Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review
Abstract
:1. Introduction
1.1. Current Industrial Fertilizer Production Process
1.2. Greener Nitrogen Fertilizer Production Processes
2. Plasma N Fixation and Its Potential as a Fertilizer
2.1. Nonthermal Plasma N Fertilizer Production
2.2. The Flow Rate of NO from the Plasma Reactor
2.3. Value Addition to Plasma N
2.3.1. Electrosynthesis of Ammonia from Plasma Nitrate
2.3.2. Impact of Catalysts on Electroreduction of Nitrates to Ammonia
2.3.3. Effect of Nitrate Concentration on Ammonia Synthesis
2.3.4. Crystallization of Liquid Ammonia to Ammonium Salt Fertilizers
2.4. Performance of Plasma N on Crop Production
2.5. Potential Use of Plasma N as Fertilizer
2.6. Limitation of Plasma N Fertilizer
3. Mechanism of Nitrogen (Plasma N) Retention and Loss from Soil
Mitigation Strategies
4. Nanoparticle-Based Delivery System and Nanotechnology in Fertilizer Application
4.1. Nanoparticle Mobility Mechanism for Slow Release of Nitrogen in the Soil
4.1.1. Nanofertilizer–Soil Matrix Transport Mechanism
4.1.2. Mechanisms of Soil Moisture: Nanocoating on Nitrogen Release
4.1.3. Nanofertilizer Charge Influence towards the Slow-Release Mechanism of Nitrogen
5. Materials for Transforming Plasma N Products into Slow-Release Forms
5.1. Production of Cellulose Nanoparticles
5.1.1. Major Plant Sources of Nanocellulose
5.1.2. Extraction of Nanocellulose
5.1.3. Nanocellulose Isolation Methods
6. Transformation of Plasma N into Nanoform Using Nanocellulose
6.1. Direct Absorption of Nitrate from Plasma N into Nanoform
6.1.1. Ion Exchange Process of Plasma N Absorption
6.1.2. Reverse Osmosis Process
6.1.3. Biological Process
6.2. Indirect Absorption of Nitrate from Plasma N
6.2.1. Graft Polymerization
6.2.2. Coating Method
6.2.3. Nanoenabled Emulsions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stoorvogel, J.J.; Smaling, E.M.A. Assessment of soil nutrient depletion in sub-Saharan Africa: 1983–2000. In Winand Staring Ctr., for Integrated Land, Soil and Water Research (CSC-DLO); Winand Staring Centre: Wageningen, The Netherlands, 1990; Volume l–4, Report No. 28. [Google Scholar]
- de Bruyn, L.L.; Jenkins, A.; Samson-liebig, S. Lessons Learnt: Sharing Soil Knowledge to Improve Land Management and Sustainable Soil Use. Soil Sci. Soc. Am. J. 2017, 81, 427–438. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- FAO. Global Fertilizer Markets and Policies: A Joint FAO/WTO Mapping Exercise; FAO: Rome, Italy, 2023; pp. 1–17. [Google Scholar]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Anosheh, H.P.; Jasrotia, P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 9, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to Recover Nutrients from Waste Streams: A Critical Review. Rev. Environ. Sci. Technol. 2014, 45, 37–41. [Google Scholar] [CrossRef]
- Li, S.; Medrano, J.A.; Hessel, V.; Gallucci, F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes 2018, 6, 248. [Google Scholar] [CrossRef]
- African Union. Promotion of Fertilizer Production, Cross-Border Trade and Consumption in Africa; African Union: Addis Ababa, Ethiopia, 2019; pp. 1–24. [Google Scholar]
- Alewell, C.; Ringeval, B.; Borrelli, P.; Ballabio, C.; Robinson, D.A.; Panagos, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Kyomuhendo, P.; Tenywa, M.M.; Semalulu, O.; Lenssen, A.W.; Yost, R.S.; Mazur, R.E.; Kyebogola, S.; Goettsch, L.H. Limiting Nutrients for Bean Production on Contrasting Soil Types of Lake Victoria Crescent of Uganda. Afr. Crop Sci. J. 2018, 26, 543–554. [Google Scholar] [CrossRef]
- Patil, B.S.; Wang, Q.; Hessel, V.; Lang, J. Plasma N2-fixation: 1900–2014. Catal. Today 2015, 256, 49–66. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Stahl, D.A.; Clark, D. Brock Biology of Microorganisms, 13th ed.; Pearson Education, Inc.: Wageningen, The Netherlands, 2012. [Google Scholar]
- Chen, F.; Wu, Z.; Gupta, S.; Rivera, D.J.; Lambeets, S.V.; Pecaut, S.; Yoon, J.; Kim, T.; Zhu, P.; Finfrock, Y.Z.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–770. [Google Scholar] [CrossRef]
- Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24–33. [Google Scholar] [CrossRef]
- He, Y.; Chen, Z.; Li, Z.; Niu, G.; Tang, J. Non-thermal plasma fixing of nitrogen into nitrate: Solution for renewable electricity storage? Front. Optoelectron. 2018, 11, 92–96. [Google Scholar] [CrossRef]
- Rahman, H.; Haque, K.M.S.; Hossain, Z. A review on application of controlled released fertilizers influencing the sustainable agricultural production: A Cleaner production process. Environ. Technol. Innov. 2021, 23, 101697. [Google Scholar] [CrossRef]
- World Bank. Global Market Outlook: Trends in Global Agricultural Commodity Prices Food Price Inflation Dashboard; World Bank: Washington, DC, USA, 2024; Update 30 May 2024. [Google Scholar]
- Pereira, E.I.; Cruz, C.C.T.; Solomon, A.; Le, A.; Cavigelli, M.A.; Ribeiro, C. Novel Slow-Release Nanocomposite Nitrogen Fertilizers: The Impact of Polymers on Nanocomposite Properties and Function. Ind. Eng. Chem. Res. 2015, 54, 3717–3725. [Google Scholar] [CrossRef]
- Fungo, B.; Chen, Z.; Butterbach-bahl, K.; Lehmannn, J.; Saiz, G.; Braojos, V.; Kolar, A.; Rittl, T.F.; Tenywa, M.; Kalbitz, K.; et al. Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar. Geoderma 2019, 348, 12–20. [Google Scholar] [CrossRef]
- Mejias, J.H.; Salazar, F.; Amaro, L.P.; Hube, S.; Rodriguez, M.; Alfaro, M. Nanofertilizers: A Cutting-Edge Approach to Increase Nitrogen Use Efficiency in Grasslands. Front. Environ. Sci. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Hussain, Z.; Cheng, T.; Irshad, M.; Khattak, R.A.; Yao, C.; Song, D.; Mohiuddin, M. Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. PLoS ONE 2021, 17, e0278824. [Google Scholar] [CrossRef]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Fungo, B.; Henry, N.; Johannes, L.; Karsten, K. Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biol. Fertil. Soils 2019, 55, 135–148. [Google Scholar] [CrossRef]
- Pandey, J.K.; Takagi, H.; Nakagaito, A.N.; Kim, H. Handbook of Polymer Nanocomposites. Processing, Performance and Application; Volume C: Polymer Nanocomposites of Cellulose Nanoparticles; Springer Nature: Dordrecht, The Netherlands, 2015; pp. 15–26. ISBN 978-3-642-45232-1. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Punith, N.; Harsha, R.; Lakshminarayana, R.; Hemanth, M.; Anand, M.S.; Dasappa, S. Plasma Activated Water Generation and its Application in Agriculture. Adv. Mater. Lett. 2019, 10, 700–704. [Google Scholar] [CrossRef]
- Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 2015, 22, 935–969. [Google Scholar] [CrossRef]
- Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Das, R.; Gaur, P. Preparation of Chitosan Nanoparticles and their In-vitro Characterization. Int. J. Life-Sci. Sci. Res. 2018, 4, 1713–1720. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Vizireanu, S.; Nicolae, C.A.; Frone, A.N.; Casarica, A.; Carpen, L.G.; Dinescu, G. Treatment of Nanocellulose by Submerged Liquid Plasma for Surface Functionalization. Nanomaterials 2018, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.S.; Shaarawy, H.H.; Hussien, N.H.; Hawash, S.I. Preparation of nano-fertilizer blend from banana peels. Bull. Natl. Res. Cent. 2019, 43, 26. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, K.S.; Low, S.Y.D.; Goh, H.L.; Goh, K.J.; Ruktanonchai, R.U.; Soottitantawat, A.; Lee, H.L.; Tang, Y.S. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Lohmousavi, S.M.; Heidari, H.; Abad, S.; Noormohammadi, G.; Delkhosh, B. Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets. Arabian J. Chem. 2020, 13, 6977–6985. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Zhang, A.; Yang, Z. Synthesis of a slow-release fertilizer composite derived from waste straw that improves water retention and agricultural yield. Sci. Total Environ. 2021, 768, 144978. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2012, 50, 6720–6733. [Google Scholar] [CrossRef]
- Van Langevelde, P.H.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule 2021, 5, 290–294. [Google Scholar] [CrossRef]
- Brady, N.C. The Nature and Properties of Soils, 9th ed.; Macmillan Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Kabiri, S.; Gallucci, F.; Li, S.; Hessel, V.; Greunen, V.D.; Tetteh, F.; Soares, F.; Lang, J. On-site air- to fertilizer mini-plants relegated by the sensor-based ICT technology to foster African agriculture. Tech. Rep. 2022. Available online: https://library.wur.nl/WebQuery/leap4fnssa-projects/partnership/34 (accessed on 23 February 2023).
- Manjunatha, R.; Naik, D.; Usharani, K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019, 8, 1073–1083. [Google Scholar]
- Manjunatha, S.; Biradar, D.; Aladakatti, Y. Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 2016, 29, 1–13. [Google Scholar]
- Wang, Y.; Li, J.; Yang, X. The diffusion model of nutrient release from membrane pore of controlled release fertilizer. Environ. Technol. Innov. 2021, 31301843, 102256. [Google Scholar] [CrossRef]
- Preetha, P.S.; Balakrishnan, N. A Review of Nano Fertilizers and Their Use and Functions in Soil. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 3117–3133. [Google Scholar] [CrossRef]
- Kumar, N.; Ram, S.; Venkatesh, K.; Tripathi, S.C. Global trends in use of nano-fertilizers for crop production: Advantages and constraints: A review. Soil Tillage Res. 2023, 228, 105645. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.; Sunkara, M.K.; Bogaerts, A. Plasma Catalysis: Synergistic Effects at the Nanoscale. Chem. Rev. 2015, 115, 13408–13446. [Google Scholar] [CrossRef]
- Germano, D.L.; Domenico, L.A.D.; Susana, I.T.C.D. Electrochemistry Plasmon-enhanced electrochemistry: A sustainable path for molecular sensing and energy production. Curr. Opin. Electrochem. 2024, 43, 101422. [Google Scholar] [CrossRef]
- VIVEX Engineering Ltd. Cold Plasma Nitric Oxide Process. 2014. Available online: https://www.vivex.co.uk/ (accessed on 2 April 2023).
- Wu, S.; Thapa, B.; Rivera, C.; Yuan, Y. Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. J. Environ. Chem. Eng. 2020, 9, 104761. [Google Scholar] [CrossRef]
- Zhen-yu, W.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D.A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.; et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870. [Google Scholar] [CrossRef]
- Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Lei, F.; Li, L.; Chan, A.W.M.; Xu, L.; et al. Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046. [Google Scholar] [CrossRef]
- Yuhang, W.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Luo, M.; Nam, D.; Tan, C.; Ding, Y.; et al. Enhanced nitrate-to-ammonia activity on copper- nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708. [Google Scholar] [CrossRef]
- McEnaney, J.M.; Blair, S.J.; Nielander, A.C.; Schwalbe, J.A.; Koshy, D.M.; Cargnello, M.; Jaramillo, T.F. Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustain. Chem. Eng. 2020, 8, 2672–2681. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Y.; Wang, C.; Ling, Y.; Yu, Y.; Zhang, B. Boosting Selective Nitrate Electroreduction to Ammonium by Constructing Oxygen Vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540. [Google Scholar] [CrossRef]
- Chen, G.F.; Yuan, Y.; Jiang, H.; Ren, S.Y.; Ding, L.X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 2020, 5, 605–613. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B. Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. Engl. 2020, 59, 5350–5354. [Google Scholar] [CrossRef]
- Place, F.; Barrett, C.B.; Freeman, H.A.; Ramisch, J.J.; Vanlauwe, B. Prospects for integrated soil fertility management using organic and inorganic inputs: Evidence from smallholder African agricultural systems. Food Policy 2003, 28, 365–378. [Google Scholar] [CrossRef]
- Ministry of Agriculture Animal Industry and Fisheries, MAAIF. Natl. Fertil. Policy 2016, 4, 1–28. Available online: https://faolex.fao.org/docs/pdf/uga172925.pdf (accessed on 15 April 2023). [CrossRef]
- Kaizzi, K.C.; Byalebeka, J.; Semalulu, O.; Newton, I.; Zimwanguyizza, W.; Nansamba, A.; Odama, E.; Musinguzi, P.; Ebanyat, P.; Hyuha, T.; et al. Optimizing smallholder returns to fertilizer use: Bean, soybean and groundnut. Field Crops Res. 2012, 127, 109–119. [Google Scholar] [CrossRef]
- Kaizzi, K.C.; Angella, N.; Musisi, K.F. Optimizing Fertilizer Use within the Context of Integrated Soil Fertility in Uganda. In Fertilizer Use Optimization in Sub-Saharan Africa; Wortman, S.C., Sones, K., Eds.; CABI: New York, NY, USA, 2017; pp. 193–209. ISBN 978-1-78639-204-6. [Google Scholar] [CrossRef]
- Sommer, R.; Bossio, D.A.; Tamene, L.; Dimes, J.; Kihara, J.; Kaola, S.; Mango, N.; Rodriquez, D.; Thierfelder, C.; Winowiecki, L. Profitable and Sustainable Nutrient Management Systems for East and Southern African Smallholder Farming Systems—Challenges and Opportunities: A Synthesis of the Eastern and Southern Africa Situation in Terms of Past. 2013. Issue January. Available online: https://www.researchgate.net/publication/303798228_Profitable_and_Sustainable_Nutrient_Management_Systems_for_East_and_Southern_African_Smallholder_Farming_Systems_-_Challenges_and_Opportunities?channel=doi&linkId=5752da7208ae02ac1277ff02&showFulltext=true (accessed on 30 September 2024).
- Winnie, N.; Giweta, M.; Gweyi-onyango, J.; Mochoge, B.; Mutegi, J.; Nziguheba, G.; Masso, C. Assessment of the 2006 Abuja Fertilizer Declaration With Emphasis on Nitrogen Use Efficiency to Reduce Yield Gaps in Maize Production. Front. Sustain. Food Syst. 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Ministry of Finance Planning and Economic Development, MoFPED. The Republic of Uganda National Budget Framework Paper. 2022. Issue December 2021. Available online: https://budget.finance.go.ug/sites/default/files/National%20Budget%20docs/National%20Budget%20Framework%20Paper%20FY%202021-22.pdf (accessed on 6 April 2023).
- Aulakh, M.S.; Malhi, S.S. Interactions of nitrogen with other nutrients and water: Effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and Environmental pollution. Adv. Agron. 2005, 86, 341–409. [Google Scholar]
- Vanlauwe, B.; Giller, K.E. Popular myths around soil fertility management in sub-Saharan Africa. Agric. Ecosyst. Environ. 2006, 116, 34–46. [Google Scholar] [CrossRef]
- Palanisamy, S.; Subramaniam, B.S.; Thangamuthu, S.; Nallusamy, S.; Rengasamy, P. Review on Agro-Based Nanotechnology through Plant-Derived Green Nanoparticles: Synthesis, Application and Challenges. J. Environ. Sci. Public Health 2021, 5, 77–98. [Google Scholar] [CrossRef]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2017, 66, 6487–6503. [Google Scholar] [CrossRef] [PubMed]
- Bohn, H.L.; McNeal, B.L.; O’Connor, G.A. Soil Chemistry, 3rd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Mani, P.K.; Mondal, S. Agri-Nanotechniques for Plant Availability of Nutrients; Springer: Cham, Switzerland, 2016; Volume 11, pp. 263–303. ISBN 9783319421544. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association: Paris, France, 2010. [Google Scholar]
- Musyoka, M.W.; Adamtey, N.; Muriuki, A.W.; Bautze, D.; Karanja, E.N.; Komi, M.M. Nitrogen leaching losses and balances in conventional and organic farming systems in Kenya. Nutr. Cycl. Agroecosyst. 2019, 114, 237–260. [Google Scholar] [CrossRef]
- Öztürk, N.; Bektas, T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 2004, 112, 155–162. [Google Scholar] [CrossRef]
- Mikkelsen, R. Nanofertilizer and Nanotechnology: A quick look. Better Crop. 2018, 102, 9–11. [Google Scholar] [CrossRef]
- Madkour, L.H. Introduction to Nanotechnology (NT) and Nanomaterials (NMs). In Nanoelectronic Materials; Madkour, Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–47. [Google Scholar]
- Lakkis, J.M. Encapsulation and Controlled Release Technologies in Food Systems, 2nd ed.; Wiley Blackwell: West Sussex, UK, 2016; ISBN 9781118733523. [Google Scholar]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ Nutrition in Plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef]
- Peng, M.; Hudson, D.; Schofield, A.; Tsao, R.; Yang, R.; Gu, H. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J. Exp. Bot. 2008, 59, 2933–2944. [Google Scholar] [CrossRef]
- Stephen, K.; Helen, J.; Peter, D. Nanoparticle. Encyclopedia Britannica. 14 May 2019. Available online: https://www.britannica.com/science/nanoparticle (accessed on 10 August 2022).
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 2, 18–23. [Google Scholar] [CrossRef]
- Kumar, R.; Rawat, K.S.; Mishra, A.K. Nanoparticles in the soil environment and their behaviour: An overview. J. App. Nat. Sci. 2012, 4, 310–324. [Google Scholar] [CrossRef]
- White, P.J. Ion Uptake Mechanisms of Individual Cells and Roots: Short-distance Transport. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier Ltd.: Landon, UK, 2012; Chapter 2, Issue 1948; pp. 7–47. ISBN 9780123849052. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules 2018, 23, 2684. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Liu, X.; Liao, J.; Song, H.; Yang, Y.; Guan, C.A. Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Sci. Rep. 2019, 9, 9548. [Google Scholar] [CrossRef] [PubMed]
- Kassem, I.; Ablouh, E.; Bouchtaoui, F.E.; Kassab, Z.; Khouloud, M.; Sehaqui, H.; Ghalfi, H.; Alami, J.; Achaby, M.E. Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int. J. Biol. Macromol. 2021, 189, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Tibolla, H.; Pelissari, F.M.; Martins, J.T.; Vicente, A.A.; Menegalli, F.C. Cellulose nano fibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocoll. 2018, 75, 192–201. [Google Scholar] [CrossRef]
- Sun, D.; Onyianta, A.J.; Rourke, D.O.; Perrin, G.; Lip, C.P.; Saw, H.; Cai, Z.; Dorris, M.; Dorris, M. A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose 2020, 27, 3727–3740. [Google Scholar] [CrossRef]
- Gupta, G.K.; Shukla, P. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly. Front. Chem. 2020, 8, 601256. [Google Scholar] [CrossRef]
- Pandey, J.K.; Kim, C.S.; Chu, W.S.; Lee, C.S.; Jang, D.Y.; Ahn, S.H. Evaluation of morphological architecture of cellulose chains in grass during conversion from macro to nano dimensions. e-Polymers 2009, 9, 1221–1235. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Ahmad, I.; Abdullah, I.; Dufresne, A.; Zainudin, S.Y.; Sheltami, R.M. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 2012, 19, 855–866. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Castro, C.; Gañán, P.; Osorio, M.; Putaux, J.L.; Serpa, A. Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind. Crops Prod. 2016, 83, 551–560. [Google Scholar] [CrossRef]
- Liu, C.; Li, B.; Du, H.; Lv, D.; Zhang, Y.; Yu, G. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd. Polym. 2016, 151, 716–724. [Google Scholar] [CrossRef]
- Yang, X.; Han, F.; Xu, C.; Jiang, S.; Huang, L.; Liu, L. Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Ind. Crops Prod. 2017, 109, 241–247. [Google Scholar] [CrossRef]
- Barbash, V.A.; Yaschenko, O.V.; Shniruk, O.M. Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res. Lett. 2017, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Camarero Espinosa, S.; Kuhnt, T.; Foster, E.J.; Weder, C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 2013, 14, 1223–1230. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Q.; Han, Z.; Li, J.; Liao, B.; Hu, L. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohyd. Polym. 2020, 227, 115323. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Zhou, H.; Tan, Y.; Gao, W.; Zhang, Y.; Yang, Y. Selective nitrate removal from aqueous solutions by a hydrotalcite-like absorbent FeMgMn-LDH. Sci. Rep. 2020, 10, 12126. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Khalaf, M.M.; Al-fengary, A.E.; Elrouby, M. Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. Molecules 2022, 27, 2552. [Google Scholar] [CrossRef]
- Khan, H.A.; Naqvi, S.R.; Mehran, M.T.; Khoja, A.H.; Niazi, M.B.K.; Juchelková, D.; Atabani, A. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere 2021, 285, 131382. [Google Scholar] [CrossRef]
- Wang, Y.; Shaghaleh, H.; Hamoud, Y.A.; Zhang, S.; Li, P.; Xu, X.; Liu, H. Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer. Int. J. Biol. Macromol. 2021, 187, 262–271. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, D.; He, L.; Zhong, N.; Yu, M.; Zhang, X.; Wu, Z. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustain. Chem. Eng. 2015, 3, 645–653. [Google Scholar] [CrossRef]
- Azadbakht, P.; Pourzamani, H.; Rahman, S.; Petroudy, J.; Bina, B. Removal of nitrate from aqueous solution using nanocrystalline cellulose. Intl. J. Environ. Health Eng. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Uzoh, C.F.; Odera, S.R. Lag, Constant and Decay Release Encapsulated Urea as a Function of Coating Thickness Using Different Empirical Models. In Microencapsulation—Processes, Technologies and Industrial Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E.D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interf. Sci. 2015, 439, 139–148. [Google Scholar] [CrossRef]
- Cai, D.; Wu, Z.; Jiang, J.; Wu, Y.; Feng, H.; Brown, I.G.; Chu, P.K.; Yu, Z. Controlling nitrogen migration through micro-nano networks. Sci. Rep. 2014, 4, 3665. [Google Scholar] [CrossRef]
- Rop, K.; Karuku, G.N.; Mbui, D.; Michira, I.; Njomo, N. Formulation of slow release NPK fertilizer (cellulose-graft-poly (acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Ann. Agric. Sci. 2018, 63, 163–172. [Google Scholar] [CrossRef]
- Lateef, A.; Nazir, R.; Jamil, N.; Alam, S.; Shah, R.; Khan, M.N.; Saleem, M. Synthesis and characterization of zeolite based nano–composite: An environment friendly slow release fertilizer. Microporous Mesoporous Mater. 2016, 232, 174–183. [Google Scholar] [CrossRef]
- Liu, X.M.; Feng, Z.B.; Zhang, F.D.; Zhang, S.Q.; He, X.S. Preparation and testing of cementing and coating nano sub nanocomposites of slow/controlled-release fertilizer. Agric. Sci. 2006, 5, 700–706. [Google Scholar] [CrossRef]
- Helal, M.I.; El-Mogy, M.M.; Khater, H.A.; Fathy, M.A.; Ibrahim, F.E.; Li, Y.C.; Tong, Z.; Abdelgawad, K.F. A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption. Plants 2023, 12, 1978. [Google Scholar] [CrossRef]
- AlShamaileh, E.M.; Al-Rawajfeh, A.E.; Alrbaihat, M.R. Solid-state mechanochemical synthesis of Kaolinite-Urea complexes for application as slow release fertilizer. J. Ecol. Eng. 2019, 20, 267–276. [Google Scholar] [CrossRef]
- Rudmin, M.; Makarov, B.; López-Quirós, A.; Maximov, P.; Lokteva, V.; Ibraeva, K.; Kurovsky, A.; Gummer, Y.; Ruban, A. Preparation, Features, and Efficiency of Nanocomposite Fertilisers Based on Glauconite and Ammonium Dihydrogen Phosphate. Materials 2023, 16, 6080. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Tomar, R. Use of surface modified inorganic nano materials as slow release nitrogen fertilizer. In Sustainable Agricultural Development: Recent Approaches in Resources Management and Environmentally-Balanced Production Enhancement; Springer: Berlin/Heidelberg, Germany, 2011; pp. 171–184. [Google Scholar] [CrossRef]
- Teodorescu, M.; Lungu, A.; Stanescu, P.O.; Neamt, C. Preparation and Properties of Novel Slow-Release NPK Agrochemical Formulations Based on Poly (acrylic acid) Hydrogels and Liquid Fertilizers. Ind. Eng. Chem. Res. 2009, 48, 6527–6534. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Hosny, A.; Saad-Allah, K. Reducing nitrogen leaching while enhancing growth, yield performance and physiological traits of rice by the application of controlled-release urea fertilizer. Paddy Water Environ. 2021, 19, 173–188. [Google Scholar] [CrossRef]
- Li, J.; Jin, Q.; Liang, Y.; Geng, J.; Xia, J.; Chen, H.; Yun, M. Highly Efficient Removal of Nitrate and Phosphate to Control Eutrophication by the Dielectrophoresis-Assisted Adsorption Method. Int. J. Environ. Res. Public Health 2022, 19, 1890. [Google Scholar] [CrossRef] [PubMed]
- Deo, H.R.; Chandrakar, T.; Srivastava, L.K.; Nag, N.K.; Singh, D.P. Effect of Nano-DAP on yield, nutrient uptake and nutrient use efficiency by rice under Bastar plateau. Pharm. Innov. 2022, 11, 1463–1465. Available online: https://www.thepharmajournal.com/archives/?year=2022&vol=11&issue=9&ArticleId=15550 (accessed on 24 September 2024).
- Al-uthery, H.W.A.; Al-shami, Q.M.N. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Arch. 2019, 19, 1087–1096. [Google Scholar]
- Kumar, Y.; Singh, T.; Raliya, R.; Tiwari, K.N. Nano Fertilizers for Sustainable Crop Production, Higher Nutrient Use Efficiency and Enhanced Profitability. Indian J. Fert. 2021, 17, 1206–1214. [Google Scholar]
- Chhowalla, M. Slow Release Nanofertilizers for Bumper Crops. ACS Cent. Sci. 2017, 3, 156–157. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Coulter, J.A.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Gan, Y. Slow-release fertilizer improves the growth, quality, and nutrient utilization of wintering Chinese chives (Allium tuberosum rottler ex spreng.). Agronomy 2020, 10, 381. [Google Scholar] [CrossRef]
- Purohit, P.; Bhatt, A.; Mittal, R.K.; Abdellattif, M.H.; Farghaly, T.A. Polymer Grafting and its chemical reactions. Front. Bioeng. Biotechnol. 2023, 10, 1044927. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Rawlins, J.W.; Ray, P. Polymer Grafting and Crosslinking; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bhattacharjee, C.; Sen, D.; Bengal, W.; Bengal, W. Encyclopedia of Membranes; Springer-Verlag GmbH: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-44324-8. [Google Scholar] [CrossRef]
- Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Reyhani, A. Materials Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. 2018, 90, 333–340. [Google Scholar] [CrossRef]
- EN 13266:2001; Slow-Release Fertilizers—Determination of the Release of the Nutrients—Method for Coated Fertilizers. European Committee for Standardization: Brussels, Belgium, 2002; Volume 3.
- Pereira, E.I.; Minussi, F.B.; Cruz, C.C.T.; Bernardi, A.C.C.; Ribeiro, C. Urea—Montmorillonite-Extruded Nanocomposites: A Novel Slow- Release Material. J. Agric. Food Chem. 2012, 60, 5267–5272. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Shen, G.; Shaaban, M.; Ju, W.; Cui, Y.; Duan, C.; Fang, L. Effects of inorganic and organic fertilizers on CO2 and CH4 fluxes from tea plantation soil. Elementa 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Mosongo, P.S.; Pelster, D.E.; Li, X.; Gaudel, G.; Wang, Y.; Chen, S.; Li, W.; Mburu, D.; Hu, C. Greenhouse Gas Emissions Response to Fertilizer Application and Soil Moisture in Dry Agricultural Uplands of Central Kenya. Atmosphere 2022, 13, 463. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Pinto, J.C.; Cabral-albuquerque, E.C.D.M. Coating of urea granules by in situ polymerization in fluidized bed reactors. Polímeros Ciência e Tecnologia 2019, 29, e2019004. [Google Scholar] [CrossRef]
- Curtis, J.R.; Jolley, V.D.; Blair, T.A.; Sutton, L.E.; Hopkins, B.G. Nitrogen release rates from slow- and controlled-release fertilizers influenced by placement and temperature. PLoS ONE 2020, 15, e0234544. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient Interaction in Crop Plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
Cathode Material | Conditions | Maximum FE to NH3 (%) | Partial Current Density to NH3 (mA cm−2) | Maximum NH3 Production | Reference |
---|---|---|---|---|---|
Fe | 1.0 M KOH at 3 mL min−1 flow rate, 0.5 M KNO3/0.1 M K2SO4 at 1 mL min−1, −0.66 V versus RHE | 75 | −100 | 0.46 mmol h−1 cm−2 | [47] |
Strained Ru nanoclusters | 1 M NO3−, 1 M KOH, −0.2 V versus RHE | 75 | −120 | 1.17 mmol h−1 cm−2 | [48] |
Ti | 0.3 M KNO3, 0.1 M HNO3, acidic pH, −1 V versus RHE | 82 | −22 | - | [50] |
TiO2 | 3.6 mM NO3−, 0.5 M NaSO4, −1.6 V versus SCE | 66.3 | - | 0.005 mmol h−1 cm−2 | [51] |
TiO2−X | 3.6 mM NO3−, 0.5 M NaSO4, −1.6 V versus SCE | 85 | - | 0.009 mmol h−1 cm−2 | [51] |
Cu-incorporated PTCDA | 36 mM NO3−, 0.1 mM PBS, pH 7, −0.4 V versus RHE | 85.9 | - | 0.0256 mmol h−1 cm−2 | [52] |
Cu/Cu2O NWAs | 14.3 mM NO3−, 0.5 M NaSO4, −0.85 V versus RHE | 95.8 | - | 0.2449 mmol h−1 cm−2 | [53] |
Ru-dispersed Cu nanowire | 32.3 mM NO3− (2000 ppm), 1 M KOH, –0.13 V versus RHE | 96 | −965 | 1.76 mmol h−1 cm−2 | [13] |
Cu-Ni alloys | 100 mM NO3−, 1 M KOH, pH 14, −0.1 V versus RHE | 99 | −90 | - | [49] |
Cellulosic Source | Isolation Method | Nanocellulose Type | Morphology | Diameter (nm) | Crystallinity (%) | Zeta Potential (mV) | Average Tensile Strength (MPa) | Average Young’s Modulus (GPa) | Maximum Degradation Temperature (°C) | References |
---|---|---|---|---|---|---|---|---|---|---|
Banana pseudostem | High-pressure homogenization | CNF | An entangled network of polydisperse bundles | 30–50 | 67 | – | – | – | 337 | [88] |
Banana peel | KOH | CNF | Nanospherical | 19–55 | - | – | – | – | - | [30] |
Maize cob residue | TEMPO-mediated oxidation | CNF | Twisted shape | 2.1 ± 1.1 | 49.9 | −23.1 ± 2.3 | – | – | 305 | [89] |
PFI refining | CNF | Twisted | 43.1 ± 25.3 | 52.1 | −40.3 ± 1.5 | – | – | 336 | ||
H2SO4 hydrolysis | CNC | Short rod-shaped | 5.5 ± 1.9 | 55.9 | −33.8 ± 1.7 | – | – | 313 | ||
Formic acid hydrolysis | CNC | Long rod-shaped | 6.5 ± 2.0 | 63.8 | −14.3 ± 0.4 | – | – | 360 | ||
Maize husk | TEMPO-mediated oxidation | CNF | Slender interconnected Webbs | 10.48 ± 1.83 | 72.3 | −69.4 ± 1.7 | – | – | 279 | [90] |
High-intensity ultrasonication | CNF | Slender interconnected Webbs | 20.14 ± 4.32 | 53.4 | −24.3 ± 2.5 | – | – | 348 | ||
H2SO4 hydrolysis | CNC | Short and rod-shaped | 26.9 ± 3.35 | 83.5 | −34.6 ± 2.3 | – | – | 351 | ||
Wheat straw stalks | H2SO4 hydrolysis and ultrasound treatment | CNF | Mesh-like shape | 10–40 | 72.5 | – | 42.3 | 11.45 | ca. 400 | [91] |
Cotton | H3PO4 hydrolysis | CNC | Rod-shaped | 31 ± 14 | 81 | – | – | – | 325 | [92] |
Water hyacinth | Mechanical fibrillation | CNF | Web-like network structure | 19.2 ± 4.3 | 55 | – | 50 | – | 331 | [84] |
Bacterial strain Komagataeibacter xylinus | Agitated culture: 300 rpm at 30 °C | BNC | Loose and porous network | 29.51 ± 8.03 | 22.1 | −46.5 ± 1.5 | – | – | 310 | [93] |
Static culture for 96 h at 30 °C | BNC | Denser network structure | 29.13 ± 6.53 | 47.4 | −44.1 ± 0.9 | 0.235 | 0.72 | 335 |
Slow-Release Fertilizer Preparation Methods | Fertilizer | N Source | Nutrients | Nanoparticles Used | Nanoparticle Preparation Method | Binder | N Release | Reference |
---|---|---|---|---|---|---|---|---|
Impregnation | Nano-biochar SRF | Sodium nitrate | N, P, K, Ca, and micronutrients | Nano-biochar | Physical crushing | - | >10 days | [97] |
Matrix | U-CAM | Urea | N, Fe, Ca | Carboxylated nanocellulose (CNF) | Catalytic oxidation | Hydrogel | >30 days | [98] |
Matrix | WNLCU | Urea | N | Attapulgite (HA) | High-energy electron beam (HEEB) irradiation | Sodium polyacrylate (P) and polyacrylamide (M) | 66% lower than control | [99] |
Matrix | WNLCN | Ammonium chloride | N | Attapulgite (HA) | High-energy electron beam (HEEB) irradiation | Sodium polyacrylate (P) and polyacrylamide (M) | 90% lower than control | [99] |
Ion exchange (IE) | N/A | KNO3 solution | N | Nanocrystalline cellulose | Acid hydrolysis, H2O4 | - | - | [100] |
Reverse osmosis (RO) | N/A | NaNO3 | N | Sepiolite | Hydrothermally synthesized | - | - | [69] |
Biological accumulation | Waste sludge | Wastewater | N, P | Carbon source | - | - | 10 days | [6] |
In situ graft polymerization | BPC-g-PAA/PVA/LDH/NP | Urea and ammonium dihydrogen phosphate | N, P | Banana cellulose | Co-precipitation method | Polyvinyl alcohol (PVA) | 60% in water after 30 min | [32] |
Coating | PVA@CNC coated NPK | NPK | N, K, and P | Raw hemp | Co-precipitation method | PVA | 90% in 22 days | [82] |
Encapsulation | St-PVOH encapsulated urea | Urea | N | Starch | Co-precipitation method | PVA | <18% in 6 days and 62% after 32 days | [101] |
Nanoemulsion | DMAB-CNC-stabilized emulsions | Didecyldimethyl ammonium bromide (DMAB) | N, K, and P | Cotton cellulose nanocrystals | Co-precipitation method | - | - | [102] |
Matrix | Loss control urea (LCU) | Urea | N | Attapulgite (HA) | Irradiated by high-energy electron beam and O3 treatment | Polyacrylamide (P) | 50% lower than urea | [103] |
Matrix | HA-POL-urea | Urea | N, K, and P | Hydroxyapatite (HAD) | Sol–gel | Cellulose fiber and polyacrylamide | 112 days | [104] |
Surface carrier | Zeolite | Sodium nitrate | N and other macro- and micronutrients | Zeolite | Co-precipitation method | - | days—water and >16 days—soil | [105] |
Coating | Coated urea | Urea | N | Kaoline and Polystyrene-starch | Ultra-high-speed cutting and semi-emulsification | - | - | [106] |
Matrix and coating | QAL-Ben-U | Urea | N | Bentonite | Sol–gel | Quaternary ammonium lignin (QAL) | - | [107] |
Matrix | Kao-urea | Urea | N | Kaolin | Milling | - | >7 days | [108] |
Matrix | Gal-ADP | Ammonium dihydrogen phosphate (ADP) | N, K, P, and other micronutrients | Glauconite | Chemical and mechanochemical method | Na2CO3 as an extender | >56 days | [109] |
Surface carrier | Zeo-AN | Ammonium nitrate (AN) | N | Zeolite (surface-modified) | Hydrothermally synthesized | - | 35% lower than CF | [110] |
Fertilizer Type | Preparation Method | Crop | Crop Response | Nutrient Use Efficiency Type | NUE | Reference |
---|---|---|---|---|---|---|
Nano-DAP | Emulsion | Rice |
| Agronomic use efficiency (AUE), kgha−1 | 31 | [114] |
Apparent nutrient use efficiency (ANUE), % | 70 | |||||
Physiological efficiency (PE), kgha−1 | 44.2 | |||||
Nano-NPK | Emulsion | Potato |
| Agronomic use efficiency (AUE), kgha−1 | 233–667 | [115] |
Physiological efficiency (PE), kgha−1 | 85–98 | |||||
Nano-urea | Emulsion | Maize |
| - | - | [116] |
Controlled release urea (CRU) | Encapsulation | Tomato |
| Physiological efficiency (PE), kgha−1 | 47–88 | [107] |
Gal-ADP | Matrix | Oat |
| - | - | [109] |
U-CAM | Matrix | Wheat |
| - | - | [98] |
Urea-HA | Coating | Rice |
| - | - | [117] |
SRF/SRFR | Resin-coated | Winter Chines chives |
| AUE | 28.2–54.9 | [118] |
PE | 11–18% more than conventional fertilizers | |||||
Partial factor productivity (PFP), kg kg−1 | 57.4–118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyebogola, S.; Kabiri, S.; Onwonga, R.N.; Semalulu, O.; Yost, R.S.; Sseruwu, G. Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review. Sustainability 2024, 16, 9609. https://doi.org/10.3390/su16229609
Kyebogola S, Kabiri S, Onwonga RN, Semalulu O, Yost RS, Sseruwu G. Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review. Sustainability. 2024; 16(22):9609. https://doi.org/10.3390/su16229609
Chicago/Turabian StyleKyebogola, Stewart, Stella Kabiri, Richard Ndemo Onwonga, Onesimus Semalulu, Russell Shelley Yost, and Godfrey Sseruwu. 2024. "Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review" Sustainability 16, no. 22: 9609. https://doi.org/10.3390/su16229609
APA StyleKyebogola, S., Kabiri, S., Onwonga, R. N., Semalulu, O., Yost, R. S., & Sseruwu, G. (2024). Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review. Sustainability, 16(22), 9609. https://doi.org/10.3390/su16229609