Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production
Abstract
:1. Introduction
- The volume of the room to be refrigerated;
- The dispersion coefficient (K), which depends on the insulation of the building and affects the power absorbed by a cold room;
- The temperature difference between the outside and the inside (∆T1).
2. Materials and Methods
2.1. Sampling
2.2. Analysis
2.2.1. Proximate Chemical Analysis
2.2.2. Microbiological Analysis
2.2.3. Physical and Chemical Analysis
2.2.4. Sensory Test Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Results
3.2. Physical and Chemical Results
3.3. Sensory Test Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djekic, I.; Tomasevic, I. Environmental impacts of the meat chain—Current status and future perspectives. Trends Food Sci. 2016, 54, 94–102. [Google Scholar] [CrossRef]
- Kayikci, Y.; Ozbiltekin, M.; Kazancoglu, Y. Minimizing losses at red meat supply chain with circular and central slaughterhouse model. J. Enterp. Inf. Manag. 2020, 33, 791–816. [Google Scholar] [CrossRef]
- Savell, J.W.; Mueller, S.L.; Baired, B.E. The chilling of carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Winkler, T.; Aschemann, R. Decreasing Greenhouse Gas Emissions of Meat Products Through Food Waste Reduction. A Framework for a Sustainability Assessment Approach. In Food Waste Reduction and Valorisation; Morone, P., Papendiek, F., Tartiu, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Fritzson, A.; Berntsson, T. Efficient energy use in a slaughter and meat processing plant—Opportunities for process integration. J. Food Eng. 2006, 76, 4, 594–604. [Google Scholar] [CrossRef]
- Choe, J.H.; Stuart, A.; Kim, Y.H.B. Effect of different aging temperatures prior to freezing on meat quality attributes of frozen/thawed lamb loins. Meat Sci. 2016, 116, 158–164. [Google Scholar] [CrossRef]
- Luong, N.D.M.; Coroller, L.; Zagorec, M.; Membré, J.M.; Guillou, S. Spoilage of Chilled Fresh Meat Products during Storage: A Quantitative Analysis of Literature Data. Microorganisms 2020, 8, 1198. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Microbiological safety of aged meat. EFSA J. 2023, 21, 7745. [Google Scholar] [CrossRef]
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, Y.; Hwang, I. Dry aging of beef; Review. J. Anim. Sci. Technol. 2016, 58, 20. [Google Scholar] [CrossRef]
- Nastasijević, I.; Lakićević, B.; Petrović, Z. Cold chain management in meat storage, distribution and retail: A review. IOP Conference Series. Earth Environ. Sci. 2017, 85, 012022. [Google Scholar] [CrossRef]
- Jacob, R.H.; Hopkins, D.L. Techniques to reduce the temperature of beef muscle early in the postmortem period—A review. Anim. Prod. Sci. 2014, 54, 482–493. [Google Scholar] [CrossRef]
- Iten, M.; Fernandes, U.; Castro Oliveira, M. Framework to assess eco-efficiency improvement: Case study of a meat production industry. Energy Rep. 2021, 7, 7134–7148. [Google Scholar] [CrossRef]
- Mallikarjunan, P.; Mittal, G.S. Heat and mass transfer during beef carcass chilling—Modelling and simulation. J. Food Eng. 1994, 23, 277–292. [Google Scholar] [CrossRef]
- James, S.J.; James, C. The food cold-chain and climate change. Int. Food Res. 2010, 43, 1944–1956. [Google Scholar] [CrossRef]
- Domanski, P.A.; Steven Brown, J.; Heo, J.; Wojtusiak, J.; McLinden, M.O. A thermodynamic analysis of refrigerants: Performance limits of the vapor compression cycle. Int. J. Refrig. 2014, 38, 71–79. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Applied and emerging methods for meat tenderization: A comparative perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [Google Scholar] [CrossRef]
- Kilgannon, A.K.; Holman, B.W.; Mawson, A.J.; Campbell, M.; Collins, D.; Hopkins, D.L. The effect of different temperature-time combinations when ageing beef: Sensory quality traits and microbial loads. Meat Sci. 2019, 150, 23–32. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yong, H.I.; Nam, K.C.; Jung, S.; Yim, D.G.; Jo, C. Application of high temperature (14 C) aging of beef M. semimembranosus with low-dose electron beam and X-ray irradiation. Meat Sci. 2018, 136, 85–92. [Google Scholar] [CrossRef]
- Lyu, J.; Puolanne, E.; Ertbjerg, P. Relationship between pre-rigor temperature of pork longissimus muscle, myofibril-bound calpain activity and protein degradation. Meat Sci. 2023, 198, 109094. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, S.; Liu, X.; Lei, Y.; Bai, Y.; Yang, Y.; Li, H.; Liu, Y.; Xiao, Y.; Xie, P.; et al. Effects of lactic acid and ascorbic acid electrostatic spraying on the physicochemical attributes and microbial diversity of beef aged at mild temperature (10 C). Meat Sci. 2024, 214, 109532. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Ma, D.; Setyabrata, D.; Farouk, M.M.; Lonergan, S.M.; Huff-Lonergan, E.; Hunt, M.C. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci. 2018, 144, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.A.; Carne, A.; Ha, M.; Franks, P. Physical Interventions to Manipulate Texture and Tenderness of Fresh Meat: A Review. Int. J. Food Prop. 2013, 17, 433–453. [Google Scholar] [CrossRef]
- EEC. Reg. CE n 1249/2008; Community Scale for the Classification of Carcass of Adult Bovine Animals. R. (CEE) no.1026/91. Office for Official Publications of the European Communities: Luxemburg, 2008.
- AOAC International; Association of Official Analytical Chemist (AOAC). Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Contò, M.; Cifuni, G.F.; Iacurto, M.; Failla, S. Effect of pasture and intensive feeding systems on the carcass and meat quality of buffalo. Anim. Biosci. 2022, 35, 105–114. [Google Scholar] [CrossRef]
- Culler, R.D.; Parrish, F.C.; Smith, G.C.; Cross, H.R. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Valerio, F.; Skandamis, P.N.; Failla, S.; Contò, M.; Di Biase, M.; Bavaro, A.R.; Lavermicocca, P. Microbiological and physicochemical parameters for predicting quality of fat and low-fat raw ground beef during refrigerated aerobic storage. Food Sci. 2020, 85, 465–476. [Google Scholar] [CrossRef]
- CIE. Publication No. 15.2. Colorimetry, 2nd ed.; CIE Commission International de L’eclairage: Vienna, Austria, 1986. [Google Scholar]
- Ripoll, G.; Albertí, P.; Panea, B.; Failla, S.; Hocquette, J.F.; Dunner, S.; Sañudo, C.; Olleta, J.L.; Christensen, M.; Ertbjerg, P.; et al. Colour variability of beef in young bulls from fifteen European breeds. Int. J. Food Sci. Technol. 2018, 53, 2777–2785. [Google Scholar] [CrossRef]
- Pereira, V.; López-Alonso, M.; Miranda, M.; Benedito, J.L.; García-Vaquero, M. Relationship between the essential and toxic element concentrations and the proximate composition of different commercial and internal cuts of young beef. Eur. Food Res. Technol. 2017, 243, 1869–1873. [Google Scholar] [CrossRef]
- Tesson, V.; Federighi, M.; Cummins, E.; de Oliveira Mota, J.; Guillou, S.; Boué, G. A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models. Int. J. Environ. Res. Public Health 2020, 17, 688. [Google Scholar] [CrossRef]
- Camargo, A.C.; Cossi, M.V.C.; Silva, W.P.d.; Bersot, L.d.S.; Landgraf, M.; Baranyi, J.; Franco, B.D.G.d.M.; Luís Augusto, N. Microbiological Testing for the Proper Assessment of the Hygiene Status of Beef Carcasses. Microorganisms 2019, 7, 86. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Stamatiou, A.; Skandamis, P.; Nychas, G.J.E. Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Appl. Environ. Microbiol. 2006, 72, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, K.J.; Prendergast, D.M.; McCann, M.S.; Blair, I.S.; McDowell, D.A.; Sheridan, J.J. The survival of Salmonella enterica serovar Typhimurium DT104 and total viable counts on beef surfaces at different relative humidities and temperatures. J. Appl. Microbiol. 2009, 106, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Djimsa, B.A.; Nair, M.N.; Hess, A.M.; Belk, K.E.; Woerner, D.R. The impact of carcass size, chilling conditions, and electrical stimulation on beef postmortem temperature and pH decline. Meat Muscle Biol. 2022, 6, 13893. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Warner, R.D.; Rosenvolt, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef]
- Cadavez, V.A.P.; Xavier, C.; Gonzales-Barron, U. Classification of beef carcasses from Portugal using animal characteristics and pH/temperature decline descriptors. Meat Sci. 2019, 153, 94–102. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Thompson, J. Managing meat tenderness. Meat Sci. 2002, 62, 295–308. [Google Scholar] [CrossRef]
- Joo, S.T.; Lee, E.Y.; Son, Y.M.; Hossain, M.J.; Kim, C.J.; Kim, S.H.; Hwang, Y.H. Aging mechanism for improving the tenderness and taste characteristics of meat. J. Anim. Sci. Technol. 2023, 65, 1151–1168. [Google Scholar] [CrossRef]
- Taylor, R.G.; Geesink, G.H.; Thompson, V.F.; Koohmaraie, M.; Goll, D.E. Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci. 1995, 73, 1351–1367. [Google Scholar] [CrossRef]
- Zhag, Y.M.; Hopkins, D.L.; Zhao, X.X.; van de Ven, R.; Mao, Y.W.; Zhu, L.X.; Han, G.X.; Luo, X. Characterisation of pH decline and meat color development of beef carcasses during the early postmortem period in a Chinese beef cattle abattoir. J. Integr. Agric. 2018, 17, 1691–1695. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.W. Factors Affecting the Water Holding Capacity of Red Meat Products: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Holdstock, J.; Aalhus, J.L.; Uttaro, B.; Roy, B.C.; Bruce, H.L. Understanding the effects of chilling on color and quality characteristics of bovine longissimus thoracis. Meat Sci. 2023, 195, 109003. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.L.; Vilela, R.S.; Boas, P.G.; Silva, J.C.; Ramos, J.M.; Martins, T.D.; Chizzotti, M.L. Chilling rates impact carcass and meat quality Parameters of bos indicus cattle. Meat Muscle Biol. 2024, 8, 16908. [Google Scholar] [CrossRef]
- Mungure, T.E.; Bekhit, A.E.A.; Birch, E.J.; Stewart, I. Effect of rigor temperature, ageing and display time on the meat quality and lipid oxidative stability of hot boned beef Semimembranosus muscle. Meat Sci. 2016, 114, 146–153. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Coombs, C.E.O.; Holman, B.W.B.; Friend, M.A.; Hopkins, D.L. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Sci. 2017, 125, 84–94. [Google Scholar] [CrossRef]
- Colle, M.; Richard, R.; Killinger, K.; Bohlscheid, J.; Gray, A.; Loucks, W.; Doumit, M. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Sci. 2016, 119, 110–117. [Google Scholar] [CrossRef]
- Jeremiah, L.E.; Dugan, M.E.R.; Aalhus, J.L.; Gibson, L.L. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Sci. 2003, 65, 1013–1019. [Google Scholar] [CrossRef]
- Rhee, M.S.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. Variation in palatability and biochemical traits within and among eleven beef muscles. J. Anim. Sci. 2004, 82, 534–550. [Google Scholar] [CrossRef]
- Conanec, A.; Campo, M.; Richardson, I.; Ertbjerg, P.; Failla, S.; Panea, B.; Chavent, M.; Saracco, J.; Williams, J.L.; Ellies-Oury, M.P.; et al. Has breed any effect on beef sensory quality? Livest. Sci. 2021, 250, 104548. [Google Scholar] [CrossRef]
- Xu, L.; Liu, S.; Cheng, Y.; Qian, H. The effect of aging on beef taste, aroma and texture, and the role of microorganisms: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2129–2140. [Google Scholar] [CrossRef]
CL | SS | p-Value | RMSE | |
---|---|---|---|---|
DM% | 24.04 | 23.60 | 0.182 | 0.53 |
Protein% | 20.65 | 20.26 | 0.327 | 0.65 |
Fat% | 1.89 | 1.69 | 0.252 | 0.27 |
Ash% | 1.51 | 1.64 | 0.311 | 0.22 |
Treatment | TVC Log UFC/cm2 | Escherichia coli Log UFC/cm2 | Total Coliforms Log UFC/cm2 | Salmonella |
---|---|---|---|---|
C 1 d | 2.38 | - | - | - |
C 5 d | 2.81 | - | - | - |
W 1 d | 2.31 b | - | - | - |
W 5 d | 4.05 a¥ | 0.84 ± 0.04 ¥¥ | - | 1.67 ¥ |
C-CL | 1.87 b | 0.37 ¥ | - | - |
W-CL | 3.02 a | 1.23 ± 0.08 ¥¥ | - | - |
RMSE for C and W | 0.75 | - | - | - |
p-value C vs. W | 0.043 | - | - | - |
p-value 1 d vs. 5 d | 0.008 | - | - | - |
RMSE for CL | 0.805 | - | - | - |
p-value for CL | 0.037 | - | - | - |
CL | SS | p-Value | |||||
---|---|---|---|---|---|---|---|
Cold | Warm | Cold | Warm | CL vs. SS | C vs. W | RMSE | |
pH | 5.60 | 5.54 | 5.63 | 5.59 | 0.227 | 0.166 | 0.08 |
Drip loss % | 1.06 b | 1.20 a | 1.04 | 1.13 | 0.388 | 0.017 | 0.11 |
Cooking loss % | 32.31 | 33.34 | 30.64 | 32.19 | 0.506 | 0.542 | 4.06 |
WBSF (kgf) | 6.04 a | 5.26 b | 6.17 a | 5.32 b | 0.471 | 0.001 | 0.36 |
Sarcomer length (µm) | 1.77 b | 1.89 a | 1.78 | 1.82 | 0.603 | 0.042 | 0.09 |
MFI | 62.14 b | 76.38 a | 44.77 b | 64.43 a | 0.071 | 0.039 | 14.07 |
TBArs (mg MDA/kg) | 0.29 | 0.31 | 0.30 | 0.33 | 0.127 | 0.195 | 0.07 |
CL | SS | p-Value | |||||
---|---|---|---|---|---|---|---|
Cold | Warm | Cold | Warm | CL vs. SS | C vs. W | RMSE | |
L* | 41.98 | 41.23 | 41.48 | 41.24 | 0.920 | 0.837 | 5.75 |
a* | 12.82 | 13.37 | 12.48 | 12.82 | 0.515 | 0.871 | 1.63 |
b* | 12.34 | 12.12 | 12.73 | 12.19 | 0.820 | 0.708 | 2.47 |
Chrome | 18.24 | 17.70 | 17.86 | 17.71 | 0.868 | 0.754 | 2.67 |
Hue | 42.22 | 42.67 | 45.42 | 43.71 | 0.223 | 0.711 | 4.12 |
Treatment | pH | Drip Loss % | Cooking Loss % | WBSF (kgf) |
---|---|---|---|---|
C-CL-2 | 5.59 | 1.16 b | 33.21 | 5.78 a |
C-CL-4 | 5.60 | 1.34 ab | 34.82 | 5.47 a |
C-CL-8 | 5.64 | 1.50 a | 35.41 | 5.13 b |
W-CL-2 | 5.55 | 1.26 c | 34.10 | 5.03 a |
W-CL-4 | 5.57 | 1.67 b | 35.86 | 4.81 a |
W-CL-8 | 5.61 | 1.94 a | 36.85 | 4.46 b |
C-SS-2 | 5.63 | 1.06 b | 32.03 | 6.00 a |
C-SS-4 | 5.64 | 1.29 ab | 33.74 | 5.75 a |
C-SS-8 | 5.67 | 1.43 a | 34.63 | 5.31 b |
W-SS-2 | 5.61 | 1.23 c | 32.98 | 5.15 a |
W-SS-4 | 5.65 | 1.54 b | 34.50 | 4.91 a |
W-SS-8 | 5.67 | 1.90 a | 35.51 | 4.53 b |
RMSE | 0.06 | 0.25 | 4.09 | 0.31 |
p-value CL vs. SS | 0.087 | 0.284 | 0.237 | 0.214 |
p-value C vs. W | 0.201 | 0.001 | 0.304 | 0.001 |
p-value Temperatures | 0.113 | 0.001 | 0.102 | 0.001 |
Treatment | L* | a* | b* | Crome | Hue |
---|---|---|---|---|---|
C-CL-2 | 39.37 | 13.37 | 12.42 | 18.30 | 43.12 |
C-CL-4 | 38.01 | 13.75 | 12.58 | 18.68 | 42.41 |
C-CL-8 | 38.76 | 13.95 | 12.62 | 18.83 | 42.45 |
W-CL-2 | 40.45 a | 12.28 | 11.41 | 16.80 | 43.01 a |
W-CL-4 | 39.13 ab | 13.82 | 11.76 | 18.15 | 40.40 ab |
W-CL-8 | 37.53 b | 14.01 | 11.82 | 18.35 | 40.12 b |
C-SS-2 | 40.53 | 12.33 | 10.78 | 16.40 | 41.36 |
C-SS-4 | 40.76 | 12.30 | 10.49 | 16.17 | 40.39 |
C-SS-8 | 39.44 | 12.53 | 11.30 | 16.88 | 42.14 |
W-SS-2 | 39.34 | 12.26 | 10.59 | 16.22 | 40.65 |
W-SS-4 | 39.16 | 12.55 | 11.05 | 16.74 | 41.47 |
W-SS-8 | 38.65 | 13.00 | 10.84 | 16.95 | 39.86 |
RMSE | 2.87 | 2.06 | 1.59 | 2.40 | 2.74 |
p-value CL vs. SS | 0.278 | 0.037 | 0.001 | 0.006 | 0.236 |
p-value C vs. W | 0.961 | 0.918 | 0.230 | 0.547 | 0.183 |
p-value Temperature | 0.662 | 0.386 | 0.754 | 0.491 | 0.577 |
CL | SS | p-Value | |||||
---|---|---|---|---|---|---|---|
Cold | Warm | Cold | Warm | CL vs. SS | C vs. W | RMSE | |
Tenderness | 4.59 b | 5.25 a | 3.76 b | 4.52 a | 0.079 | 0.027 | 0.69 |
Juiciness | 4.85 b | 5.39 a | 4.77 b | 5.26 a | 0.452 | 0.034 | 0.50 |
Flavor | 4.85 | 5.13 | 4.90 | 5.09 | 0.626 | 0.462 | 0.82 |
Treatment | Tenderness | Juiciness | Flavor |
---|---|---|---|
C-CL-2 | 4.82 | 4.99 | 4.98 |
C-CL-4 | 5.09 | 4.81 | 5.13 |
C-CL-8 | 5.44 | 5.48 | 5.24 |
W-CL-2 | 5.51 b | 5.38 b | 4.93 b |
W-CL-4 | 6.05 ab | 5.44 ab | 5.11 ab |
W-CL-8 | 6.35 a | 6.25 a | 5.60 a |
C-SS-2 | 3.91 | 4.55 | 4.48 |
C-SS-4 | 4.06 | 4.71 | 4.50 |
C-SS-8 | 4.12 | 5.01 | 4.78 |
W-SS-2 | 4.70 b | 4.90 | 4.63 b |
W-SS-4 | 4.93 ab | 5.10 | 4.75 a |
W-SS-8 | 5.34 a | 5.54 | 5.05 a |
RMSE | 0.75 | 0.78 | 0.66 |
p-value CL vs. SS | 0.001 | 0.118 | 0.121 |
p-value C vs. W | 0.001 | 0.008 | 0.043 |
p-value Temperatures | 0.001 | 0.053 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndereyimana, A.; Contò, M.; Chiariotti, A.; Renzi, G.; Failla, S. Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production. Sustainability 2024, 16, 9907. https://doi.org/10.3390/su16229907
Ndereyimana A, Contò M, Chiariotti A, Renzi G, Failla S. Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production. Sustainability. 2024; 16(22):9907. https://doi.org/10.3390/su16229907
Chicago/Turabian StyleNdereyimana, André, Michela Contò, Antonella Chiariotti, Gianluca Renzi, and Sebastiana Failla. 2024. "Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production" Sustainability 16, no. 22: 9907. https://doi.org/10.3390/su16229907
APA StyleNdereyimana, A., Contò, M., Chiariotti, A., Renzi, G., & Failla, S. (2024). Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production. Sustainability, 16(22), 9907. https://doi.org/10.3390/su16229907