use of the innovative device OC for stunning poultry, as opposed to a device from a Dutch company (DC), has a positive effect on the following:
- reducing the number of hemorrhages visible on the external and internal surface of the fillet—mainly large hemorrhages, which determine the quality and durability of the meat, generate waste, and are not acceptable to consumers,
- increasing by approx. 50% the share of production of fillets without hemorrhages, which can be classified as quality class I—“premium”, with a higher unit price,
- faster rate of post-slaughter changes and lightening of the color of the external and internal surfaces of the fillet and tenderloin, which are probably the result of the regular flow of electric current through the chicken carcasses during stunning and better bleeding during slaughter.
- Statistical analysis showed, in turn, the following:
- a positive and significant relationship (p < 0.01, p < 0.001) between raw material quality (RMQ) and technological parameters, and a negative relationship with the color parameter L* and large internal hemorrhages (p < 0.001).
- the estimators of the relationship model indicate a greater impact of the type of device on the size and location of hemorrhages as well as technological parameters (pH, color) than the quality of the raw material; therefore, the hypothesis assuming that the type of device used in the stunning process (OC or DC) has an impact on the technological parameters and visual characteristics of meat from GQ and LQ raw material was positively verified.
- The obtained wide range of pro-quality effects of the produced chicken meat confirm the possibility of meeting the most important requirements for its sustainable production and thus justifies the replacement of the DC device currently used in the plant with an OC device.
- Although the quality of chickens delivered to the plant has a smaller impact on sustainable meat production than the type of equipment, the authors also recommend using financial tools when concluding contracts with poultry farmers so that meat producers can implement the goals of the sustainable management policy already at the raw material stage.
- The above-mentioned benefits clearly prove that managing the quality of chicken meat in the stunning process using an OC device may constitute a strategic element of changes in the implementation of sustainable production management in the company, even with the varying quality of raw materials supplied to the plant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050. 2018. Available online: https://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/ (accessed on 1 March 2024).
- Henchion, M.M.; De Backer, C.J.S.; Hudders, L.; O’Reilly, S. Ethical and sustainable aspects of meat production; Consumer perceptions and system credibility. In New Aspects of Meat Quality, 2nd ed.; Purslow, P., Ed.; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Vaarst, M.; Steenfeldt, S.; Horsted, K. Sustainable development perspectives of poultry production. Word’s Poult. Sci. J. 2015, 71, 609–620. [Google Scholar] [CrossRef]
- OECD-FAO. OECD-FAO Agricultural Outlook 2023–2032. 2023. Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2024-2033_4c5d2cfb-en.html (accessed on 1 March 2024).
- Krajnc, D.; Glavicˇ, P. Indicators of sustainable production. Clean Technol. Environ. Policy 2003, 5, 279–288. [Google Scholar] [CrossRef]
- Castro, F.L.S.; Chai, L.; Arango, J.; Owens, C.M.; Smith, P.A.; Reichelt, S.; DuBois, C.; Menconi, A. Poultry industry paradigms: Connecting the dots. J. Appl. Poult. Res. 2023, 32, 100310. [Google Scholar] [CrossRef]
- Berg, C.; Raj, A.B.M. A review of different stunning methods for poultry-animal welfare aspects (Stunning Methods for Poultry). Animals 2015, 30, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the electrical requirements for waterbath stunning equipment applicable for poultry. EFSA J. 2012, 10, 2757. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; et al. EFSA Slaughter of animals: Poultry. EFSA J. 2019, 17, 5849. [Google Scholar]
- Riggs, M.R.; Hauck, R.; Baker-Cook, B.I.; Osborne, R.C.; Pal, A.; Bethonico Terra, M.T.; Sims, G.; Urrutia, A.; Orellana-Galindo, L.; Reina, M.; et al. Meat quality of broiler chickens processed using electrical and controlled atmosphere stunning systems. Poult. Sci. 2023, 102, 102422. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, X.; Sante, V.; Baeza, E.; Lebihan-Duval, E.; Berri, C.; Rémignon, H.; Babile, R.; Le Pottier, G.; Astrug, T. Effects of the rate of muscle post mortem pH fall on the technological quality of turkey meat. Br. Poult. Sci. 2002, 43, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Report from the Commision to the European Parliament and the Council on the Various Stunning Methods for Poultry; European Commission: Brussels, Belgium, 2013.
- Grzybowska-Brzezińska, M.; Banach, J.K.; Grzywińska-Rąpca, M. Shaping poultry meat quality attributes in the context of consumer expectations and preferences—A case study of Poland. Foods 2023, 12, 2694. [Google Scholar] [CrossRef] [PubMed]
- Banach, J.K. Method for complex improvement of the quality of culinary turkey meat in the aspect of the national system Quality Assurance for Food Products. Diss. Monogr. 2013, 186, 9–141. (In Polish) [Google Scholar]
- Council Regulation Council Regulation (EC). No. 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:sa0002 (accessed on 1 March 2024).
- Girasole, M.; Chirollo, C.; Ceruso, M.; Vollano, L.; Chianese, A.; Cortesi, M.L. Optimization of Stunning Electrical Parameters to Improve Animal Welfare in a Poultry Slaughterhouse. Ital. J. Food Saf. 2015, 4, 4576. [Google Scholar] [CrossRef] [PubMed]
- Girasole, M.; Marrone, R.; Anastasio, A.; Chianese, A.; Mercogliano, R.; Cortesi, M.L. Effect of electrical water bath stunning on physical reflexes of broilers: Evaluation of stunning efficacy under field conditions. Poult. Sci. 2016, 95, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Lines, J.A.; Raj, A.B.M.; Wotton, S.B.; O’Callaghan, M.; Knowles, T.G. Head-only electrical stunning of poultry using a waterbath: A feasibility study. Br. Poult. Sci. 2011, 52, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.C.; Huang, M.; Yang, J.; Wang, P.; Xu, X.L.; Zhou, G.H. The effects of electrical stunning methods on broiler meat quality: Effect on stress, glycolysis, water distribution, and myofibrillar ultrastructures. Poult. Sci. 2014, 93, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Sirri, F.; Petracci, M.; Zampiga, M.; Meluzzi, A. Effect of EU electrical stunning conditions on breast meat quality of broiler chickens. Poult. Sci. 2017, 96, 3000–3004. [Google Scholar] [CrossRef]
- Huerta, A.; Pascual, A.; Bordignon, F.; Trocino, A.; Xiccato, G.; Cartoni Mancinelli, A.; Mugnai, C.; Pirrone, F.; Birolo, M. Resiliency of fast-growing and slow-growing genotypes of broiler chickens submitted to different environmental temperatures: Growth performance and meat quality. Poult. Sci. 2023, 102, 103158. [Google Scholar] [CrossRef]
- Martínez, Y.; Valdivié, M. Efficiency of Ross 308 broilers under different nutritional requirements. J. Appl. Poult. Res. 2021, 30, 100140. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K. System for Turkey Stunning. Patent PL No. 211078, 30 April 2012. (In Polish). [Google Scholar]
- Żywica, R.; Banach, J.K. A Method of Stunning. Poultry. Patent PL No. P.390449, 29 November 2013. (In Polish). [Google Scholar]
- Grzywińska-Rąpca, M. Consumer purchasing behaviour during the COVID-19 epidemic: A case study for Poland. Econ. Reg. 2022, 18, 595–608. [Google Scholar] [CrossRef]
- Kowalik, I.; Pleśniak, A. Marketing determinants of innovation ambidexterity in small and medium-sized manufacturers. Entrep. Bus. Econ. Rev. 2022, 10, 163–185. [Google Scholar] [CrossRef]
- Maziashvili, M.; Pleśniak, A.; Kowalik, I. The digital communication tools and citizens’ relationship with local governments: A comparison of Georgian and Polish cities. Int. Rev. Adm. Sci. 2023, 89, 555–576. [Google Scholar] [CrossRef]
- Pleśniak, A. Wybór metody estymacji w budowie skali czynnikowej. Wiadomości Statystyczne. Czas. Głównego Urzędu Stat. I Pol. Tow. Stat. Stud. Metodol. 2009, 11, 1–16. (In Polish) [Google Scholar]
- Berri, C.; Wacrenier, N.; Millet, N.; Le Bihan-Duval, E. Effect of Selection for Improved Body Composition on Muscle and Meat Characteristics of Broilers from Experimental and Commercial Lines. Poult. Sci. 2001, 80, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan-Duval, E. Genetic variability within and between breeds of poultry technological meat quality. Word’s Poult. Sci. J. 2004, 60, 331–340. [Google Scholar] [CrossRef]
- Richardson, R.I. Poultry meat for further processing. In Proceedings of the XII European Symposium on the Quality of Poultry Meat, Zaragoza, Spain, 25–29 September 1995; pp. 351–361. [Google Scholar]
- Jakubowska, M.; Gardzielewska, J.; Kortz, J.; Karamucki, T.; Buryta, B.; Rybarczyk, A.; Otolińska, A.; Natalczyk-Szymkowska, W. Formation of physicochemical properties of broiler chicken breast muscles depending on pH value measured 15 minutes after slaughter. Acta Sci. Pol. Technol. Aliment. 2004, 3, 139–144. (In Polish) [Google Scholar]
- Gardzielewska, J.; Jakubowska, M.; Buryta, B.; Karamucki, T.; Natalczyk-Szymkowska, W. Relationship between pH1 and the quality of broiler meat. Med. Wet. 2003, 59, 426–428. (In Polish) [Google Scholar]
- Thielke, S.; Lhafi, S.K.; Kühne, M. Effects of aging prior to freezing on poultry meat tenderness. Poult. Sci. 2005, 84, 607–612. [Google Scholar] [CrossRef]
- Hammemi, C.; Askri, A.; Létourneau-Montminy, M.-P.; Alnahhas, N. Current state of breast meat quality in standard-yielding broiler strains. J. Appl. Poult. Res. 2024, 33, 100383. [Google Scholar] [CrossRef]
- Makała, H.; Olkiewicz, M. Principles of developing new products taking into account consumer expectations on the example of meat and meat products. Food Sci. Technol. Qual. 2004, 1, 120–133. (In Polish) [Google Scholar]
- Wilkins, L.J.; Brown, S.N.; Phillips, A.J.; Warriss, P.D. Variation in the colour of broiler breast fillets in the UK. Br. Poult. Sci. 2000, 41, 308–312. [Google Scholar] [CrossRef]
- Fletcher, D.I. Color variation in commercially packaged broiler breast fillets. J. Appl. Poultry Res. 1999, 8, 67–69. [Google Scholar] [CrossRef]
- Fletcher, D.I. Broiler brest meat color variation, pH and texture. Poult. Sci. 1999, 78, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Betti, M.; Bianchi, M.; Cavani, C. Color variation and characterization of broiler breast meat during processing in Italy. Poult. Sci. 2004, 83, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Lesiów, T.; Kijowski, J. Impact of PSE and DFD meat on poultry processing—a review. Pol. J. Food Nutr. Sci. 2003, 12/53, 3–8. [Google Scholar]
- Żywica, R.; Charzyńska, D.G.; Banach, J.K. Effect of electric stunning of chickens on meat colour using device constructed by the authors. Food Sci. Technol. Qual. 2011, 1, 52–67. (In Polish) [Google Scholar] [CrossRef]
- Sandusky, C.L.; Heath, J.L. Effect of background color, sample thickness, and illuminant on the measurement of broiler meat color. Poult. Sci. 1996, 75, 1437–1442. [Google Scholar] [CrossRef]
- Barbut, S. Problem of pale exudative meat in broiler chickens. Br. Poult. Sci. 1997, 38, 355–358. [Google Scholar] [CrossRef]
- Woelfel, R.L.; Owens, C.M.; Hirschler, E.M.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 2002, 81, 579–584. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, X.; Min, H.; Zhou, G. Occurrence and characterization of pale, soft, exudative-like broiler muscle commercially produced in China. J. Integr. Agric. 2012, 11, 1384–1390. [Google Scholar] [CrossRef]
- Smolińska, T.; Korzeniowska, M. Evaluation of the PSE and DFD abnormalities occurrence in chicken meat. In Proceedings of the XVIIth European Symposium on the Quality of Poultry Meat Doorwerth, Doorwerth, The Netherlands, 23–26 May 2005; pp. 190–193. [Google Scholar]
- Schrerus, F.J.G. Post mortem processes in breast muscle of different chicken lines with differences in growth rate and protein efficiency. In Proceedings of the 12th European Symposium on the Quality of Poultry Meat, Zaragoza, Spain, 25–29 September 1995; pp. 41–49. [Google Scholar]
- Mallia, J.G.; Hunter, B.; Vaillancourt, J.-P.; Irwin, R.; Muckle, C.A.; Martin, S.W.; McEwen, S.A. Bacteriological and histological profile of turkeys condemned for cyanosis. Poult. Sci. 2000, 79, 1194–1199. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Lee, Y.S.; Erf, G.F.; Meullenet, J.-F.C.; McKee, S.R.; Owens, C.M. Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poult. Sci. 2012, 91, 1240–1247. [Google Scholar] [CrossRef]
- Banach, J.K.; Żywica, R. Wpływ parametrów prądu elektrycznego w procesie oszałamiania kurczaków na jakość mięsa. Rocz. Inst. Przemysłu Mięsnego I Tłuszczowego 2009, XLVII, 83–89. (In Polish) [Google Scholar]
- Banach, J.K.; Żywica, R.; Grzywińska-Rąpca, M. Possibilities of quality management of chicken meat produced in polish industrial conditions using an own-construction device for poultry electric stunning in a water bath. Appl. Sci. 2024, 14, 5700. [Google Scholar] [CrossRef]
- Fletcher, D.I. Poultry meat quality. World’s Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- Hindle, V.A.; Lambooij, E.; Reimert, H.G.M.; Workel, L.D.; Gerritzen, M.A. Animal welfare concerns during the use of the water bath for stunning broilers, hens, and ducks. Poult. Sci. 2010, 89, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Sparrey, J.M.; Kettlewell, P.J.; Paice, M.E. A model of current pathways in electrical water bath stunners used for poultry. Br. Poult. Sci. 1992, 33, 907–916. [Google Scholar] [CrossRef]
- Kranen, R.W.; Veerkamp, C.H.; Lambooy, E.; Van Kuppevelt, T.H.; Veerkamp, J.H. Processing and products hemorrhages in muscles of broiler chickens: The relationships among blood variables at various rearing temperature regimens. Poult. Sci. 1996, 75, 570–576. [Google Scholar] [CrossRef]
- Sabow, A.B.; Nakyinsige, K.; Adeyemi, K.D.; Sazili, A.Q.; Johnson, C.B.; Webster, J.; Farouk, M.M. High frequency pre-slaughter electrical stunning in ruminants and poultry for halal meat production: A review. Livest. Sci. 2017, 202, 124–134. [Google Scholar] [CrossRef]
- Raj, A.B.M. Recent developments in stunning and slaughter of poultry. Word’s Poult. Sci. J. 2006, 62, 467–484. [Google Scholar] [CrossRef]
- Raj, A.B.M.; O’Callaghan, M.; Hughes, S.I. The effects of pulse width of a pulsed direct current used in water bath stunning and neck cutting methods on spontaneous electroencephalograms in broilers. Anim. Welf. 2006, 15, 25–30. [Google Scholar] [CrossRef]
- Raj, A.B.M.; O’Callaghan, M.; Hughes, S.I. The effect of amount and frequency of pulsed direct current used in water bath stunning and neck cutting methods on spontaneous electroencephalograms in broilers. Anim. Welf. 2006, 15, 19–24. [Google Scholar] [CrossRef]
- Brzozowski, C. Zeszyt Branżowy Systemu Gwarantowanej Jakości Żywności QAFP—Kulinarne Mięso z Piersi Kurczaka i Indyka Oraz Tuszki i Elementy Młodej Polskiej Gęsi Owsianej. (Industry Notebook of the QAFP Quality Assured Food System—Culinary Chicken and Turkey Breast Meat as Well as Carcasses and Parts of Young Polish Oat Goose); Wydane przez Krajową Radę Drobiarstwa—Izbę Gospodarczą: Warszawa, Poland, 2012; pp. 6–23. (In Polish) [Google Scholar]
Raw Material Quality | pH After Slaughter | Device OC | Device DC | ||
---|---|---|---|---|---|
SD | SD | ||||
Good-Quality (GQ) | pH15min | 6.59 a | 0.11 | 6.63 a | 0.07 |
pH2h | 6.74 a | 0.08 | 6.71 a | 0.06 | |
pH9h | 5.87 B | 0.10 | 5.82 A | 0.05 | |
Low-Quality (LQ) | pH15min | 6.59 a | 0.09 | 6.68 b | 0.08 |
pH2h | 6.76 a | 0.08 | 6.78 a | 0.08 | |
pH9h | 5.98 A | 0.15 | 6.07 B | 0.10 |
Type of Device | Good-Quality Raw Material | Variance Analysis, Variable Surface | Low-Quality Raw Material | Variance Analysis, Variable Surface | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m. Pectoralis Major (PMj) | m. Pectoralis Minor (PMn) | m. Pectoralis Major (PMj) | m. Pectoralis Minor (PMn) | |||||||||
ES | IS | ES | IS | |||||||||
ES-IS | IS-PMn | PMn-ES | ES-IS | IS-PMn | PMn-ES | |||||||
L* | ||||||||||||
OC | 64.26 ± 2.20 | 58.55 ± 3.81 | 56.97 ± 2.48 | ** | NS | ** | 61.18 ± 2.10 A | 57.51 ± 2.71 | 55.43 ± 2.49 a | ** | ** | ** |
DC | 65.03 ± 2.57 | 59.56 ± 3.93 | 58.23 ± 2.87 | ** | NS | ** | 62.14 ± 4.36 B | 57.67 ± 3.07 | 57.46 ± 3.32 b | ** | NS | ** |
a* | ||||||||||||
OC | 4.17 ± 0.78 | 4.35 ± 0.94 | 5.75 ± 1.27 B | NS | ** | ** | 4.13 ± 0.59 | 4.88 ± 1.00 A | 5.55 ± 1.05 | ** | ** | ** |
DC | 4.18 ± 0.77 | 4.32 ± 0.89 | 4.93 ± 1.20 A | NS | ** | ** | 4.39 ± 1.09 | 5.45 ± 1.12 B | 5.35 ± 1.16 | ** | NS | ** |
b* | ||||||||||||
OC | 12.77 ± 1.47 | 15.56 ± 1.17 | 15.90 ± 1.53 A | ** | NS | ** | 12.17 ± 1.69 | 16.78 ± 1.60 | 16.81 ± 1.60 | ** | NS | ** |
DC | 13.03 ± 1.44 | 16.57 ± 1.34 | 16.71 ± 1.52 B | ** | NS | ** | 12.57 ± 1.57 | 16.37 ± 1.45 | 16.43 ± 1.50 | ** | NS | ** |
Relationship | Estimate | S.E. | C.R. | p | Relationship | Estimate | S.E. | C.R. | p | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH15 | ← | RMQ | 0.03 | 0.02 | 1.63 | 0.10 | pH15 | ← | Dev. | 0.06 | 0.02 | 3.80 | *** |
pH2h | ← | RMQ | 0.04 | 0.01 | 3.00 | ** | pH2h | ← | Dev. | −0.01 | 0.01 | −0.64 | 0.52 |
pH9h | ← | RMQ | 0.18 | 0.02 | 8.79 | *** | pH9h | ← | Dev. | 0.09 | 0.02 | 0.87 | 0.38 |
L* | ← | RMQ | −0.70 | 0.17 | −4.17 | *** | L* | ← | Dev. | 0.41 | 0.17 | 2.46 | * |
a* | ← | RMQ | 0.40 | 0.18 | 2.23 | * | a* | ← | Dev. | −0.01 | 0.18 | −0.05 | 0.96 |
b* | ← | RMQ | 0.10 | 0.18 | 0.55 | 0.58 | b* | ← | Dev. | 0.21 | 0.18 | 1.15 | 0.25 |
LEHs | ← | RMQ | −0.05 | 0.08 | −0.64 | 0.52 | LEHs | ← | Dev. | 0.22 | 0.08 | 2.79 | ** |
SEHs | ← | RMQ | 0.07 | 0.08 | 0.83 | 0.41 | SEHs | ← | Dev. | 0.47 | 0.08 | 5.78 | *** |
LIHs | ← | RMQ | −0.53 | 0.07 | −7.70 | *** | LIHs | ← | Dev. | 0.30 | 0.07 | 4.33 | *** |
SIHs | ← | RMQ | 0.00 | 0.06 | 0.00 | 1.00 | SIHs | ← | Dev. | 0.33 | 0.01 | 5.45 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, J.K.; Żywica, R.; Grzywińska-Rąpca, M.; Pietrzak-Fiećko, R. Possibilities of Implementing Sustainable Production of Chicken Meat by Applying an Innovative Device for Poultry Electric Stunning. Sustainability 2024, 16, 10139. https://doi.org/10.3390/su162210139
Banach JK, Żywica R, Grzywińska-Rąpca M, Pietrzak-Fiećko R. Possibilities of Implementing Sustainable Production of Chicken Meat by Applying an Innovative Device for Poultry Electric Stunning. Sustainability. 2024; 16(22):10139. https://doi.org/10.3390/su162210139
Chicago/Turabian StyleBanach, Joanna Katarzyna, Ryszard Żywica, Małgorzata Grzywińska-Rąpca, and Renata Pietrzak-Fiećko. 2024. "Possibilities of Implementing Sustainable Production of Chicken Meat by Applying an Innovative Device for Poultry Electric Stunning" Sustainability 16, no. 22: 10139. https://doi.org/10.3390/su162210139
APA StyleBanach, J. K., Żywica, R., Grzywińska-Rąpca, M., & Pietrzak-Fiećko, R. (2024). Possibilities of Implementing Sustainable Production of Chicken Meat by Applying an Innovative Device for Poultry Electric Stunning. Sustainability, 16(22), 10139. https://doi.org/10.3390/su162210139