The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Sapropel Extract
2.2. Laboratory Tests
2.3. Field Studies
- Control without fertilizers, background + dry seeds.
- Background + pre-sowing water treatment.
- Background + pre-sowing seed treatment (soaking for 6 h) of sapropel extract in a volume of 10 mL/52 g of seeds.
- Background + pre-sowing and foliar treatment at the tillering stage.
3. Results
3.1. Determination of the Optimal Concentration of the Sapropel Product
3.2. The Results of the Field Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO; Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Okijie, S.; Effiong, U. Agricultural Development and Food Importation in Nigeria: An Insight towards Achieving Food Security. Int. J. Soc. Sci. Humanit. Invent. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Aremu, A.O. Evaluation of Factors Influencing the Inclusion of Indigenous Plants for Food Security among Rural Households in the North West Province of South Africa. Sustainability 2020, 12, 9562. [Google Scholar] [CrossRef]
- Elsahoryi, N.; Al-Sayyed, H.; Odeh, M.; McGrattan, A.; Hammad, F. Effect of COVID-19 on food security: A cross-sectional survey. Clin. Nutr. ESPEN 2020, 40, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Murniati, K.; Mutolib, A. The impact of climate change on the household food security of upland rice farmers in Sidomulyo, Lampung Province, Indonesia. Biodiversitas 2020, 21, 3487–3493. [Google Scholar] [CrossRef]
- Bykov, A.A.; Aleshchenko, V.V.; Chupin, R.I.; Popova, E.V.; Kumratova, A.M. Formation and development characteristics of grain production and marketing in Siberia. Sib. J. Life Sci. Agric. 2022, 14, 326–341. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef]
- Bernis-Fonteneau, A.; Aakairi, M.; Saadani-Hassani, O.; Castangia, G.; Ait Babahmad, R.; Colangelo, P.; D’Ambrosio, U.; Jarvis, D.I. Farmers’ Variety Naming and Crop Varietal Diversity of Two Cereal and Three Legume Species in the Moroccan High Atlas, Using DATAR. Sustainability 2023, 15, 10411. [Google Scholar] [CrossRef]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy 2021, 11, 890. [Google Scholar] [CrossRef]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U.; et al. Wheat quality in organic and conventional farming: Results of a 21year field experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Squire, G.R.; Young, M.W.; Banks, G. Post-Intensification Poaceae Cropping: Declining Soil, Unfilled Grain Potential, Time to Act. Plants 2023, 12, 2742. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef]
- Vijaya Bhaskar, A.V.; Davies, W.P.; Cannon, N.D.; Conway, J.S. Organic wheat performance following conventional and non-inversion tillage systems. Biol. Agric. Hortic. 2013, 29, 236–243. [Google Scholar] [CrossRef]
- Sereenonchai, S.; Arunrat, N. Pro-Environmental Agriculture to Promote a Sustainable Lifestyle. Sustainability 2024, 16, 7449. [Google Scholar] [CrossRef]
- Ajeigbe, K.B.; Ganda, F. Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective. Sustainability 2024, 16, 7969. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The effect of organic and conventional crop production systems on the yield and quality of wheat (Triticum aestivum) grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Ma, X.; Liu, Q.; An, J.; Xu, S.; Xie, X.; Geng, J. Combining Organic Fertilizer With Controlled-Release Urea to Reduce Nitrogen Leaching and Promote Wheat Yields. Front. Plant Sci. 2021, 12, 802137. [Google Scholar] [CrossRef]
- Hao, T.; Zhu, Q.; Zeng, M.; Shen, J.; Shi, X.; Liu, X.; Zhang, F.; de Vries, W. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manag. 2020, 270, 110888. [Google Scholar] [CrossRef]
- Nuru Seid, T.; Tarikua Shumi, T. The Effect of Organic and Inorganic Fertilizers on Growth and Yield of Bread Wheat (Triticum aestivum L.). Curr. Investig. Agric. Curr. Res. 2020, 9, 1161–1165. [Google Scholar] [CrossRef]
- Gomaa, M.A.; Zaki, N.M.; Radwan, F.I.; Hassanein, M.S.; Gomaa, A.B.; Wali, A.M. The combined effect of mineral, organic and bio-fertilizers on growth of some wheat cultivars. J. Appl. Sci. Res. 2011, 7, 1591–1608. [Google Scholar]
- Clagnan, E.; Cucina, M.; Nisi, P.; Dell’Orto, M.; D’Imporzano, G.; Kron-Morelli, R.; Llenas-Argelaguet, L.; Adani, F. Effects of the application of microbiologically activated bio-based fertilizers derived from manures on tomato plants and their rhizospheric communities. Sci. Rep. 2023, 13, 22478. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, I.; Petrov, S. The effect of biological products on the yield of winter wheat. AgroEcoInfo 2024, 1, 14. [Google Scholar] [CrossRef]
- Mandla, A. Use of Biotechnology in Improving Crop Yields and Sustainability in South Africa. Int. J. Nat. Sci. 2023, 3, 25–35. [Google Scholar] [CrossRef]
- Mandeep, K.; Singh, Y.K.; Shravan, K.M.; Ravindra, S.; Durgesh, M.; Mahendru, G.; Abhishek, T. Efficient Use of Nano-fertilizer for Increasing Productivity and Profitability along with Maintain Sustainability in Rice Crop: A Review. Int. J. Environ. Clim. Chang. 2023, 13, 1358–1368. [Google Scholar] [CrossRef]
- Tingting, W.; Jiaxin, X.; Jian, C.; Liu, P.; Xin, H.; Long, Y.; Li, Z. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. Plants 2024, 13, 346. [Google Scholar] [CrossRef]
- Rempelos, L.; Wang, J.; Sufar, E.K.; Almuayrifi, M.S.B.; Knutt, D.; Leifert, H.; Leifert, A.; Wilkinson, A.; Shotton, P.; Hasanaliyeva, G.; et al. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods 2023, 12, 1209. [Google Scholar] [CrossRef]
- Khan, H.; Mamrutha, H.M.; Mishra, C.N.; Krishnappa, G.; Sendhil, R.; Parkash, O.; Joshi, A.K.; Chatrath, R.; Tyagi, B.S.; Singh, G. Harnessing High Yield Potential in Wheat (Triticum aestivum L.) under Climate Change Scenario. Plants 2023, 12, 1271. [Google Scholar] [CrossRef]
- Rogozhin, E.; Ryazantsev, D.; Smirnov, A.; Zavriev, S. Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals. Plants 2018, 7, 74. [Google Scholar] [CrossRef]
- Borisov, B.; Islamova, C.; Korepanova, E.; Fatykhov, I. Assessment of productivity and ecological adaptability of spring wheat varieties in the conditions of the Middle Urals. AgroEcoInfo 2023, 6, 14. [Google Scholar] [CrossRef]
- Los, R.; Dubovyk, N. Research of modern varieties of winter wheat according to productivity depending on growing conditions. Agrobìologìâ 2022, 2, 119–129. [Google Scholar] [CrossRef]
- Los, R.M.; Kyrylenko, V.V.; Humeniuk, O.V.; Dubovyk, N.S. Response of promising winter wheat varieties on yield to growing conditions. Grains Cult. 2023, 6, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bazalii, V.; Boichuk, I.; Lavrynenko, Y.; Bazalii, H.; Domaratskyi, Y.; Larchenko, O. Features of the formation of productivity signs of the yielding capacity in winter wheat varieties under different growing conditions. Fakt. Eksperimental’noi Evol. Org. 2020, 27, 29–34. [Google Scholar] [CrossRef]
- Duvnjak, J.; Spanic, V. Analysis of the Photosynthetic Parameters, Grain Yield, and Quality of Different Winter Wheat Varieties over a Two-Year Period. Agronomy 2024, 14, 478. [Google Scholar] [CrossRef]
- Boehm, J., Jr.; Cai, X. Enrichment and Diversification of the Wheat Genome via Alien Introgression. Plants 2024, 13, 339. [Google Scholar] [CrossRef]
- Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; Lammerts van Bueren, E.T. Adapting spring wheat breeding to the needs of the organic sector. NJAS Wagening. J. Life Sci. 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Deryagina, M.S.; Konyukhova, O.M. Determination of Humic Acid Content in Sapropel. BIO Web Conf. 2023, 57, 06002. [Google Scholar] [CrossRef]
- Pavlovska, I.; Klavina, A.; Auce, A.; Vanadzins, I.; Silova, A.; Komarovska, L.; Silamikele, B.; Dobkevica, L.; Paegle, L. Assessment of sapropel use for pharmaceutical products according to legislation, pollution parameters, and concentration of biologically active substances. Sci. Rep. 2020, 10, 21527. [Google Scholar] [CrossRef]
- Obuka, V.; Boroduskis, M.; Ramata-Stunda, A.; Klavins, L.; Klavins, M. Sapropel processing approaches towards high added-value products. Agron. Res. 2018, 16, 1142–1149. [Google Scholar] [CrossRef]
- Khilchevskyi, V.; Ilyin, L.; Pasichnyk, M.; Zabokrytska, M.; Ilyina, O. Hydrography, hydrochemistry and compo-sition of sapropel of Shatsk Lakes. J. Water Land. Dev. 2022, 54, 184–193. [Google Scholar] [CrossRef]
- Hadartsev, A.; Platonov, V.; Fridzon, K. Chemical composition and biological activity of sapropel in the Orenburg region (V. Sol-Iletsk), genetic link with the composition of the sapropel formers. J. New Med. Technol. eJ. 2014, 8, 1–8. [Google Scholar]
- Dimitrov, D. Genesis, Composition, and Properties of Sapropel Sediments. In Proceedings of the INQUA 501 Seventh Plenary Meeting and Field TripAt, Odessa, Ukraine, 21–28 August 2011. [Google Scholar] [CrossRef]
- Pozdnyakova, V.F.; Senchenko, M.A.; Sorokin, A.N. Influence of sapropel on mineral content in crops. Bull. Agro-Ind. Complex Verkhnevolzhye Reg. 2022, 4, 68–73. [Google Scholar] [CrossRef]
- Tsukanov, S.V.; Owayski, F.; Zeidan, I.; Zeidan, A.; Ilgonis, U.; Apse, J.; Ostrovskij, M.V. Application of organic fertilizers based on sapropel and peat in countries of Middle East. Eur. Agrophys. J. 2014, 1, 114–123. [Google Scholar] [CrossRef]
- Baran, A.; Tarnawski, M.; Urbaniak, M. An assessment of bottom sediment as a source of plant nutrients and an agent for improving soil properties. Environ. Eng. Manag. J. 2019, 18, 1647–1656. [Google Scholar] [CrossRef]
- Kazberuk, W.; Szulc, W.; Rutkowska, B. Use bottom sediment to agriculture-effect on plant and heavy metal content in soil. Agronomy 2021, 11, 1077. [Google Scholar] [CrossRef]
- Bakšienė, E.; Fullen, M.A.; Booth, C.A. Agricultural soil properties and crop production on lithuanian sandy and loamy cambisols after the application of calcareous sapropel fertilizer. Arch. Agron. Soil. Sci. 2006, 52, 201–206. [Google Scholar] [CrossRef]
- Dmitriyev, P.; Fomin, I.; Ismagulova, S.; Berdenov, Z.; Zuban, I.; Ostrovnoy, K.; Golodova, I. Study of the Possibility of Using the Bottom Organomineral Accumulations of the Lakes of the North Kazakhstan Region to Obtain Innovative Fertilizers for the Development of Organic Farming and Agrotourism. Sustainability 2023, 15, 8999. [Google Scholar] [CrossRef]
- Dmitriyev, P.; Ostrovnoy, K.; Fomin, I.; Zuban, I. Features of the chemical composition and production of sapropel in eutrophic lakes of the North Kazakhstan region. Bull. Shakarim Univ. 2024, 2, 519–527. [Google Scholar] [CrossRef]
- Nazarova, T.V.; Dmitriyev, P.S.; Baryshnikov, G.Y. Using the Extract of “Saprolin” for Enhancing Grain Crops. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Barnaul, Russia, 22–23 October 2020; IOP Publishing: Bristol, UK, 2021; Volume 670, p. 012002. (In Russian) [Google Scholar] [CrossRef]
- A Method for Obtaining a Sapropel Product for Pre-Sowing Treatment of Vegetable Seeds. Patent of the Republic of Kazakhstan. No. 8929, 18 November 2023.
- GOST 12038-84. Official Site. Agricultural Seeds. Methods for Determination of Germination. Available online: https://online.zakon.kz/Document/?doc_id=38369226 (accessed on 10 January 2024).
- Dospekhov, B.A. Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul’tatov issledovaniy). Agropromizdat Moscow. 1985, 5, 351. UDK 631.57.9.001.4:519.2(076.8). (In Russian). Available online: https://arm.ssuv.uz/frontend/web/books/652527ba2ddf1.pdf (accessed on 10 February 2024).
- Official Site of the Republican State Enterprise “Kazgidromet”. Available online: https://meteo.kazhydromet.kz/database_meteo (accessed on 10 February 2024).
- Dmitriyev, P.; Fomin, I.; Ismagulova, S.; Berdenov, Z.; Zuban, I.; Ostrovnoy, K.; Jemaledinova, I.; Golodova, I. Effect of the use of sapropel extract on biometric indicators and yield of beetroot (Beta vulgaris L.) in the conditions of the North Kazakhstan region. Sustainability 2024, 16, 6192. [Google Scholar] [CrossRef]
- Timar, A.V.; Teusdea, A.C.; Purcarea, C.; Vuscan, A.N.; Memete, A.R.; Vicas, S.I. Chemometric Analysis-Based Sustainable Use of Different Current Baking Wheat Lots from Romania and Hungary. Sustainability 2023, 15, 12756. [Google Scholar] [CrossRef]
- Cecchini, C.; Antonucci, F.; Costa, C.; Marti, A.; Menesatti, P. Application of Near-Infrared Handheld Spectrometers to Predict Semolina Quality. J. Sci. Food Agric. 2021, 101, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Hassoon, W.H.; Dziki, D.; Miś, A.; Biernacka, B. Wheat Grinding Process with Low Moisture Content: A New Approach for Wholemeal Flour Production. Processes 2020, 9, 32. [Google Scholar] [CrossRef]
- Guerrini, L.; Napoli, M.; Mancini, M.; Masella, P.; Cappelli, A.; Parenti, A.; Orlandini, S. Wheat Grain Composition, Dough Rheology and Bread Quality as Affected by Nitrogen and Sulfur Fertilization and Seeding Density. Agronomy 2020, 10, 233. [Google Scholar] [CrossRef]
- Zahra, Z.; Habib, Z.; Hyun, H.; Shahzad, H.M.A. Overview on Recent Developments in the Design, Application, and Impacts of Nanofertilizers in Agriculture. Sustainability 2022, 14, 9397. [Google Scholar] [CrossRef]
- Cecchini, C.; Bresciani, A.; Menesatti, P.; Pagani, M.A.; Marti, A. Assessing the Rheological Properties of Durum Wheat Semolina: A Review. Foods 2021, 10, 2947. [Google Scholar] [CrossRef]
- Schopf, M.; Wehrli, M.C.; Becker, T.; Jekle, M.; Scherf, K.A. Fundamental Characterization of Wheat Gluten. Eur. Food Res. Technol. 2021, 247, 985–997. [Google Scholar] [CrossRef]
- Radawiec, A.; Rutkowska, B.; Tidaback, J.A.; Gozdowski, D.; Knapowski, T.; Szulc, W. The Impact of Selenium Fertilization on the Quality Characteristics of Spring Wheat Grain. Agronomy 2021, 11, 2100. [Google Scholar] [CrossRef]
- Vassileva, V.; Georgieva, M.; Zehirov, G.; Dimitrova, A. Exploring the Genotype-Dependent Toolbox of Wheat under Drought Stress. Agriculture 2023, 13, 1823. [Google Scholar] [CrossRef]
- He, H.; Peng, M.; Lu, W.; Hou, Z.; Li, J. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851 Pt 1, 158132. [Google Scholar] [CrossRef]
- Verma, H.P.; Sharma, O.P.; Shivran, A.C.; Yadav, L.R.; Yadav, R.K.; Yadav, M.R.; Meena, S.N.; Jatav, H.S.; Lal, M.K.; Rajput, V.D.; et al. Effect of Irrigation Schedule and Organic Fertilizer on Wheat Yield, Nutrient Uptake, and Soil Moisture in Northwest India. Sustainability 2023, 15, 10204. [Google Scholar] [CrossRef]
- Grutera, R.; Benjamin, C.; Angelina, B.; Jochen, M.; Cecile, T.; Emmanuel, F.; Rainer, S.; Susan, T. Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at dif-ferent growth stages. Sci. Total Environ. 2017, 599–600, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.L.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Evidence of low selenium concentrations in UK bread-making wheat grain. J. Sci. Food Agric. 2002, 82, 1160–1165. [Google Scholar] [CrossRef]
- Kizilgeci, F.; Yildirim, M.; Islam, M.S.; Ratnasekera, D.; Iqbal, M.A.; Sabagh, A.E.L. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under Semi-Arid conditions. Sustainability 2021, 13, 3725. [Google Scholar] [CrossRef]
- Hernandez, T.; Chocano, C.; Coll, M.D.; Garcia, C. Composts as alternative to inorganic fertilization for cereal crops. Environ. Sci. Pollut. Res. Int. 2019, 26, 35340–35352. [Google Scholar] [CrossRef]
- Afzal, M.I.; Iqbal, M.A. Plant nutrients supplementation with foliar application of allelopathic water extracts improves wheat (Triticum aestivum L.) yield. Adv. Agric. Biol. 2015, 4, 64–70. [Google Scholar] [CrossRef]
- Kumar, D.; Agarwal, S.K. Yield and yield attributes of wheat (Triticum aestivum L.) as influenced by agrispon and fertonic at varying level of fertility. Int. J. Agric. Sci. 2013, 3, 29–33. Available online: https://www.researchgate.net/publication/272736900 (accessed on 25 September 2024).
- Afzal, M.I.; Iqbal, M.A.; Cheema, Z.A. Triggering growth and boosting economic yield of late-sown wheat (Triti cumaestivum L.) with foliar application of allelopathic water extracts. World J. Agric. Sci. 2015, 11, 94–100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Xue, J.; Wang, G. Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China. Sustainability 2023, 15, 10503. [Google Scholar] [CrossRef]
- Hlisnikovsky, L.; Kunzová, E.; Hejcman, M.; Dvoracek, V. Effect of fertilizer application, soil type, and year on yield and technological parameters of winter wheat (Triticum aestivum) in the Czech Republic. Arch. Agron. Soil Sci. 2014, 61, 33–53. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.P.; Singh, S.; Shivay, Y.S. Growth, yield and nutrient uptake by wheat (Triticum aestivum) as affected by biofertilizers, FYM and nitrogen. Indian J. Agric. Sci. 2013, 83, 331–334. Available online: https://www.researchgate.net/publication/290285374 (accessed on 25 September 2024).
- Filip, E.; Woronko, K.; Stępień, E.; Czarniecka, N. An Overview of Factors Affecting the Functional Quality of Common Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 7524. [Google Scholar] [CrossRef] [PubMed]
- Gessesew, W.S.; Elias, E.; Gebresamuel, G.; Tefera, W. Soil type and fertilizer rate affect wheat (Triticum aestivum L.) yield, quality and nutrient use efficiency in Ayiba, northern Ethiopia. PeerJ 2022, 10, e13344. [Google Scholar] [CrossRef] [PubMed]
- Lamlom, S.F.; Irshad, A.; Mosa, W.F.A. The biological and biochemical composition of wheat (Triticum aestivum) as affected by the bio and organic fertilizers. BMC Plant Biol. 2023, 23, 111. [Google Scholar] [CrossRef]
- Li, Y.B.; Li, P.; Wang, S.H.; Xu, L.Y.; Deng, J.J.; Jiao, J.G. Effects of organic fertilizer application on crop yield and soil properties in rice-wheat rotation system: A meta-analysis. Ying Yong Sheng Tai Xue Bao 2021, 32, 3231–3239. [Google Scholar] [CrossRef]
- Miao, J.; Xie, T.; Han, S.; Zhang, H.; He, X.; Ren, W.; Song, M.; He, L. Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province. Agronomy 2022, 12, 3025. [Google Scholar] [CrossRef]
- Hussain, M.I.; Hussain, S.H.; Iqbal, K. Growth yield and quality response of three wheat varieties (Triticum aestivum) to different levels of N, P and K. Int. J. Agriic. Biol. 2002, 3, 156–161. Available online: https://api.semanticscholar.org/CorpusID:52236425 (accessed on 25 September 2024).
- Kotwica, K.; Gałęzewski, L.; Kubiak, W. The Effect of Using Elements of Sustainable Agrotechnology in Spring Wheat (Triticum aestivum L.) Monoculture. Agronomy 2024, 14, 261. [Google Scholar] [CrossRef]
- Wanic, M.; Parzonka, M. Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat. Agriculture 2023, 13, 958. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Wu, J.; Pan, X.; Gao, C.; Tang, D.W.S. Impact of Combining Long-Term Subsoiling and Organic Fertilizer on Soil Microbial Biomass Carbon and Nitrogen, Soil Enzyme Activity, and Water Use of Winter Wheat. Front. Plant Sci. 2022, 12, 788651. [Google Scholar] [CrossRef]
- Bezuglova, O.; Khaletskaya, G. Effect of humic preparations from sapropel on vegetable crops. AgroE-Coinfo 2022, 5, 37. [Google Scholar] [CrossRef]
- Sokolov, V.; Chepurov, A.; Abdyrakhmanova, E. Impact of sapropel on the quantitative parameters of corn productivity. Bull. NSAU Novosib. State Agrar. Univ. 2019, 1, 52–57. [Google Scholar] [CrossRef]
Sapropel Extract Concentration, g/L | Novosibirsk 31 | Cornetto | Omsk 28 |
---|---|---|---|
0 | 90 | 77 | 78 |
0.4 | 94 | 90 | 93 |
0.8 | 93 | 89 | 94 |
1.2 | 95 | 91 | 98 |
1.6 | 93 | 90 | 97 |
2.0 | 90 | 84 | 96 |
Sapropel Extract Concentration, g/L | Novosibirsk 31 | Cornetto | Omsk 28 |
---|---|---|---|
0 | 95 | 89 | 91 |
0.4 | 95 | 94 | 94 |
0.8 | 95 | 93 | 96 |
1.2 | 96 | 95 | 99 |
1.6 | 93 | 94 | 98 |
2.0 | 95 | 89 | 97 |
Indicators | Experience Options | |||
---|---|---|---|---|
Control | Pre-Sowing Water Treatment | Pre-Sowing Treatment with Sapropel Extract Solution | Pre-Sowing and Foliar Treatment with Sapropel Extract Solution | |
Number of plants per 1 m2 | 207.25 ± 17.23 | 279.50 ± 29.1 | 283.75 ± 34.19 | 300.50 ± 44.15 |
The number of productive stems per 1 m2 | 337.25 ± 21.31 | 360.50 ± 21.5 | 397.25 ± 58.64 | 403.00 ± 40.7 |
The average number of grains per ear | 18.11 ± 0.9 | 19.61 ± 1.8 | 21.13 ± 1.27 | 22.07 ± 1.11 |
Weight of 1000 grains (g) | 40.36 ± 0.1 | 42.70 ± 0.21 | 42.84 ± 0.25 | 43.34 ± 0.17 |
Average yield ton/ha | 2.63 ± 0.16 | 2.82 ± 0.14 | 3.63 ± 0.33 | 3.81 ± 0.68 |
Indicators | Norms | The Actual Indicator for the Experience Options | |||
---|---|---|---|---|---|
Control | Pre-Sowing Water Treatment | Pre-Sowing Treatment with Sapropel Extract Solution | Pre-Sowing and Foliar Treatment with Sapropel Extract Solution | ||
Humidity (%) | No more than 14.0 | 12.4 | 13.5 | 12.7 | 12.8 |
In kind, g/L | Not less than 710 | 747 | 757 | 756 | 757 |
Protein (%) | Not less than 9.5 | 16 | 16 | 14.9 | 16 |
Vitreousness (%) | Not less than 40 | 48 | 43 | 45 | 48 |
Mass fraction of crude gluten (%) | Grade 1—28.0 Grade 2—25.0 Grade 3—23.0 Grade 4—18.0 | 27.7 | 25.3 | 27.4 | 27.5 |
Gluten quality, GDI units (gluten deformation index) | 20–100—I-II group | 78 | 75 | 77 | 77 |
The number of falls, seconds | Grade 1—200 Grade 2—200 Grade 3—160 Grade 4—80 | 305 | 297 | 300 | 324 |
Indicators | Experience Options | |||
---|---|---|---|---|
Control | Pre-Sowing Water Treatment | Pre-Sowing Treatment with Sapropel Extract Solution | Pre-Sowing and Foliar Treatment with Sapropel Extract Solution | |
Acreage (ha) | 100 | 100 | 100 | 100 |
Yield, t/ha | 2.63 | 2.8 | 3.81 | 3.63 |
Yield increase, t/ha | 0 | 0.17 | 1.18 | 1.0 |
Gross collection, tons | 263.0 | 280.0 | 381.0 | 363.0 |
Production costs, thousand US dollars * | 493.5 | 495.8 | 522.5 | 533.0 |
Revenue **, thousand US dollars | 696.7 | 741.7 | 961.6 | 1009.3 |
Profit, thousand US dollars | 203.2 | 245.9 | 439.1 | 476.3 |
Return on production, % | 41.2 | 49.6 | 80.4 | 93.2 |
Return on sales, % | 29.2 | 33.2 | 44.6 | 48.2 |
Strengths | Weaknesses |
---|---|
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitriyev, P.; Bykov, A.; Zuban, I.; Fomin, I.; Ismagulova, S.; Ostrovnoy, K.; Jemaledinova, I. The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract. Sustainability 2024, 16, 9870. https://doi.org/10.3390/su16229870
Dmitriyev P, Bykov A, Zuban I, Fomin I, Ismagulova S, Ostrovnoy K, Jemaledinova I. The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract. Sustainability. 2024; 16(22):9870. https://doi.org/10.3390/su16229870
Chicago/Turabian StyleDmitriyev, Pavel, Alexander Bykov, Ivan Zuban, Ivan Fomin, Saltanat Ismagulova, Kirill Ostrovnoy, and Inna Jemaledinova. 2024. "The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract" Sustainability 16, no. 22: 9870. https://doi.org/10.3390/su16229870
APA StyleDmitriyev, P., Bykov, A., Zuban, I., Fomin, I., Ismagulova, S., Ostrovnoy, K., & Jemaledinova, I. (2024). The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract. Sustainability, 16(22), 9870. https://doi.org/10.3390/su16229870