Assessment of the Ecological Safety of Honey with the Help of “Factor Area” Models
Abstract
:1. Introduction
- Construction of a mathematical model of quality when applying the “factor areas” hypothesis.
- Calculation of assessment criteria and development of geometric quality models for all researched types of honey.
- Conducting a grapho-analytical analysis of the environmental safety of the researched types of honey based on the results of mathematical modeling.
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sgolastra, F.; Medrzycki, P.; Bortolotti, L.; Maini, S.; Porrini, C.; Simon-Delso, N.; Bosch, J. Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biol. Conserv. 2020, 241, 108356. [Google Scholar] [CrossRef]
- Bruckner, S.; Straub, L.; Neumann, P.; Williams, G.R. Negative but antagonistic effects of neonicotinoid insecticides and ectoparasitic mites Varroa destructor on Apis mellifera honey bee food glands. Chemosphere 2023, 313, 137535. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, B.; Rani, R.; Sharma, R.; Ahmad, Y. Value Addition in Beehive Products with Special Reference to Honey. In Honey; CRC Press: Boca Raton, FL, USA, 2021; pp. 119–138. [Google Scholar]
- Otero, M.C.B.; Bernolo, L. Honey as functional food and prospects in natural honey production. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and İnnovations; Springer: Berlin/Heidelberg, Germany, 2020; pp. 197–210. [Google Scholar] [CrossRef]
- Masad, R.J.; Haneefa, S.M.; Mohamed, Y.A.; Al-Sbiei, A.; Bashir, G.; Fernandez-Cabezudo, M.J.; Al-Ramadi, B.K. The immunomodulatory effects of honey and associated flavonoids in cancer. Nutrients 2021, 13, 1269. [Google Scholar] [CrossRef] [PubMed]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Current status of the gastrointestinal digestion effects on honey: A comprehensive review. Food Chem. 2021, 357, 129807. [Google Scholar] [CrossRef]
- Archana, B.R.; Muralimohan, K.; Belavadi, V.V.; Eshwarappa, G. Pollination Peril: The Impact of Neonicotinoids’ on Foraging Behaviour of Indian Honey Bee in Sunflower Fields. J. Adv. Biol. Biotechnol. 2024, 27, 788–794. [Google Scholar] [CrossRef]
- Prata, J.C.; Martins da Costa, P. Honeybees and the One Health Approach. Environments 2024, 11, 161. [Google Scholar] [CrossRef]
- Finlay-Smits, S.; Ryan, A.; de Vries, J.R.; Turner, J. Chasing the honey money: Transparency, trust, and identity crafting in the Aotearoa New Zealand mānuka honey sector. J. Rural Stud. 2023, 100, 103004. [Google Scholar] [CrossRef]
- Boppolige, A.A.; Fernandez, C.; Saggurti, S. Beeyond Foods: Creating a sweet honey revolution. Emerald Emerg. Mark. Case Stud. 2024, 14, 1–18. [Google Scholar] [CrossRef]
- Dyson, E.; Helbig, R.; Avermaete, T.; Halliwell, K.; Calder, P.C.; Brown, L.R.; Ingram, J.; Popping, B.; Verhagen, H.; Boobis, A.R.; et al. Impacts of the Ukraine–Russia conflict on the global food supply chain and building future resilience. EuroChoices 2023, 22, 14–19. [Google Scholar] [CrossRef]
- Priss, O.; Pugachov, M.; Pugachov, V.; Yaremko, I.; Shchabelska, V. The Development of the World Economy and the Impact of the Global Food Crisis 2022–2023. Econ. Aff. 2023, 68, 35–42. [Google Scholar] [CrossRef]
- Arslan, S.; Arıkan, A. Accumulation of heavy metals in bee products effect of distance from highway. Turk. J. Agr. Food Sci. Technol. 2013, 1, 90–93. [Google Scholar] [CrossRef]
- Chirsanova, C.A.; Capcanari, T.; Boiştean, A.; Khanchel, E.M.I. Bee honey: History, characteristics, properties, benefits and adulteration in the beekeeping sector. J. Soc. Sci. 2021, 3, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of polycyclic aromatic hydrocarbons, heavy metals, and plasticizers residues: Role of bees and honey as bioindicators of environmental contamination. Environ. Sci. Pollut. Res. 2023, 30, 44234–44250. [Google Scholar] [CrossRef]
- Rivera-Mondragón, A.; Marrone, M.; Bruner-Montero, G.; Gaitán, K.; de Núñez, L.; Otero-Palacio, R.; Fernández-Marín, H. Assessment of the Quality, Chemometric and Pollen Diversity of Apis mellifera Honey from Different Seasonal Harvests. Foods 2023, 12, 3656. [Google Scholar] [CrossRef]
- Sidashova, S.; Adamchuk, L.; Yasko, V.; Kirovich, N.; Lisohurska, D.; Postoienko, H.; Lisohurska, O.; Furman, S.; Bezditko, L. The inhibitory effect of Ukrainian honey on probiotic bacteria. Slovak. J. Food Sci. 2022, 16, 149–160. [Google Scholar] [CrossRef]
- Kryvyi, M.; Yushchenko, О.; Dikhtiar, О.; Lisohurska, D.; Stepanenko, V. Quality of helianthus annuus honey obtained in the conditions of radioactive contamination. Food Sci. Technol. 2021, 15, 95–104. [Google Scholar] [CrossRef]
- Kotelevych, V.; Huralska, S.; Honcharenko, V. Current food quality and safety problems in the context of ensuring food safety in Ukraine. Sci. Prog. Innov. 2023, 26, 72–80. [Google Scholar] [CrossRef]
- Delso, N.S.; Mędrzycki, P.; Sgolastra, F.; Fourrier, J.; Azpiazu, C.; Tosi, S.; Hatjina, F. Apitox-The COLOSS Task Force to Investigate the Impact of Pesticides on Bees. Bee World 2022, 99, 32–34. [Google Scholar] [CrossRef]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Polo, R.O.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Guarna, M.M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Kumar, A.; Gill, J.P.S.; Bedi, J.S.; Chhuneja, P.K.; Kumar, A. Determination of antibiotic residues in Indian honeys and assessment of potential risks to consumers. J. Apic. Res. 2020, 59, 25–34. [Google Scholar] [CrossRef]
- Bonerba, E.; Panseri, S.; Arioli, F.; Nobile, M.; Terio, V.; Di Cesare, F.; Tantillo, G.; Chiesa, L.M. Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chem. 2021, 334, 127575. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- State Standard of Ukraine (DSTU) 4497:2005; Natural Honey. Technical Specifications. DERZhSPOZhYVSTANDART: Kyiv, Ukraine, 2007. Available online: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=84219 (accessed on 20 October 2024).
- Von Der Ohe, W.; Oddo, L.P.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, 18–25. [Google Scholar] [CrossRef]
- Sofany, A.; Naggar, Y.; Naiem, E.; Giesy, J.; Seif, A. Authentication of the botanical and geographic origin of Egyptian honey using pollen analysis methods. J. Apic. Res. 2020, 59, 946–955. [Google Scholar] [CrossRef]
- Zioga, E.; White, B.; Stout, J.C. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. Sci. Total Environ. 2023, 879, 162971. [Google Scholar] [CrossRef]
- Martseniuk, O.S.; Mysiura, T.H.; Popova, N.V. Peculiarities of modeling complex technological systems in food technologies. Sci. Work. Natl. Univ. Food Technol. 2018, 24, 122–133. [Google Scholar] [CrossRef]
- Margalef-Bentabol, J.; Villaseñor, E.J. Geometric formulation of the Covariant Phase Space methods with boundaries. Phys. Rev. D 2021, 103, 025011. [Google Scholar] [CrossRef]
- Kolyanovska, L.M.; Palamarchuk, I.P.; Sukhenko, Y.G.; Mushtruk, M.M.; Sukhenko, V.Y.; Vasuliev, V.P.; Semko, T.V.; Tyshchenko, L.M.; Popiel, P.; Mussabekova, A.; et al. Mathematical modeling of the extraction process of oil-containing raw materials with pulsed intensification of heat of mass transfer. Opt. Fibers Their Appl. 2019, 11045, 246–259. [Google Scholar] [CrossRef]
- State Hygienic Norms 6.6.1.1-130-2006. Permissible Levels of Radionuclides 137Cs and 90Sr in Food Products and Drinking Water. Kyiv, Ukraine, 2006. Available online: https://online.budstandart.com/ua/catalog/doc-page?id_doc=48352 (accessed on 5 October 2024).
- Council Directive 96/23/EC of 29 April 1996 on Measures to Monitor Certain Substances and Residues Thereof in Live Animals and Animal Products and Repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Available online: https://eur-lex.europa.eu/eli/dir/1996/23/oj (accessed on 5 October 2024).
- Order of the Ministry of Agrarian Policy and Food of Ukraine on Approval of Requirements for Honey No. 330 Dated June 19, 2019. Available online: https://zakon.rada.gov.ua/laws/show/z0725-19#Text (accessed on 5 October 2024).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 5 October 2024).
- Dunn, J.; Brunner, T.; Legeza, D.; Konovalenko, A.; Demchuk, O. Factors of the marketing macro system effecting children’s food production. Econ. Ann. 2018, 170, 49–56. [Google Scholar] [CrossRef]
- Priss, O.; Hutsol, T.; Glowacki, S.; Bulhakov, P.; Bakhlukova, K.; Osokina, N.; Nurek, T.; Horetska, I.; Mykhailova, L. Effect of Asparagus Chitosan-Rutin Coating on Losses and Waste Reduction During Storage. Agric. Eng. 2024, 28, 99–118. [Google Scholar] [CrossRef]
- Borysenko, S.D. Building Mathematical Models of Physical and Other Evolutionary Processes Using Differential Equations (Textbook); KPI: Kyiv, Ukraine, 1995. [Google Scholar]
- Rios, F.T.; Lobo, M.O.; Castanheira, I.; Delgado, I.; Nascimiento, A.; Sammán, N. Chemometric and multielement techniques for the exploratory analysis of honey quality from different geographical origin. J. Agric. Food Sci. Biotechnol. 2024, 2, 54–63. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Lin, X.; Bai, W.; Xiao, G.; Liu, G. Composition, Functional Properties and Safety of Honey: A Review. J. Sci. Food Agric. 2023, 103, 37209396. [Google Scholar] [CrossRef]
- Ayad, A.S.; Benchaabane, S.; Daas, T.; Smagghe, G.; Loucif-Ayad, W. Assessment of Efficacy of Algerian Propolis against the Parasitic Mite Varroa destructor and Safety for Honey Bees by Spray Treatment. Insects 2024, 15, 75. [Google Scholar] [CrossRef]
- Beckmann, K. Testing Methods for Honey Authentication—Limitations and Approaches for Harmonization. In Abstract Book of the Apimondia 48th International Apicultural Congress (4–8 September 2023, Santiago, Chile). 2023, p. 96. Available online: https://apimondia2023.com/?p=program (accessed on 1 April 2024).
- Rivera-Mondragón, A.; Hernández, S.; De Lora, A.; Christopher, Y.; Fernández Marín, H.; Navas Tapiero, G. Honey Adulteration Detection in Commercially Available Honey Samples from Panama Using HPLC and UHPLC Methods. In Abstract Book of the Apimondia 48th International Apicultural Congress (4–8 September 2023, Santiago, Chile). 2023, p. 325. Available online: https://apimondia2023.com/?p=program (accessed on 1 April 2024).
- Soledad García Paoloni, M.; Rodriguez, G.A.; Gaggiotti, M.; Barrionuevo, L.; Alberto Rusas, V. Physical, Chemical and Palynological Characteristics of Honeys Produced in the South of the Province of Buenos Aires, Argentina. In Abstract book of the Apimondia 48th International Apicultural Congress (4–8 September 2023, Santiago, Chile). 2023, p. 341. Available online: https://apimondia2023.com/?p=program (accessed on 1 April 2024).
- Čavlin, M.; Prdić, N.; Ignjatijević, S.; Vapa Tankosić, J.; Lekić, N.; Kostić, S. Research on the Determination of the Factors Affecting Business Performance in Beekeeping Production. Agriculture 2023, 13, 686. [Google Scholar] [CrossRef]
- Bodor, Z.; Majadi, M.; Benedek, C.; Zaukuu, J.L.Z.; Veresné Bálint, M.; Csajbókné Csobod, É.; Kovacs, Z. Detection of low-level adulteration of Hungarian honey using near infrared spectroscopy. Chemosensors 2023, 11, 89. [Google Scholar] [CrossRef]
- Lazarieva, L.; Akymenko, L.; Postoienko, V.; Kovalska, L.; Postoienko, H.; Shapoval, Z.; Derunets, M. Physico-chemical indicators of the quality of robinia honey of Ukraine. Bull. Agric. Sci. 2023, 101, 38–44. [Google Scholar] [CrossRef]
- Palamarchuk, I.; Mushtruk, M.; Vasyliv, V.; Stefan, E.; Priss, O.; Babych, I.; Karpovych, I.; Pushanko, N. Modelling the centrifugal mixing process of minced meat to optimise the production of chopped meat semi-finished products. Potravinarstvo 2024, 18, 297–312. [Google Scholar] [CrossRef]
No. | Characteristics of the Safety of Honey | Control Value | Current Parameters of Honey Types According to the Pollen Profile | ||||
---|---|---|---|---|---|---|---|
Robinia | Rapeseed | Linden | Buckwheat | Sunflower | |||
1 | Total activity of β-emitting radionuclides, Bq/kg | ≤50 1 | 12 | 7 | 4 | 2 | 5 |
2 | Levomycetin (chloramphenicol), μg/kg | ≤0.3 2 | 0.25 | 0.1 | 0.15 | 0.2 | 0.2 |
3 | Nitrofuran (for AOZ and AMOZ), μg/kg | ≤0.6 2 | 0.1 | 0.1 | 0.05 | 0 | 0.01 |
4 | Metronidazole, μg/kg | ≤0.5 3 | 0.02 | 0.01 | 0.005 | 0.01 | 0.01 |
5 | Сontent of water-insoluble substances (mechanical impurities), g/100 g | ≤0.1 4 | 0.001 | 0.002 | 0.002 | 0.001 | 0 |
6 | Pesticides (for hexachloran), mg/kg | ≤0.005 2 | 0.0001 | 0.0005 | 0.0001 | 0.0005 | 0.002 |
7 | Heavy metals, mg/kg | ≤0.1 5 | 0.05 | 0.05 | 0.05 | 0.01 | 0.01 |
Indicator | Types of Honey According to the Pollen Profile | ||||
---|---|---|---|---|---|
Robinia | Rapeseed | Linden | Sunflower | Buckwheat | |
Negative space amount Si, μn2 | 0.19 | 0.09 | 0.05 | 0.0 | 0.05 |
Coefficient of environmental danger, ked | 0.07 | 0.03 | 0.02 | 0.01 | 0.02 |
Coefficient of compliance with the minimum quality standards kcs, % | 93.23 | 96.78 | 98.18 | 99.42 | 98.18 |
Relative to the normative content of heavy metals k1, % | 50 | 50 | 50 | 10 | 10 |
Relative to the normative content of levomycetin k2, % | 83.3 | 33.3 | 50 | 66.6 | 66.6 |
Relative to the normative content of pesticides k3, % | 2 | 1 | 2 | 40 | 10 |
Relative to the normative total activity of β-emitting radionuclides k4,% | 24 | 24 | 8 | 10 | 4 |
Relative to the normative content of nitrofuran k5, % | 16.6 | 16.6 | 8.3 | 16.6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palamarchuk, I.; Adamchuk, L.; Palamarchuk, V.; Andrushchenko, M.; Priss, O.; Glowacki, S.; Hutsol, T.; Bezaltychna, O. Assessment of the Ecological Safety of Honey with the Help of “Factor Area” Models. Sustainability 2024, 16, 9960. https://doi.org/10.3390/su16229960
Palamarchuk I, Adamchuk L, Palamarchuk V, Andrushchenko M, Priss O, Glowacki S, Hutsol T, Bezaltychna O. Assessment of the Ecological Safety of Honey with the Help of “Factor Area” Models. Sustainability. 2024; 16(22):9960. https://doi.org/10.3390/su16229960
Chicago/Turabian StylePalamarchuk, Igor, Leonora Adamchuk, Vladyslav Palamarchuk, Mykola Andrushchenko, Olesia Priss, Szymon Glowacki, Taras Hutsol, and Olena Bezaltychna. 2024. "Assessment of the Ecological Safety of Honey with the Help of “Factor Area” Models" Sustainability 16, no. 22: 9960. https://doi.org/10.3390/su16229960
APA StylePalamarchuk, I., Adamchuk, L., Palamarchuk, V., Andrushchenko, M., Priss, O., Glowacki, S., Hutsol, T., & Bezaltychna, O. (2024). Assessment of the Ecological Safety of Honey with the Help of “Factor Area” Models. Sustainability, 16(22), 9960. https://doi.org/10.3390/su16229960