Techno-Economic Analysis of BAU-STR Dryer for Rice Drying: An Approach to Accelerate Adoption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technical Performance Study
2.1.1. Location of the Study
2.1.2. Description of the Dryer
2.1.3. Experimental Procedure
2.1.4. Dryer Performance Parameters
Moisture Extraction Rate
Drying Rate
Drying Efficiency
Specific Energy Consumption
Energy Costs
Estimation of Fuel Energy Cost
Estimation of Electric Energy Cost
2.2. Economic Performance Study
2.2.1. Estimation of Cost and Revenue
2.2.2. Economic Parameters
Net Present Value (NPV)
Internal Rate of Return (IRR)
Benefit–Cost Ratio (BCR)
Payback Period (PBP)
2.2.3. Assumptions for Financial Analysis
- Cash flows were discounted over five years based on the BAU-STR dryer’s projected usable life.
- The dryer’s operational period was set to 30 days, reflecting the typical rice cultivation season in the USA. This dryer also has the potential to be used for drying corn. The financial analysis considered the yearly use of 240 h, 480 h, and 720 h, which could vary depending on the harvesting season and number of crops. A discount rate of 5.75%, which corresponded to the USA discount rate of December 2023, was used for the financial analysis.
- The farmer will operate the dryer him/herself, so no labor cost was considered for its operation.
- Repair and maintenance costs were considered as 2% of the investment costs of the drying system.
2.2.4. Economic Sensitivity Analysis of the BAU-STR Dryer
3. Results and Discussion
3.1. Technical Performance Evaluation
3.1.1. Spatial Temperature Distribution in the Drying Chamber
3.1.2. Moisture Gradients Within the Drying Chamber and Drying Rate Analysis
3.1.3. BAU-STR Dryer Efficiency and Performance Metrics
3.2. Economic Performance Evaluation
3.2.1. Financial Performance Evaluation Considerations
3.2.2. Analysis of Cost and Return on Investment
3.2.3. Economic Assessment of the Business Model
3.2.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Sheahan, M.; Barrett, C.B. Review: Food loss and waste in Sub-Saharan Africa. Food Policy 2017, 70, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Bala, B.K. Drying and Storage of Cereal Grains, 2nd ed.; Wiley-Blackwell: West Sussex, UK, 2016. [Google Scholar]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin Exposure and Associated Human Health Effects, a Review of Epidemiological Studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef]
- Alam, M.A.; Saha, C.K.; Alam, M.M.; Manir, M.R.; Rana, M.M.; Rashid, M.M. BAU-STR Dryer for Rough Rice Dying at Farmers and Small Trader’s Level in Bangladesh. Sci. Technol. Environ. Informatics 2020, 9, 629–638. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
- Khan, R. Mycotoxins in food: Occurrence, health implications, and control strategies—A comprehensive review. Toxicon 2024, 248, 108038. [Google Scholar] [CrossRef]
- De Groote, H.; Githinji, P.G.; Munya, B.G.; Ricker-Gilbert, J.E. Economics of Open-Air Sun drying in the Maize Value Chain of Kenya. J. Agric. Food Res. 2021, 5, 100185. [Google Scholar] [CrossRef]
- Sahay, K.M.; Singh, K.K. Unit Operations of Agricultural Processing; Vikas Publishing House Pvt. Ltd.: New Delhi, India, 1994; pp. 125–135. [Google Scholar]
- Kumar, A.; Kumar, S.; Kumar, S. Performance Evaluation of Modified STR Dryer for Drying of Paddy in Process of Reducing Post-Harvest Losses. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2959–2968. [Google Scholar]
- Doymaz, I.; Pala, M. The Thin-Layer Drying Characteristics of Corn. J. Food Eng. 2003, 60, 125–130. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Sohany, M.; Basunia, M.A.; Hossain, M.K.; Sarker, M.S. Drying and quality features of selected maize varieties dried in commercial processing complexes. Agric. Eng. Int. CIGR J. 2017, 19, 148–155. [Google Scholar]
- Alam, M.A.; Saha, C.K.; Alam, M.M. Mechanical Drying of Paddy using BAU-STR Dryer for Reducing Drying Losses in Bangladesh. Progress. Agric. 2019, 30, 42–50. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K. Low-Cost drying Methods for Developing Countries. Trends Food Sci. Technol. 2003, 14, 519–528. [Google Scholar] [CrossRef]
- de Oliveira, V.; Santos, R.F.; Rosa, H.A.; de Souza, S.N.M.; Secco, D.; Nogueira, C.E.C. Economic and Financial Analysis of the Implementation of a Water-Tube Boiler in the Process of Grain Drying using A Column Dryer. Afr. J. Agric. Res. 2016, 11, 100–104. [Google Scholar] [CrossRef]
- Alam, M.A.; Saha, C.K.; Alam, M.M. Field Performance of BAU-STR Dryer in Rural Area of Bangladesh. Asian J. Poverty Stud. 2017, 3, 170–174. [Google Scholar]
- Alam, M.A.; Saha, C.K.; Alam, M.M.; Ashraf, M.A.; Bala, B.K.; Harvey, J. Neural Network Modeling of Drying of Rice in BAU-STR Dryer. Heat Mass Transf. 2018, 54, 3297–3305. [Google Scholar] [CrossRef]
- Kumar, V.; Rajak, D.; Kalita, P.; Rausch, K.; Kumar, D. Performance Evaluation of Modified STR Dryer. Int. J. Chem. Stud. 2018, 6, 1915–1918. [Google Scholar]
- Saha, C.K.; Alam, M.A.; Alam, M.M.; Winter-Nielsen, A.; Harvey, J. Scope of BAU-STR Dryer in Existing Paddy Drying System of Bangladesh. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Wu, W.; Zou, W.-X.; Wu, H.-P.; Cao, D.-D. Drying Temperature Affects Rice Seed Vigor via Gibberellin, Abscisic Acid, and Antioxidant Enzyme Metabolism. J. Zhejiang Univ. B 2020, 21, 796–810. [Google Scholar] [CrossRef]
- Obeng-Akrofi, G.; Akowuah, J.O.; Maier, D.E.; Addo, A. Techno-Economic Analysis of a Crossflow Column Dryer for Maize Drying in Ghana. Agriculture 2021, 11, 568. [Google Scholar] [CrossRef]
- Iguaz, A.; San Martín, M.B.; Arroqui, C.; Fernandez, T.; Mate, J.I.; Virseda, P. Thermophysical properties of medium grain rough rice (LIDO cultivar) at medium and low temperatures. Eur. Food Res. Technol. 2003, 217, 224–229. [Google Scholar] [CrossRef]
- The Engineering ToolBox. Water—Heat of Vaporization vs. Temperature. 2010. Available online: https://www.engineeringtoolbox.com/water-properties-d_1573.html (accessed on 20 May 2024).
- Mujumdar, A.S. Handbook of Industrial Drying, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 154. [Google Scholar] [CrossRef]
- Hemhirun, S.; Bunyawanichakul, P. Effect of the initial moisture content of the paddy drying operation for the small community. J. Agric. Eng. 2020, 51, 176–183. [Google Scholar] [CrossRef]
- Riceland. Riceland Marketing Program. 24 April 2024. Available online: https://riceland.coop/story-executive-summary-2024-marketing-booklet-690-243569 (accessed on 24 June 2024).
Parameter | Value |
---|---|
Initial mass of rice (kg) | 575.2 ± 4.95 |
Initial moisture content (%, wet basis) | 19.5 ± 0.5 |
Final moisture content (%, wet basis) | 13.4 ± 0.10 |
Average drying temperature (°C) | 41.5 ± 0.8 |
Average drying time (h) | 4.0 |
Average moisture removal rate (kg/h) | 6.9 ± 0.3 |
Average drying rate (%MC/h) | 1.50 ± 0.05 |
Average drying efficiency (%) | 75.1 ± 2.3 |
Specific energy consumption (MJ/kg of moisture) | 2.98 ± 0.10 |
Parameter | Value |
---|---|
Capacity of dryer (kg) | 500 |
Number of batches per day | 2 |
Number of hours required per batch of drying | 5 |
Number of operational days per week | 6 |
Number of operational hours per week | 60 |
Number of operational hours per month * | 240 |
Average lifespan of the drying system (years) | 5 |
Average lifespan of the axial-flow blower (years) | 10 |
Investment | Value (USD) |
---|---|
Inner and outer bins, air conveying pipe, and other auxiliary units | 300.0 |
Gas burner | 80.0 |
Axial-flow Blower | 320.0 |
Total fixed cost | 700.0 |
Variable Costs | Value (USD/h) |
---|---|
Maintenance and overhead expenses (2% of investment cost) | 0.06 |
Fuel energy cost | 0.66 |
Electricity cost | 0.19 |
Total variable cost | 0.91 |
Annual Use (h) | Drying Cost (USD/100 kg) | NPV (USD) | IRR (%) | BCR (-) | PBP (Year) |
---|---|---|---|---|---|
240 | 0.96 | 3018 | 135 | 3.0 | 0.73 |
480 | 0.77 | 6790 | 275 | 4.0 | 0.36 |
720 | 0.71 | 10562 | 413 | 4.5 | 0.24 |
Labor Cost (USD/h) | Annual Use (h) | Drying Cost (USD/100 kg) | NPV (USD) | IRR (%) | BCR (-) | PBP (Year) |
---|---|---|---|---|---|---|
0.0 | 240 | 0.96 | 3018 | 135 | 3.00 | 0.73 |
480 | 0.79 | 6790 | 275 | 4.00 | 0.36 | |
720 | 0.71 | 10,562 | 413 | 4.50 | 0.24 | |
0.5 | 240 | 1.30 | 2551 | 117 | 2.29 | 0.84 |
480 | 1.13 | 5856 | 240 | 2.83 | 0.42 | |
720 | 1.06 | 9161 | 362 | 3.07 | 0.28 | |
1.0 | 240 | 1.67 | 2084 | 99 | 1.85 | 0.98 |
480 | 1.48 | 4923 | 206 | 2.19 | 0.49 | |
720 | 1.42 | 7761 | 310 | 2.33 | 0.32 | |
1.5 | 240 | 2.03 | 1617 | 81 | 1.56 | 1.19 |
480 | 1.84 | 3989 | 171 | 1.79 | 0.59 | |
720 | 1.77 | 6361 | 259 | 1.88 | 0.39 | |
2.0 | 240 | 2.38 | 1151 | 62 | 1.34 | 1.49 |
480 | 2.19 | 3056 | 136 | 1.51 | 0.74 | |
720 | 2.13 | 4961 | 207 | 1.58 | 0.49 | |
2.5 | 240 | 2.74 | 684 | 42 | 1.18 | 2.02 |
480 | 2.55 | 2122 | 100 | 1.31 | 0.99 | |
720 | 2.48 | 3560 | 155 | 1.36 | 0.66 | |
3.0 | 240 | 3.10 | 217 | 20 | 1.05 | 3.17 |
480 | 2.90 | 1188 | 63 | 1.15 | 1.53 | |
720 | 2.84 | 2160 | 102 | 1.19 | 1.01 | |
3.5 | 240 | 3.45 | −250 | −8 | 0.95 | 9.09 |
480 | 3.26 | 255 | 20 | 1.03 | 4.01 | |
720 | 3.20 | 760 | 43 | 1.06 | 2.56 | |
4.0 | 240 | 3.81 | −1364 | - | 0.74 | - |
480 | 3.62 | −1973 | - | 0.80 | - | |
720 | 3.55 | −2582 | - | 0.82 | - |
Discount Rate (%) | Annual Use (h) | Drying Cost (US$/100 kg) | NPV (US$) | IRR (%) | BCR (-) | PBP (Year) |
---|---|---|---|---|---|---|
5 | 240 | 0.96 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.77 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
7 | 240 | 0.96 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.77 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
9 | 240 | 0.97 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.77 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
11 | 240 | 0.98 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.78 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
13 | 240 | 0.99 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.78 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
15 | 240 | 1.00 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.79 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.72 | 8621 | 342 | 3.85 | 0.29 | |
17 | 240 | 1.01 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.80 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.72 | 8621 | 342 | 3.85 | 0.29 | |
19 | 240 | 1.03 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.80 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.73 | 8621 | 342 | 3.85 | 0.29 |
Investment Cost (USD) | Annual Use (h) | Drying Cost (USD/100 kg) | NPV (USD) | IRR (%) | BCR (-) | PBP (Year) |
---|---|---|---|---|---|---|
700 (base cost) | 240 | 0.96 | 2371 | 110 | 2.57 | 0.89 |
480 | 0.77 | 5496 | 227 | 3.43 | 0.44 | |
720 | 0.71 | 8621 | 342 | 3.85 | 0.29 | |
770 (10% more) | 240 | 1.00 | 2295 | 99 | 2.45 | 0.98 |
480 | 0.79 | 5420 | 206 | 3.31 | 0.49 | |
720 | 0.72 | 8545 | 311 | 3.70 | 0.32 | |
840 (20% more) | 240 | 1.04 | 2220 | 90 | 2.34 | 1.07 |
480 | 0.81 | 5345 | 188 | 3.21 | 0,53 | |
720 | 0.73 | 8470 | 285 | 3.67 | 0.35 | |
910 (30% more) | 240 | 1.08 | 2142 | 82 | 2.23 | 1.17 |
480 | 0.83 | 5267 | 173 | 3.11 | 0.58 | |
720 | 0.74 | 8392 | 262 | 3.58 | 0.38 | |
980 (40% more) | 240 | 1.11 | 2069 | 75 | 2.14 | 1.26 |
480 | 0.85 | 5194 | 161 | 3.02 | 0.62 | |
720 | 0.76 | 8319 | 243 | 3.5 | 0.41 | |
1050 (50% more) | 240 | 1.15 | 1993 | 69 | 2.06 | 1.35 |
480 | 0.87 | 5118 | 149 | 2.94 | 0.66 | |
720 | 0.77 | 8243 | 227 | 3.43 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.H.; Momin, A.; Saha, C.K.; Alam, M.M.; Islam, S. Techno-Economic Analysis of BAU-STR Dryer for Rice Drying: An Approach to Accelerate Adoption. Sustainability 2024, 16, 9846. https://doi.org/10.3390/su16229846
Islam MH, Momin A, Saha CK, Alam MM, Islam S. Techno-Economic Analysis of BAU-STR Dryer for Rice Drying: An Approach to Accelerate Adoption. Sustainability. 2024; 16(22):9846. https://doi.org/10.3390/su16229846
Chicago/Turabian StyleIslam, Md. Hamidul, Abdul Momin, Chayan Kumer Saha, Md. Monjurul Alam, and Shahidul Islam. 2024. "Techno-Economic Analysis of BAU-STR Dryer for Rice Drying: An Approach to Accelerate Adoption" Sustainability 16, no. 22: 9846. https://doi.org/10.3390/su16229846
APA StyleIslam, M. H., Momin, A., Saha, C. K., Alam, M. M., & Islam, S. (2024). Techno-Economic Analysis of BAU-STR Dryer for Rice Drying: An Approach to Accelerate Adoption. Sustainability, 16(22), 9846. https://doi.org/10.3390/su16229846