Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a Heatwave Event in the City of Athens, Greece
Abstract
:1. Introduction
2. Study Area—Synoptic Conditions
3. Materials and Methods
3.1. Green Roofs Categorization
3.2. Data and Model Configuration
3.3. Experimental Set-Up
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations/Nomenclature
BEM | Building Energy Model |
BEP | Building Effect Parameterization |
BH | Building Height |
CLIMPACT | A national network for climate change |
CR | Control Run |
CV(RMSE) | Coefficient of Variation of the Root Mean Squared |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EnergyPlus | Building energy simulation program |
ERA5 | ECMWF Reanalysis v5 |
GAA | Greater Area of Athens |
GIS | Geographic Information System |
GR | Green Roofs |
HCG | Heat Capacity of the Ground (road) |
HCR | Heat Capacity of the building’s Roof |
HCW | Heat Capacity of the building’s Walls |
HUA | Harokopio University of Athens |
HW | Heat Wave |
LCZ | Local Climate Zones |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NCEP | National Centers for Environmental Prediction |
NMBE | Normalized Mean Bias Error |
NSE | Nash–Sutcliffe model Efficiency coefficient |
RMSE | Root Mean Square Error |
RRTM | Rapid Radiative Transfer Model |
S1 | Scenario 1—grass 100% coverage |
S2 | Scenario 2—sedum 100% coverage |
S3 | Scenario 3—grass 50% coverage |
SAG | Surface Albedo of the Ground (road) |
SAR | Surface Albedo of the building’s Roof |
SAW | Surface Albedo of the building’s Walls |
SB | Sea Breeze |
SEG | Surface Emissivity of the Ground (road) |
SER | Surface Emissivity of the building’s Roof |
SEW | Surface Emissivity of the building’s Walls |
SRTM | NASA Shuttle Radar Topographic Mission |
TCG | Thermal Conductivity of ground (road) |
TCR | Thermal Conductivity of the building’s roof |
TCW | Thermal Conductivity of the building’s Walls |
TKE | Turbulent Kinetic Energy |
TRNYS | Transient System Simulation Tool |
UCM | Urban Canopy Model |
UHeatEx | Urban Heat Exposure Index |
UHI | Urban Heat Island |
USGS | United States Geological Survey |
USP | Urban Surface Properties |
UTC | Coordinated Universal Time |
WRF | Weather Research and Forecasting Model |
WUDAPT | World Urban Database and Access Portal Tools |
References
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Oke, T.R.; Johnson, G.T.; Steyn, D.G.; Watson, I.D. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Bound.-Layer Meteorol. 1991, 56, 339–358. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Plavcová, E. Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim. Dyn. 2018, 50, 4249–4262. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Smith, C. London: Garden City? Investigating the Changing Anatomy of London’s Private Gardens, and the Scale of Their Loss; London Wildlife Trust; Greenspace Information Greater London; Greater London Authority: London, UK, 2010.
- Ayata, T.; Tabares-Velasco, P.C.; Srebric, J. An investigation of sensible heat fluxes at a green roof in a laboratory setup. Build. Environ. 2011, 46, 1851–1861. [Google Scholar] [CrossRef]
- Dudorova, N.V.; Belan, B.D. The Energy Model of Urban Heat Island. Atmosphere 2022, 13, 457. [Google Scholar] [CrossRef]
- Sharma, A.; Conry, P.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Chen, F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 064004. [Google Scholar] [CrossRef]
- Theodosiou, T. Green roofs in buildings: Thermal and environmental behaviour. Adv. Build. Energy Res. 2009, 3, 271–288. [Google Scholar] [CrossRef]
- Li, X.X.; Norford, L.K. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 2016, 16, 59–74. [Google Scholar] [CrossRef]
- Porcaro, M. Potential of Energy Demand Reduction in Buildings with Green Roofs Under Climatic Conditions of Southern Europe. Ph.D. Thesis, University of Cordoba, Cordoba, Spain, May 2021. [Google Scholar]
- Sailor, D.J.; Elley, T.B.; Gibson, M. Exploring the building energy impacts of green roof design decisions—A modeling study of buildings in four distinct climates. J. Build. Phys. 2011, 35, 372–391. [Google Scholar] [CrossRef]
- Yoshida, A.; Hisabayashi, T.; Kashihara, K.; Kinoshita, S.; Hashida, S. Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Clim. 2015, 14, 240–250. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, Y.; Luo, L.; Wang, Y. Effectiveness of different urban heat island mitigation methods and their regional impacts. J. Hydrometeorol. 2017, 18, 2991–3012. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 2018, 197, 393–405. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.K.C.; Ng, E.; Chow, C.L. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build. 2017, 145, 226–237. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Jamei, E.; Chau, H.W.; Seyedmahmoudian, M.; Stojcevski, A. Review on the cooling potential of green roofs in different climates. Sci. Total Environ. 2021, 791, 148407. [Google Scholar] [CrossRef] [PubMed]
- Rafael, S.; Correia, L.P.; Ascenso, A.; Augusto, B.; Lopes, D.; Miranda, A.I. Are green roofs the path to clean air and low carbon cities? Sci. Total Environ. 2021, 798, 149313. [Google Scholar] [CrossRef] [PubMed]
- Voogt, J.A. Urban Heat Islands: Hotter Cities; America Institute of Biological Sciences: Herndon, VA, USA, 2004; pp. 4–7. [Google Scholar]
- University Corporation for Atmospheric Research. Urban Heat Islands. 2011. Available online: https://scied.ucar.edu/longcontent/urban-heat-islands (accessed on 3 November 2024).
- Agathangelidis, I.; Cartalis, C.; Santamouris, M. Integrating urban form, function, and energy fluxes in a heat exposure indicator in view of intra-urban Heat Island assessment and climate change adaptation. Climate 2019, 7, 75. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Tseliou, A.; Melas, E.; Mela, A.; Tsiros, I.; Zervas, E. The Effect of Green Roofs and Green Façades in the Pedestrian Thermal Comfort of a Mediterranean Urban Residential Area. Atmosphere 2023, 14, 1512. [Google Scholar] [CrossRef]
- Iaria, J.; Susca, T. Analytic Hierarchy Processes (AHP) evaluation of green roof-and green wall-based UHI mitigation strategies via ENVI-met simulations. Urban Clim. 2022, 46, 101293. [Google Scholar] [CrossRef]
- Scolaro, T.P.; Ghisi, E.; Silva, C.M. Assessing the impact of evapotranspiration from green roofs on reducing surface temperatures. J. Build. Eng. 2024, 95, 110095. [Google Scholar] [CrossRef]
- Göç Yener, Ü. Green Roof as an Element of Green Infrastructure and Inferences for Implementations in Turkey. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2021. [Google Scholar]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Dimitriadou, L.; Zerefos, C. Heatwaves and Mortality in Spain and Greece: A Comparative Analysis. Atmosphere 2023, 14, 766. [Google Scholar] [CrossRef]
- Pantavou, K.; Kotroni, V.; Kyros, G.; Lagouvardos, K. Thermal bioclimate in Greece based on the Universal Thermal Climate Index (UTCI) and insights into 2021 and 2023 heatwaves. Theor. Appl. Climatol. 2024, 155, 6661–6675. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Smid, M.; Russo, S.; Costa, A.C.; Granell, C.; Pebesma, E. Ranking European capitals by exposure to heat waves and cold waves. Urban Clim. 2009, 27, 388–402. [Google Scholar] [CrossRef]
- Founda, D. Urban thermal risk. Atmosphere 2021, 12, 466. [Google Scholar] [CrossRef]
- Dandou, A.; Papangelis, G.; Kontos, Τ.; Santamouris, M.; Tombrou, M. On the cooling potential of urban heating mitigation technologies in a coastal temperate city. Landsc. Urban Plan. 2021, 212, 104106. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Salamanca, F.; Krpo, A.; Martilli, A.; Clappier, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 2010, 99, 331–344. [Google Scholar] [CrossRef]
- Giovannini, L.; Zardi, D.; De Franceschi, M.; Chen, F. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol. 2014, 34, 1111–1131. [Google Scholar] [CrossRef]
- Salamanca, F.; Zhang, Y.; Barlage, M.; Chen, F.; Mahalov, A.; Miao, S. Evaluation of the WRF-urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. J. Geophys. Res. Atmos. 2018, 123, 2387–2408. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Gutierrez, E.; Chen, F.; He, C.; Barlage, M.; Zardi, D.; Giovannini, L. Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption. J. Geophys. Res. Atmos. 2021, 126, e2021JD035002. [Google Scholar] [CrossRef]
- Pappaccogli, G.; Giovannini, L.; Zardi, D.; Martilli, A. Assessing the Ability of WRF-BEP+ BEM in Reproducing the Wintertime Building Energy Consumption of an Italian Alpine City. J. Geophys. Res. Atmos. 2021, 126, e2020JD033652. [Google Scholar] [CrossRef]
- Giannaros, C.; Nenes, A.; Giannaros, T.M.; Kourtidis, K.; Melas, D. A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmos. Res. 2018, 201, 86–101. [Google Scholar] [CrossRef]
- Ribeiro, I.; Martilli, A.; Falls, M.; Zonato, A.; Villalba, G. Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ. Atmos. Res. 2021, 248, 105220. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Molnár, G.; Gyöngyösi, A.Z.; Gál, T. Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theor. Appl. Climatol. 2019, 138, 1139–1158. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. Int. J. Climatol. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef]
- Giannaros, C.; Agathangelidis, I.; Papavasileiou, G.; Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Giannaros, T.M.; Cartalis, C.; Matzarakis, A. The extreme heat wave of July–August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework. Sci. Total Environ. 2023, 857, 159300. [Google Scholar] [CrossRef]
- Dandou, A.; Tombrou, M.; Soulakellis, N. The Influence of the City of Athens on the Evolution of the Sea-Breeze Front. Bound.-Layer Meteorol. 2009, 131, 35–51. [Google Scholar] [CrossRef]
- Tombrou, M.; Bossioli, E.; Kalogiros, J.; Allan, J.D.; Bacak, A.; Biskos, G.; Coe, H.; Dandou, A.; Kouvarakis, G.; Mihalopoulos, N.; et al. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign. Sci. Total Environ. 2015, 506, 201–216. [Google Scholar] [CrossRef]
- Founda, D.; Mamara, A.; Argiriou, A.; Pierros, F.; Sarantopoulos, A. Spatial and Temporal Changes of Diurnal Temperature Range in Greece—The Urban Effect. Environ. Sci. Proc. 2023, 26, 1. [Google Scholar] [CrossRef]
- Founda, D.; Katavoutas, G.; Pierros, F.; Mihalopoulos, N. The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress. Sustainability 2022, 14, 7766. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef]
- Carter, T.; Butler, C. Ecological impacts of replacing traditional roofs with green roofs in two urban areas. Cities Environ. CATE 2008, 1, 9. Available online: https://digitalcommons.lmu.edu/cate/vol1/iss2/9 (accessed on 3 November 2024).
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa. HortScience 2006, 41, 1623–1628. [Google Scholar] [CrossRef]
- De Munck, C.S.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R. The GREENROOF module (v7. 3) for modelling green roof hydrological and energetic performances within TEB. Geosci. Model Dev. 2013, 6, 1941–1960. [Google Scholar] [CrossRef]
- Masson, V.; Champeaux, J.; Chauvin, F.; Meriguet, C.; Lacaze, R. A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Zhu, D.; Ooka, R. WRF-based scenario experiment research on urban heat island: A review. Urban Clim. 2023, 49, 101512. [Google Scholar] [CrossRef]
- Demuzere, M.; Argüeso, D.; Zonato, A.; Kittner, J. W2W: A Python package that injects WUDAPT’s Local Climate Zone information in WRF. J. Open Source Softw. 2022, 7, 4432. [Google Scholar] [CrossRef]
- Mitchel, A. The ESRI Guide to GIS Analysis, Volume 2: Spartial Measurements and Statistics; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Janjic, Z.I.; Gerrity, J.P.; Nickovic, S. An alternative approach to nonhydrostatic modeling. Mon. Weather Rev. 2001, 129, 1164–1178. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 24, 163–187. [Google Scholar]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Iacono, M.J.; Mlawer, E.J.; Clough, S.A.; Morcrette, J.J. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. Atmos. 2000, 105, 14873–14890. [Google Scholar] [CrossRef]
- Liang, T.; He, J.; Chen, L.; Yao, Z.; Zhang, L.; Che, H.; Gong, S. Simulation of the influence of a fine-scale urban underlying surface on the urban heat island effect in Beijing. Atmos. Res. 2021, 262, 105786. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Green Roof Parameters | Grass | Sedum |
---|---|---|
Leaf Area Index (LAI) | 2 | 3 |
Albedo | 0.3 | 0.15 |
Emissivity | 0.95 | 0.83 |
Minimal stomatal resistance | 40 | 150 |
WRF-Urban Classes | LCZ Classes | LCZ Characterization |
---|---|---|
31 | LCZ1 | Compact high-rise |
32 | LCZ2 | Compact mid-rise |
33 | LCZ3 | Compact low-rise |
34 | LCZ4 | Open high-rise |
35 | LCZ5 | Open mid-rise |
36 | LCZ6 | Open low-rise |
37 | LCZ7 | Lightweight low-rise |
38 | LCZ8 | Large low-rise |
39 | LCZ9 | Sparsely built |
40 | LCZ10 | Heavy industry |
41 | LCZE11 | Rock and paved 1 |
Physical Parameterizations | |
Land-surface model | Νoah–MP (NCEP/Oregon State University/Air Force/Hydrologic Research Lab) [65] |
Boundary-layer processes | Mellor–Yamada–Janjic TKE scheme [66] |
Surface-layer processes | Monin–Obukhov (Janjic) scheme [67,68] |
Urban processes | BEP/BEM parameterization [41,42,65]—The urban scheme used only for the innermost domain |
Radiation (sw and lw) | RRTM scheme [69] |
Input Data | |
Land use—Urban areas | CLIMPACT—LCZ [28] for Athens MODIS for the rest of the domain |
Sea surface temperature | Analysis from Copernicus Marine Environment Monitoring Service (CMEMS) Resolution 0.083° × 0.083° |
Topography | (a) United States Geological Survey (USGS, 30 arcsec × 30 arcsec), (b) NASA Shuttle Radar Topographic Mission (SRTM, 3 arcsec × 3 arcsec). |
GR Scenarios for the Attica Region | |
---|---|
Control run (CR) | No vegetation |
Scenario 1 (S1) | 100% total coverage with grass |
Scenario 2 (S2) | 100% total coverage with sedum |
Scenario 3 (S3) | 50% total coverage with grass |
Urban Parameters | LCZ2 | LCZ3 | LCZ5 | LCZ6 | LCZ8 | LCZ9 |
---|---|---|---|---|---|---|
BH Units: (m) | 17.5 | 6.5 | 17.5 | 6.5 | 6.5 | 6.5 |
TCR/TCW/TCG Units: (MJ m−1 s−1 K−1) | 1.25/1.5/0.73 | 1/1.25/0.69 | 1.25/1.45/0.62 | 1/1.25/0.6 | 1.25/1.25/0.51 | 1/1/0.55 |
HCR/HCW/HCG Units: (MJ m−3 K−1) | 1.8/2.67/1.68 | 1.44/2.05/1.63 | 1.8/2/1.5 | 1.44/2.05/1.47 | 1.8/1.8/1.38 | 1.44/2.56/1.37 |
SAR/SAW/SAG Units: - | 0.18/0.2/0.14 | 0.15/0.2/0.14 | 0.13/0.25/0.14 | 0.13/0.25/0.14 | 0.18/0.25/0.14 | 0.13/0.25/0.14 |
SER/SEW/SEG Units: - | 0.91/0.9/0.95 | 0.91/0.9/0.95 | 0.91/0.9/0.95 | 0.91/0.9/0.95 | 0.91/0.9/0.95 | 0.91/0.9/0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyrou, C.; Koukoula, M.; Saviolakis, P.-M.; Zerefos, C.; Loupis, M.; Masouras, C.; Pappa, A.; Katsafados, P. Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a Heatwave Event in the City of Athens, Greece. Sustainability 2024, 16, 9729. https://doi.org/10.3390/su16229729
Spyrou C, Koukoula M, Saviolakis P-M, Zerefos C, Loupis M, Masouras C, Pappa A, Katsafados P. Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a Heatwave Event in the City of Athens, Greece. Sustainability. 2024; 16(22):9729. https://doi.org/10.3390/su16229729
Chicago/Turabian StyleSpyrou, Christos, Marika Koukoula, Pantelis-Manolis Saviolakis, Christos Zerefos, Michael Loupis, Charis Masouras, Aikaterini Pappa, and Petros Katsafados. 2024. "Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a Heatwave Event in the City of Athens, Greece" Sustainability 16, no. 22: 9729. https://doi.org/10.3390/su16229729
APA StyleSpyrou, C., Koukoula, M., Saviolakis, P.-M., Zerefos, C., Loupis, M., Masouras, C., Pappa, A., & Katsafados, P. (2024). Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a Heatwave Event in the City of Athens, Greece. Sustainability, 16(22), 9729. https://doi.org/10.3390/su16229729