Steel Fiber Reinforced Concrete: A Systematic Review of Usage in Shield Tunnel Segment
Abstract
:1. Introduction
2. Constituent Materials of SFRC
2.1. Steel Fiber
2.2. Cement
2.3. Aggregate Preparation
2.4. SFRC Chemical Additives
2.5. Water Demand
3. Performance Characteristics of SFRC Segmental Linings
3.1. Workability of SFRC
3.2. Physical Properties
3.3. Mechanical Performance of SFRC
3.3.1. Compressive Strength
3.3.2. Splitting Tension
3.3.3. Flexural Testing
3.3.4. Modulus of Elasticity
3.3.5. Toughness
3.3.6. Durability
4. Applications of SFRC Segments in Shield Tunnels and Deficiencies in Existing Shield Tunnel Segments
4.1. Problems Associated with Shield Tunnel Segments
4.1.1. Detriment of Segmental Cracking and Damage
4.1.2. Defects in Traditional Material Properties
4.1.3. SFRC Shield Tunnel Segments
4.2. Analysis of Cracking of Shield Tunnel Segments Made of Different Materials
4.3. Impact of SFRC on the Performance of Shield Tunnel Segments
4.3.1. Failure Mode and Mechanism of Steel Fiber Reinforced Concrete Segments
4.3.2. Analysis of the Effect of SFRC on Improving the Stiffness of Pipe Segments
4.3.3. Analysis of the Effect of SFRC on Improving Joint Stiffness
4.3.4. Analysis of SFRC’s Enhancing Role on Structural Load-Bearing Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Taengua, E.; Marti-Vargas, J.R.; Serna-Ros, P.J.A.S.J. Statistical approach to effect of factors involved in bond performance of steel fiber-reinforced concrete. Struct. J. 2011, 108, 461–468. [Google Scholar]
- Lorente, S.; Carmona, S.; Molins, C. Use of fiber orientation factor to determine residual strength of steel fiber reinforced concrete. Constr. Build. Mater. 2022, 360, 128878. [Google Scholar] [CrossRef]
- Sameera, V.K.; Keshav, L. Properties and performance of steel fiber reinforced concrete beam structure—Review. Mater. Today Proc. 2022, 66, 916–919. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Ullah, A.; Shayanfar, J.; Niaz, M. Improved shear strength prediction model of steel fiber reinforced concrete beams by adopting gene expression programming. Materials 2022, 15, 3758. [Google Scholar] [CrossRef]
- Trabucchi, I.; Tiberti, G.; Conforti, A.; Medeghini, F.; Plizzari, G. Experimental study on Steel Fiber Reinforced Concrete and Reinforced Concrete elements under concentrated loads. Constr. Build. Mater. 2021, 307, 124834. [Google Scholar] [CrossRef]
- Vandecruys, E.; De Smedt, M.; Vrijdaghs, R.; Verstrynge, E.; Vandewalle, L. Sectional analysis of the cyclic behavior of steel fiber reinforced concrete. Struct. Concr. 2021, 22, 3123–3139. [Google Scholar] [CrossRef]
- Zezulová, E.; Hasilová, K.; Dvořák, P.; Dubec, B.; Komárková, T.; Štoller, J. Experimental Campaign to Verify the Suitability of Ultrasound Testing Method for Steel Fiber Reinforced Concrete Fortification Structures. Appl. Sci. 2021, 11, 8759. [Google Scholar] [CrossRef]
- Golpasand, G.B.; Farzam, M.; Shishvan, S.S. Behavior of recycled steel fiber reinforced concrete under uniaxial cyclic compression and biaxial tests. Constr. Build. Mater. 2020, 263, 120664. [Google Scholar] [CrossRef]
- Hajforoush, M.; Kheyroddin, A.; Rezaifar, O. Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field. Constr. Build. Mater. 2020, 252, 119064. [Google Scholar] [CrossRef]
- Pérez, V.Q.; Prieto, D.C.; Orduz, L.E.Z. Mechanical characterization of self-compacting steel fiber reinforced concrete using digital image correlation. Eng. Fract. Mech. 2021, 246, 107618. [Google Scholar] [CrossRef]
- Takkellapati, S.; Moturu, T.S.; Khan, H.A.; Srinivas, C. Bottom Ash based Steel Fiber Reinforced Concrete. Int. J. Recent Technol. Eng. (IJRTE) 2020, 8, 5459–5463. [Google Scholar] [CrossRef]
- Vegesana, K.R.; Killamsetty, S.R. Compressive Behaviour of Steel Fiber Reinforced Concrete Exposed to Chemical Attack. Am. J. Constr. Build. Mater. 2020, 4, 27–32. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bordiuzhenko, O.; Zhitkovsky, V.; Marchuk, V. Mathematical modeling of steel fiber reinforced concrete properties and selecting its effective composition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012085. [Google Scholar] [CrossRef]
- Hou, L.; Ye, Z.; Zhou, B.; Shen, C.; Aslani, F.; Chen, D. Bond behavior of reinforcement embedded in steel fiber reinforced concrete under chloride attack. Struct. Concr. 2019, 20, 2242–2255. [Google Scholar] [CrossRef]
- Koniki, S.; Prasad, D.R. Mechanical properties and constitutive stress–strain behaviour of steel fiber reinforced concrete under uni-axial stresses. J. Build. Pathol. Rehabil. 2019, 4, 6. [Google Scholar] [CrossRef]
- Luo, Y.F.; Cheng, Z.H.; Li, M.Q.; Huo, Z.G.; Qi, J.H.; Xie, J. A Brief Discussion on Surface Cracking of Subway Segments. Concr. Cem. Prod. 2003, 2, 24–25. [Google Scholar] [CrossRef]
- Noghabai, K. Beams of fibrous concrete in shear and bending: Experiment and model. J. Struct. Eng. 2000, 126, 243–251. [Google Scholar] [CrossRef]
- Mudadu, A.; Tiberti, G.; Germano, F.; Plizzari, G.A.; Morbi, A. The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests. Cem. Concr. Compos. 2018, 93, 274–288. [Google Scholar] [CrossRef]
- Cucchiara, C.; La Mendola, L.; Papia, M. Effectiveness of stirrups and steel fibers as shear reinforcement. Cem. Concr. Compos. 2004, 26, 777–786. [Google Scholar] [CrossRef]
- Ren, G.; Wu, H.; Fang, Q.; Liu, J. Effects of steel fiber content and type on static mechanical properties of UHPCC. Constr. Build. Mater. 2018, 163, 826–839. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Y.; Thomas, A. The investigation on strength and flexural toughness of fiber cocktail reinforced self-compacting high performance concrete. Constr. Build. Mater. 2007, 23, 448–452. [Google Scholar] [CrossRef]
- Araujo, D.D.L.; Nunes, F.G.T.; Filho, R.D.T.; Andrade, M. Shear strength of steel fiber-reinforced concrete beams. Acta Sci. 2014, 36, 389. [Google Scholar] [CrossRef]
- Bai, M.; Niu, D.T.; Jiang, L.; Miao, Y.Y. Research on Steel Fiber Improving Mechanical Properties and Microstructure of Concrete. Silic. Bull. 2013, 32, 2084–2089. [Google Scholar] [CrossRef]
- Ramesh, R.B.; Mirza, O.; Kang, W.H. Mechanical properties of steel fiber reinforced recycled aggregate concrete. Struct. Concr. 2019, 20, 745–755. [Google Scholar] [CrossRef]
- Gondokusumo, G.S.; Venkateshwaran, A.; Tan, K.H.; Liew, J.R. Unified equations to predict residual flexural tensile strength of lightweight steel fiber-reinforced concrete. Struct. Concr. 2021, 22, 2202–2222. [Google Scholar] [CrossRef]
- Huang, B.; Li, B. Research on Constitutive equation of Steel Fiber Reinforced Concrete Compression Damage Based on Acoustic Emission Technology. J. Water Resour. Build. Eng. 2018, 16, 201–208. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Kim, N. Mechanical properties of normal to high-strength steel fiber-reinforced concrete. Concr. Aggreg. 1996, 18, 92–97. [Google Scholar] [CrossRef]
- Meda, A.; Rinaldi, Z.; Spagnuolo, S.; De Rivaz, B.; Giamundo, N. Hybrid precast tunnel segments in fiber reinforced concrete with glass fiber reinforced bars. Tunn. Undergr. Space Technol. 2019, 86, 100–112. [Google Scholar] [CrossRef]
- Nogales, A.; de la Fuente, A. Crack width design approach for fiber reinforced concrete tunnel segments for TBM thrust loads. Tunn. Undergr. Space Technol. 2020, 98, 103342. [Google Scholar] [CrossRef]
- Caratelli, A.; Meda, A.; Rinaldi, Z. Design according to MC2010 of a fiber-reinforced concrete tunnel in Monte Lirio, Panama. Struct. Concr. 2012, 13, 166–173. [Google Scholar] [CrossRef]
- Caratelli, A.; Meda, A.; Rinaldi, Z.; Romualdi, P. Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunn. Undergr. Space Technol. 2011, 26, 284–291. [Google Scholar] [CrossRef]
- Guan, J. Random Discussion on Mining Method Tunnel Technology Lecture 7-Fiber Concrete Lining. Tunn. Constr. 2016, 36, 497–507. [Google Scholar] [CrossRef]
- Shah, A.A.; Ribakov, Y. Recent trends in steel fibered high-strength concrete. Mater. Des. 2011, 32, 4122–4151. [Google Scholar] [CrossRef]
- Landler, J.; Fischer, O. Steigerung der Durchstanztragfähigkeit und Duktilität durch die Zugabe moderner Hochleistungsstahlfasern. Beton-Stahlbetonbau 2019, 114, 663–673. [Google Scholar] [CrossRef]
- Abbass, W.; Khan, M.I.; Mourad, S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr. Build. Mater. 2018, 168, 556–569. [Google Scholar] [CrossRef]
- Marar, K.; Eren, Ö.; Roughani, H. The influence of amount and aspect ratio of fibers on shear behaviour of steel fiber reinforced concrete. KSCE J. Civ. Eng. 2017, 21, 1393–1399. [Google Scholar] [CrossRef]
- Pierre, P.; Pleau, R.; Pigeon, M. Mechanical properties of steel microfiber reinforced cement pastes and mortars. J. Mater. Civ. Eng. 1999, 11, 317–324. [Google Scholar] [CrossRef]
- Mansur, M.; Chin, M.; Wee, T. Stress-strain relationship of high-strength fiber concrete in compression. J. Mater. Civ. Eng. 1999, 11, 21–29. [Google Scholar] [CrossRef]
- Torres, J.A.; Lantsoght, E.O. Influence of fiber content on shear capacity of steel fiber-reinforced concrete beams. Fibers 2019, 7, 102. [Google Scholar] [CrossRef]
- Zhu, Y.H. Research on Mechanical Properties of Steel Fiber Shotcrete and Its Application in Single Layer Tunnel Lining. Ph.D. Thesis, Chongqing University, Chongqing, China, 2009. [Google Scholar] [CrossRef]
- Li, B.; Chi, Y.; Xu, L.; Shi, Y.; Li, C. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Constr. Build. Mater. 2018, 191, 80–94. [Google Scholar] [CrossRef]
- Carrillo, J.; Lizarazo-Marriaga, J.; Lamus, F. Properties of steel fiber reinforced concrete using either industrial or recycled fibers from waste tires. Fibers Polym. 2020, 21, 2055–2067. [Google Scholar] [CrossRef]
- Adlparvar, M.R.; Esmaeili, M.; Parsa, M.H.T. Strength properties of fiber reinforced concrete including steel fibers. World J. Eng. 2024, 21, 194–202. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H. Bond behavior between basalt fibers reinforced polymer sheets and steel fibers reinforced concrete. Eng. Struct. 2018, 176, 812–824. [Google Scholar] [CrossRef]
- Alberti, M.; Enfedaque, A.; Gálvez, J. fiber reinforced concrete with a combination of polyolefin and steel-hooked fibers. Compos. Struct. 2017, 171, 317–325. [Google Scholar] [CrossRef]
- Köksal, F.; Şahin, Y.; Gencel, O.; Yiğit, İ. Fracture energy-based optimisation of steel fiber reinforced concretes. Eng. Fract. Mech. 2013, 107, 29–37. [Google Scholar] [CrossRef]
- Babaie, R.; Abolfazli, M.; Fahimifar, A. Mechanical properties of steel and polymer fiber reinforced concrete. J. Mech. Behav. Mater. 2019, 28, 119–134. [Google Scholar] [CrossRef]
- Prathipati, S.T.; Rao, C. A study on the uniaxial compressive behaviour of graded fiber reinforced concrete using glass fiber/steel fiber. Innov. Infrastruct. Solut. 2021, 6, 74. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, S.H.; Umair, M.; Hanif, A. Axial compressive behavior of confined steel fiber reinforced high strength concrete. Constr. Build. Mater. 2020, 230, 117043. [Google Scholar] [CrossRef]
- Qing, L.B.; Bi, M.D.; Mu, R.; Xing, P. Preparation and mechanical properties of horizontally oriented steel fiber reinforced concrete. J. Silic. 2023, 51, 1210–1218. [Google Scholar] [CrossRef]
- Caggiano, A.; Gambarelli, S.; Martinelli, E.; Nisticò, N.; Pepe, M. Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete. Constr. Build. Mater. 2016, 125, 1035–1043. [Google Scholar] [CrossRef]
- Lu, Y.; Li, N.; Li, S.; Liang, H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Constr. Build. Mater. 2015, 95, 74–85. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Yuan, Y.; Taerwe, L. Comparison of the structural behavior of reinforced concrete tunnel segments with steel fiber and synthetic fiber addition. Tunn. Undergr. Space Technol. 2020, 103, 103506. [Google Scholar] [CrossRef]
- Han, J.; Zhao, M.; Chen, J.; Lan, X. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 2019, 209, 577–591. [Google Scholar] [CrossRef]
- Gao, D.; Gu, Z.; Wei, C.; Wu, C.; Pang, Y. Effects of fiber clustering on fatigue behavior of steel fiber reinforced concrete beams. Constr. Build. Mater. 2021, 301, 124070. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Y. Mechanical properties and corrosion resistance of high-performance fiber-reinforced concrete with steel or amorphous alloy fibers. Mater. Res. Express 2021, 8, 095201. [Google Scholar] [CrossRef]
- Al-Baghdadi, H.M.; Al-Merib, F.H.; Ibrahim, A.A.; Hassan, R.F.; Hussein, H.H. Effects of coarse aggregate maximum size on synthetic/steel fiber reinforced concrete performance with different fiber parameters. Buildings 2021, 11, 158. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Rong, C.; Wang, Z. Properties of polymer modified steel fiber-reinforced cement concretes. Constr. Build. Mater. 2010, 24, 1201–1206. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Najjar, M.F.; Soliman, A.M.; Azabi, T.M. Novel steel fiber-reinforced preplaced aggregate concrete with superior mechanical performance. Cem. Concr. Compos. 2017, 82, 242–251. [Google Scholar] [CrossRef]
- Ramkumar, K.; PR, K.R.; Gunasekaran, K. Performance of hybrid steel fiber-reinforced self-compacting concrete RC beam under flexure. Eng. Sci. Technol. Int. J. 2023, 42, 101432. [Google Scholar] [CrossRef]
- Yang, K.-H.; Kim, H.-Y.; Lee, H.-J. Mechanical Properties of Lightweight Aggregate Concrete Reinforced with Various Steel Fibers. Concr. Struct. Mater. 2022, 16, 48. [Google Scholar] [CrossRef]
- Jhatial, A.A.; Sohu, S.; Bhatti, N.; Lakhiar, M. Effect of steel fibers on the compressive and flexural strength of concrete. Int. J. Adv. Appl. Sci. 2018, 5, 16–21. [Google Scholar] [CrossRef]
- Akcay, B.; Tasdemir, M.A. Mechanical behaviour and fiber dispersion of hybrid steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 2012, 28, 287–293. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, D.; Wu, H.; Lu, Y.; Luo, X. Axial compressive behavior of steel fiber reinforced concrete-filled square steel tube stub columns. J. Constr. Steel Res. 2023, 203, 107804. [Google Scholar] [CrossRef]
- Wu, Y.H.; He, Y.B. Experimental Study on the Preparation of Reactive Powder Concrete (RPC200). J. China Highw. Eng. 2003, 16, 45–50. [Google Scholar] [CrossRef]
- Zou, J. Composition and Optimization Development Trends of Ultra High Performance Concrete Materials. Hunan Transp. Technol. 2022, 48, 1–4. [Google Scholar]
- Liu, J.H.; Song, S.M.; Mei, S.G. Preparation and performance research of RPC high-performance cement-based composites. J. Wuhan Univ. Technol. 2001, 23, 14–18. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Liu, F.; Wan, C.; Pu, X. Preparation of ultra-high performance concrete with common technology and materials. Cem. Concr. Compos. 2012, 34, 538–544. [Google Scholar] [CrossRef]
- Parvez, A.; Foster, S.J. Fatigue behavior of steel-fiber-reinforced concrete beams. J. Struct. Eng. 2015, 141, 04014117. [Google Scholar] [CrossRef]
- Kang, M.-C.; Yoo, D.-Y.; Gupta, R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, J.; Zhang, F.; Li, S.; Wang, Z. Experimental study on compressive properties of SFRC under high strain rate with different fiber content and aspect ratio. Constr. Build. Mater. 2020, 261, 119906. [Google Scholar] [CrossRef]
- Wang, Q.-S.; Li, X.-B.; Zhao, G.-Y.; Shao, P.; Yao, J.-R. Experiment on mechanical properties of steel fiber reinforced concrete and application in deep underground engineering. J. China Univ. Min. Technol. 2008, 18, 64–81. [Google Scholar] [CrossRef]
- Ige, O.; Barnett, S.; Chiverton, J.; Nassif, A.; Williams, J. Effects of steel fiber-aggregate interaction on mechanical behaviour of steel fiber reinforced concrete. Adv. Appl. Ceram. 2017, 116, 193–198. [Google Scholar] [CrossRef]
- Aslani, F.; Hou, L.; Nejadi, S.; Sun, J.; Abbasi, S. Experimental analysis of fiber-reinforced recycled aggregate self-compacting concrete using waste recycled concrete aggregates, polypropylene, and steel fibers. Struct. Concr. 2019, 20, 1670–1683. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Li, S.; Liao, J. Axial behavior of slender steel tube filled with steel-fiber-reinforced recycled aggregate concrete. J. Constr. Steel Res. 2019, 162, 105748. [Google Scholar] [CrossRef]
- Jahandari, S.; Mohammadi, M.; Rahmani, A.; Abolhasani, M.; Miraki, H.; Mohammadifar, L.; Kazemi, M.; Saberian, M.; Rashidi, M. Mechanical properties of recycled aggregate concretes containing silica fume and steel fibers. Materials 2021, 14, 7065. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Carkon-Azad, R.; Singh, S.; Kaushik, S. Impact resistance of steel fibrous concrete containing fibers of mixed aspect ratio. Constr. Build. Mater. 2009, 23, 183–189. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Wu, C.; Wu, P.; Li, Z.-X. Effects of steel fibers on dynamic strength of UHPC. Constr. Build. Mater. 2016, 114, 708–718. [Google Scholar] [CrossRef]
- Pająk, M. Dynamic response of SFRC under different strain rates—An overview of test results. In Proceedings of the 7th International Conference Analytical Models and New Concepts in Concrete and Masonry Structures, Kraków, Poland, 13–15 June 2011. [Google Scholar]
- Wang, Q.; Kang, S.R.; Wu, L.M.; Tang, N.; Zhang, Q. Molecular Simulation of N-A-S-H and C-A-S-H Structures in Geopolymer gel Systems. J. Build. Mater. 2020, 23, 184–191. [Google Scholar]
- Schröfl, C.; Gruber, M.; Plank, J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cem. Concr. Res. 2012, 42, 1401–1408. [Google Scholar] [CrossRef]
- Yoshioka, K.; Tazawa, E.-I.; Kawai, K.; Enohata, T. Adsorption characteristics of superplasticizers on cement component minerals. Cem. Concr. Res. 2002, 32, 1507–1513. [Google Scholar] [CrossRef]
- Sakai, E.; Atarashi, D.; Daimon, M. Interaction between superplasticizers and clay minerals. In Proceedings of the 6th International Symposium on Cement & Concrete, Xi’an, China, 19–22 September 2006; pp. 1560–1566. [Google Scholar]
- Sakai, E.; Kawakami, A.; Honda, S.; Itoh, A.; Daimon, M. Influence of molecular structure of comb-type polymer on the fluidity of CaCO3 suspension with inorganic salts. J. Ceram. Soc. Jpn. 2003, 111, 117–121. [Google Scholar] [CrossRef]
- Enfedaque, A.; Alberti, M.G.; Gálvez, J.C.; Proaño, J.S. Assessment of the post-cracking fatigue behavior of steel and polyolefin fiber-reinforced concrete. Materials 2021, 14, 7087. [Google Scholar] [CrossRef] [PubMed]
- Bartolac, M.; Damjanovic, D.; Krolo, J.; Baricevic, A. Punching shear strength of concrete slabs reinforced with recycled steel fibers from waste tires. In Proceedings of the II International Conference on Concrete Sustainability ICCS16, Barselona, Spain, 13–15 June 2016; pp. 13–15. [Google Scholar]
- Centonze, G.; Leone, M.; Vasanelli, E.; Aiello, M.A. Interface analysis between steel bars and recycled steel fiber reinforced concrete. In Proceedings of the Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, 10–14 March 2013; pp. 431–441. [Google Scholar]
- Caggiano, A.; Xargay, H.; Folino, P.; Martinelli, E. Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices. Cem. Concr. Compos. 2015, 62, 146–155. [Google Scholar] [CrossRef]
- Groli, G.; Caldentey, A.P.; Soto, A.G. Cracking performance of SCC reinforced with recycled fibers—An experimental study. Struct. Concr. 2014, 15, 136–153. [Google Scholar] [CrossRef]
- Alsaif, A.; Koutas, L.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Mechanical performance of steel fiber reinforced rubberised concrete for flexible concrete pavements. Constr. Build. Mater. 2018, 172, 533–543. [Google Scholar] [CrossRef]
- Nagarkar, P.; Tambe, S.; Pazare, D.; Deshpande, S. Study of Fiber Reinforced Concrete (Retroactive Coverage); Balkema, A.A., Ed.; Uitgevers BV: Gouda, The Netherlands, 1987; Volume 2. [Google Scholar]
- Weber, F.; Orben, J.; Haus, A.; Anders, S. Concrete technological influences on the performance classes of steel fiber concrete. Beton-Stahlbetonbau 2021, 116, 36–47. [Google Scholar] [CrossRef]
- Yazıcı, Ş.; İnan, G.; Tabak, V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 2007, 21, 1250–1253. [Google Scholar] [CrossRef]
- Shah, S.P.; Rangan, B.V. Fiber reinforced concrete properties. J. Am. Concr. Inst. 1971, 68, 126–137. [Google Scholar]
- Iqbal, S.; Ali, I.; Room, S.; Khan, S.A.; Ali, A. Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Mater. Struct. 2019, 52, 56. [Google Scholar] [CrossRef]
- Celik, T.; Marar, K. Effects of crushed stone dust on some properties of concrete. Cem. Concr. Res. 1996, 26, 1121–1130. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Singh, S.; Kaushik, S. Properties of steel fibrous concrete containing mixed fibers in fresh and hardened state. Constr. Build. Mater. 2008, 22, 956–965. [Google Scholar] [CrossRef]
- Figueiredo, A.D.D.; Ceccato, M.R. Workability analysis of steel fiber reinforced concrete using slump and Ve-Be test. Mater. Res. 2015, 18, 1284–1290. [Google Scholar] [CrossRef]
- Eren, Ö.; Celik, T. Effect of silica fume and steel fibers on some properties of high-strength concrete. Constr. Build. Mater. 1997, 11, 373–382. [Google Scholar] [CrossRef]
- Atiş, C.D.; Karahan, O. Properties of steel fiber reinforced fly ash concrete. Constr. Build. Mater. 2009, 23, 392–399. [Google Scholar] [CrossRef]
- Düzgün, O.A.; Gül, R.; Aydin, A.C. Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater. Lett. 2005, 59, 3357–3363. [Google Scholar] [CrossRef]
- Alsaif, A.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Durability of steel fiber reinforced rubberised concrete exposed to chlorides. Constr. Build. Mater. 2018, 188, 130–142. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Liu, C.; Hui, D.; Xu, Q.; Zhao, Q.; Wei, J.; Hong, X. Experimental study on basic mechanical properties of recycled steel fiber reinforced concrete. Rev. Adv. Mater. Sci. 2022, 61, 417–429. [Google Scholar] [CrossRef]
- Kim, H.R.; Han, S.J.; Yun, H.D. Compressive properties of high strength steel fiber reinforced concrete with different fiber volume fractions. Appl. Mech. Mater. 2013, 372, 215–218. [Google Scholar] [CrossRef]
- Bayasi, M.Z.; Soroushian, P. Effect of steel fiber reinforcement on fresh mix properties of concrete. Mater. J. 1992, 89, 369–374. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fiber composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Balaguru, P.; Ramakrishnan, V. Properties of fiber reinforced concrete: Workability, behavior under long-term loading, and air-void characteristics. Mater. J. 1988, 85, 189–196. [Google Scholar] [CrossRef]
- Guerini, V.; Conforti, A.; Plizzari, G.; Kawashima, S. Influence of steel and macro-synthetic fibers on concrete properties. Fibers 2018, 6, 47. [Google Scholar] [CrossRef]
- Altun, F.; Haktanir, T.; Ari, K.J.C. Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr. Build. Mater. 2007, 21, 654–661. [Google Scholar] [CrossRef]
- Ou, Y.-C.; Tsai, M.-S.; Liu, K.-Y.; Chang, K.-C. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. J. Mater. Civ. Eng. 2012, 24, 207–215. [Google Scholar] [CrossRef]
- Rizzuti, L.; Bencardino, F. Effects of fiber volume fraction on the compressive and flexural experimental behaviour of SFRC. Contemp. Eng. Sci. 2014, 7, 379–390. [Google Scholar] [CrossRef]
- Söylev, T.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, H.; Pacheco-Torgal, F.; Jalali, S. Experimental investigation on the mechanical behaviour of the fiber reinforced high-performance concrete tunnel segment. Compos. Struct. 2011, 93, 1284–1289. [Google Scholar] [CrossRef]
- Yang, K.; Yan, Q.; Zhang, C. Three-dimensional mesoscale numerical study on the mechanical behaviors of SFRC tunnel lining segments. Tunn. Undergr. Space Technol. 2021, 113, 103982. [Google Scholar] [CrossRef]
- Balendran, R.; Zhou, F.; Nadeem, A.; Leung, A. Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 2002, 37, 1361–1367. [Google Scholar] [CrossRef]
- Bayramov, F.; Taşdemir, C.; Taşdemir, M. Optimisation of steel fiber reinforced concretes by means of statistical response surface method. Cem. Concr. Compos. 2004, 26, 665–675. [Google Scholar] [CrossRef]
- Soutsos, M.; Le, T.; Lampropoulos, A. Flexural performance of fiber reinforced concrete made with steel and synthetic fibers. Constr. Build. Mater. 2012, 36, 704–710. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Wang, J. Experimental and numerical analysis on effect of fiber aspect ratio on mechanical properties of SRFC. Constr. Build. Mater. 2010, 24, 559–565. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015, 75, 429–441. [Google Scholar] [CrossRef]
- Arnau, O.; Molins, C. Theoretical and numerical analysis of the three-dimensional response of segmental tunnel linings subjected to localized loads. Tunn. Undergr. Space Technol. 2015, 49, 384–399. [Google Scholar] [CrossRef]
- Hassan, A.; Jones, S.; Mahmud, G. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high-performance fiber reinforced concrete (UHPFRC). Constr. Build. Mater. 2012, 37, 874–882. [Google Scholar] [CrossRef]
- Molins, C.; Arnau, O. Experimental and analytical study of the structural response of segmental tunnel linings based on an in-situ loading test.: Part 1: Test configuration and execution. Tunn. Undergr. Space Technol. 2011, 26, 764–777. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, H. Mechanical properties and behaviour of concrete reinforced with spiral-shaped steel fibers under dynamic splitting tension. Mag. Concr. Res. 2016, 68, 1110–1121. [Google Scholar] [CrossRef]
- de Oliveira Júnior, L.Á.; de Lima Araújo, D.; Filho, R.D.T.; de Moraes Rego Fairbairn, E.; de Andrade, M.A.S. Tension stiffening of steel-fiber-reinforced concrete. Acta Scientiarum. Technol. 2016, 38, 456–463. [Google Scholar] [CrossRef]
- Li, B.; Xu, L.; Chi, Y.; Huang, B.; Li, C. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Constr. Build. Mater. 2017, 140, 109–118. [Google Scholar] [CrossRef]
- Sinaie, S.; Heidarpour, A.; Zhao, X.-L.; Sanjayan, J. Effect of size on the response of cylindrical concrete samples under cyclic loading. Constr. Build. Mater. 2015, 84, 399–408. [Google Scholar] [CrossRef]
- Qu, J.; Zou, G.P.; Xia, P.X. Experimentation of Steel Fiber Reinforced Concrete Tri-Axial Split Strength under Quasi-Static Loading and High Strain-Rate. Appl. Mech. Mater. 2011, 70, 189–194. [Google Scholar] [CrossRef]
- Barnett, S.J.; Lataste, J.-F.; Parry, T.; Millard, S.G.; Soutsos, M.N. Assessment of fiber orientation in ultra high performance fiber reinforced concrete and its effect on flexural strength. Mater. Struct. 2010, 43, 1009–1023. [Google Scholar] [CrossRef]
- Liao, L.; Cavalaro, S.; de la FUENTE, A.; Aguado, A. Complementary use of inductive test and bending test for the characterization of SFRC. Mater. Struct. 2014, 580, 2213–2219. [Google Scholar] [CrossRef]
- Topcu, I.B.; Canbaz, M. Effect of different fibers on the mechanical properties of concrete containing fly ash. Constr. Build. Mater. 2007, 21, 1486–1491. [Google Scholar] [CrossRef]
- Meraj, T.; Pandey, A.; Rao, B. Flexural behaviour of latex modified steel fiber reinforced concrete. Indian J. Eng. Mater. Sci. IJEMS 2014, 21, 219–226. [Google Scholar]
- Rossi, C.R.; Oliveira, D.R.; Picanço, M.S.; Pompeu Neto, B.B.; Oliveira, A.M. Development length and bond behavior of steel bars in steel fiber–reinforced concrete in flexural test. J. Mater. Civ. Eng. 2020, 32, 04019333. [Google Scholar] [CrossRef]
- Venkateshwaran, A.; Tan, K.H.; Li, Y. Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers. Struct. Concr. 2018, 19, 352–365. [Google Scholar] [CrossRef]
- Zhao, Z. Experimental Study on Toughness and Residual Strength of Steel Fiber Reinforced Concrete Under Bending Load. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2017. [Google Scholar]
- Sivapriya, S.; Ridhuvaran, S.; Karthick, V.; Gopikrishna, R. Flexural and Compressional Behavior of Steel Fiber Reinforced Concrete. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 405–412. [Google Scholar]
- Hosen, M.A.; Shammas, M.I.; Shill, S.K.; Jumaat, M.Z.; Alengaram, U.J.; Ahmmad, R.; Althoey, F.; Islam, A.S.; Lin, Y.J. Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers. J. Mater. Res. Technol. 2021, 15, 6736–6746. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y. Fiber-reinforced mechanism and mechanical performance of composite fibers reinforced concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2020, 35, 121–130. [Google Scholar] [CrossRef]
- Swamy, R.; Mangat, P. A theory for the flexural strength of steel fiber reinforced concrete. Cem. Concr. Res. 1974, 4, 313–325. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, S.; Zhang, Z.; Guan, Z.; Ashour, A.; Sun, C.; Lu, W.; Cao, D. Eccentric Compression Behavior of Steel-FRP Composite Bars RC Columns Under Coupling Action of Chloride Corrosion and Load, Structures; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1051–1068. [Google Scholar] [CrossRef]
- Lee, S.C.; Oh, J.H.; Cho, J.Y. Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Ramaswamy, A. Mechanical properties of steel fiber-reinforced concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar] [CrossRef]
- Wang, H.; Belarbi, A.J.C. Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Constr. Build. Mater. 2011, 25, 2391–2401. [Google Scholar] [CrossRef]
- Gul, M.; Uyarel, H.; Akgul, O.; Uslu, N.; Yildirim, A.; Eksik, A.; Aksu, H.U.; Ozal, E.; Pusuroglu, H. Hematologic and clinical parameters after transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis. Clin. Appl. Thromb./Hemost. 2014, 20, 304–310. [Google Scholar] [CrossRef]
- Sharma, A. Shear strength of steel fiber reinforced concrete beams. J. Proc. 1986, 83, 624–628. [Google Scholar] [CrossRef]
- Al Marahla, R.H.; Shehzad, M.K.; Garcia-Taengua, E. Flexural and Deflection Behaviour of Synthetic Fiber Reinforced Concrete Beams Reinforced with Glass Fiber Reinforced Polymers Bars Under Sustained Service Load, Structures; Elsevier: Amsterdam, The Netherlands, 2023; pp. 946–955. [Google Scholar] [CrossRef]
- Madhkhan, M.; Azizkhani, R.; Harchegani, M.T. Effects of pozzolans together with steel and polypropylene fibers on mechanical properties of RCC pavements. Constr. Build. Mater. 2012, 26, 102–112. [Google Scholar] [CrossRef]
- Buratti, N.; Ferracuti, B.; Savoia, M. Concrete crack reduction in tunnel linings by steel fiber-reinforced concretes. Constr. Build. Mater. 2013, 44, 249–259. [Google Scholar] [CrossRef]
- Dhonde, H.B.; Mo, Y.; Hsu, T.T.; Vogel, J. Fresh and hardened properties of self-consolidating fiber-reinforced concrete. ACI Mater. J. 2007, 104, 491. [Google Scholar]
- Meng, G.; Gao, B.; Zhou, J.; Cao, G.; Zhang, Q. Experimental investigation of the mechanical behavior of the steel fiber reinforced concrete tunnel segment. Constr. Build. Mater. 2016, 126, 98–107. [Google Scholar] [CrossRef]
- Johnston, C.; Skarendahl, Å. Comparative flexural performance evaluation of steel fiber-reinforced concretes acoording to ASTM C1018 shows importance of fiber parameters. Mater. Struct. 1992, 25, 191–200. [Google Scholar] [CrossRef]
- Bencardino, F.; Rizzuti, L.; Spadea, G. Experimental tests v/s theoretical modeling for FRC in compression. In Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures–FraMCoS, Catania, Italy, 17–22 June 2007; pp. 1473–1480. [Google Scholar]
- Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N. Stress-strain behavior of steel fiber-reinforced concrete in compression. J. Mater. Civ. Eng. 2008, 20, 255–263. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Abbas, S.; Soliman, A.M. Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages. Eng. Struct. 2015, 101, 733–742. [Google Scholar] [CrossRef]
- Marara, K.; Erenb, Ö.; Yitmena, İ. Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC). Mater. Res. 2011, 14, 239–247. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Experimental study on settlement and punching behavior of full-scale RC and SFRC precast tunnel lining segments. Eng. Struct. 2014, 72, 1–10. [Google Scholar] [CrossRef]
- Aslani, F.; Liu, Y.; Wang, Y. Flexural and toughness properties of NiTi shape memory alloy, polypropylene and steel fibers in self-compacting concrete. J. Intell. Mater. Syst. Struct. 2020, 31, 3–16. [Google Scholar] [CrossRef]
- Choi, O.; Lee, C. Flexural performance of ring-type steel fiber-reinforced concrete. Cem. Concr. Res. 2003, 33, 841–849. [Google Scholar] [CrossRef]
- Dastjerdy, B.; Hasanpour, R.; Chakeri, H.J.G. Cracking problems in the segments of Tabriz Metro tunnel: A 3D computational study. Geotech. Geol. Eng. 2018, 36, 1959–1974. [Google Scholar] [CrossRef]
- Gong, C.; Ding, W.; Soga, K.; Mosalam, K.M. Failure mechanism of joint waterproofing in precast segmental tunnel linings. Tunn. Undergr. Space Technol. 2019, 84, 334–352. [Google Scholar] [CrossRef]
- Hu, X.; He, C.; Feng, K.; Liu, S.; Walton, G. Effects of polypyrrole coated rebar on corrosion behavior of tunnel lining with the combination effect of sustained loading and pre-existing cracks when exposed to chlorides. Constr. Build. Mater. 2019, 221, 318–331. [Google Scholar] [CrossRef]
- Shalabi, F.I.; Cording, E.J.; Paul, S.L. Concrete segment tunnel lining sealant performance under earthquake loading. Tunn. Undergr. Space Technol. 2012, 31, 51–60. [Google Scholar] [CrossRef]
- Liu, S.; He, C.; Sun, Q.; Feng, K. Safety guarantee measures for subsea shield tunnel segments based on life cycle deterioration analysis. Strateg. Study Chin. Acad. Eng. 2018, 19, 52–60. [Google Scholar] [CrossRef]
- Xing, H.; Fei, Y.; Tian, X.; Wen, Z.; Nian, D. Probability Degradation Models of Bearing Capacity of Operating Tunnel Segments Under Environmental Erosions. China J. Highw. Transp. 2022, 35, 49. [Google Scholar]
- Berkowski, P.; Kosior-Kazberuk, M. Effect of fiber on the concrete resistance to surface scaling due to cyclic freezing and thawing. Procedia Eng. 2015, 111, 121–127. [Google Scholar] [CrossRef]
- Voit, K.; Kirnbauer, J. Tensile characteristics and fracture energy of fiber reinforced and non-reinforced ultra high performance concrete (UHPC). Int. J. Fract. 2014, 188, 147–157. [Google Scholar] [CrossRef]
- El-Dieb, A.S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers. Mater. Des. 2009, 30, 4286–4292. [Google Scholar] [CrossRef]
- Abbas, S.; Nehdi, M.L. Mechanical Behavior of Ultrahigh-Performance Concrete Tunnel Lining Segments. Mech. Behav. Ultrah.-Perform. Concr. Tunn. Lining Segm. 2021, 14, 2378. [Google Scholar] [CrossRef]
- Sun, B.; Ding, C. Design and advantages analysis of steel fiber reinforced concrete segment of high-speed railway tunnel with large diameter shield. J. Hebei Univ. Technol. 2015, 44, 112–115. [Google Scholar] [CrossRef]
- Niu, D.; Jiang, L.; Bai, M.; Miao, Y. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater. Des. 2013, 44, 267–273. [Google Scholar] [CrossRef]
- Otsuki, N.; Miyazato, S.-I.; Yodsudjai, W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Tian, L.; Chen, J.; Zhao, T.J. Durability of lining concrete of subsea tunnel under combined action of freeze-thaw cycle and carbonation. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 779–782. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, D.; Dong, Z. Experimental study on carbonation of steel fiber reinforced concrete. In Proceedings of the International Conference on the Durability of Concrete Structures, West Lafayette, IN, USA, 24–26 July 2014. [Google Scholar]
- Dong, J.; Meng, W.; Liu, Y.; Ti, J. A framework of pavement management system based on IoT and big data. Adv. Eng. Inform. 2021, 47, 101226. [Google Scholar] [CrossRef]
- Wang, F.Y.; Huang, H.W. Evolution law of cracks in shield tunnel lining structure and its simplified simulation method. J. Rock Mech. Eng. 2020, 39, 2902–2910. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Wang, K.; Li, Z.; Li, H.; Liu, S. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review. J. Traffic Transp. Eng. Engl. Ed. 2020, 7, 748–774. [Google Scholar] [CrossRef]
- Chen, J.S.; Mo, H.H.; Liang, Z.Y. Preliminary study on the causes of segment local cracking during shield tunnel construction. J. Rock Mech. Eng. 2006, 5, 906–910. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.; Cheng, Z.J.G. Numerical study on the fracture properties of concrete shield tunnel lining segments. Geofluids 2021, 2021, 9975235. [Google Scholar] [CrossRef]
- Ai, Q.; Yuan, Y.; Mahadevan, S.; Jiang, X. Maintenance strategies optimisation of metro tunnels in soft soil. Struct. Infrastruct. Eng. 2017, 13, 1093–1103. [Google Scholar] [CrossRef]
- Asakura, T.; Kojima, Y.; Nakata, M.; Sano, N.; Omata, F.; Wakana, K. Countermeasure for deformed tunnel lining by inner reinforcement. In Proceedings of the ISRM Congress, ISRM, Tokyo, Japan, 25 September 1995. Paper Number: ISRM-8CONGRESS-1995-103. [Google Scholar]
- Kiriyama, K.; Kakizaki, M.; Takabayashi, T.; Hirosawa, N.; Takeuchi, T.; Hajohta, H.; Yano, Y.; Imafuku, K. Structure and Construction Examples of Tunnel Reinforcement Method Using Thin Steel Panels. Nippon Steel Technical Report No. 92. 2005, pp. 45–50. Available online: https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9209.pdf (accessed on 28 October 2024).
- De la Fuente, A.; Pujadas, P.; Blanco, A.; Aguado, A. Experiences in Barcelona with the use of fibers in segmental linings. Tunn. Undergr. Space Technol. 2012, 27, 60–71. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Bao, Y.; Yuan, Y.; Bai, Y. Simplified nonlinear simulation of shield tunnel lining reinforced by epoxy bonded steel plates. Tunn. Undergr. Space Technol. 2016, 51, 362–371. [Google Scholar] [CrossRef]
- Liu, T.J.; Huang, H.H.; Xu, R.; Yang, X.P. Research on the Bearing Performance of Subway Shield Tunnels Strengthened with Bonded Steel Plates. Chin. J. Highw. Eng. 2017, 30, 91–99. [Google Scholar] [CrossRef]
- Najigivi, A.; Nazerigivi, A.; Nejati, H.R. Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review. Comput. Concr. Int. J. 2017, 20, 155–164. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Yoon, Y.-S.; Banthia, N.J. Predicting the post-cracking behavior of normal-and high-strength steel-fiber-reinforced concrete beams. Constr. Build. Mater. 2015, 93, 477–485. [Google Scholar] [CrossRef]
- Liu, R.Y. Analysis and Research on Crack Development of Unreinforced Steel Fiber Concrete Segment of Subway Tunnel; Southwest Jiaotong University: Chengdu, China, 2018. [Google Scholar]
- Zhang, W. Research on Steel Fiber Crack Resistance Effect and Its Application in Shield Pipe Design. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2007. [Google Scholar] [CrossRef]
- Bin, S.; de Rivaz, B. Study on the Service Performance of Steel Fiber Reinforced Concrete Prefabricated Segments in Shield Tunnels. Munic. Technol. 2014, 32, 155–159+176. [Google Scholar]
- AFTES. Test Report Sigma Béton; Laboratory of Sigma Beton: Nice, France, 2008; pp. 6–13. [Google Scholar]
- DIN 1048 Part 5 1991; Testing Concrete: Testing of Hardened Concrete (Specimens Prepared in Mould). German Institute for Standardisation (Deutsches Institut für Normung): Berlin, Germany, 1991.
- Manfredi, G.; Prota, A. CNR DT209-2012 “Studi preliminari finalizzati alla redazione di Istruzioni per l’impiego di calcestruzzi ad alte prestazioni”. Boll. Soc. Ital. Biol. Sper. 1981, 57, 428–434. [Google Scholar]
- Vandewalle, L. Test and design methods of steel fiber reinforced concrete-Results of the RILEM Committee. Faserbeton Innov. Bauwes.-Beitr. Aus Prax. Und Wiss. 2002, 263–284. [Google Scholar] [CrossRef]
- Yan, Z.G.; Zhu, H.H.; Ju, J.W.J. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures. Constr. Build. Mater. 2013, 38, 610–618. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wang, Z.J.; Zhou, P.P. Experimental study on eccentric compression model of reinforced steel fiber reinforced concrete lining segments. J. Build. Struct. 2018, 39, 290–298. [Google Scholar]
- Xu, Z.; Li, D.M.; Wang, B. Application of pure steel fiber reinforced concrete segments in hard rock tunnels. J. Shandong Univ. Eng. Ed. 2020, 50, 44–49. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.H.; Jiang, H. Experimental study and theoretical analysis of mechanical properties of fiber reinforced concrete mixed reinforcement tunnel segments. Mod. Tunn. Technol. 2018, 55, 1080–1090. [Google Scholar] [CrossRef]
- Qi, M.S.; Liu, X. Experimental Study on Mechanical Properties of Fiber Reinforced Concrete Shield Tunnel Segments. J. Undergr. Space Eng. 2019, 1, 53–61. [Google Scholar]
- Zhang, F.; Zhang, G.; Xu, X.F.; Liu, X. Research on Structural mechanics Characteristics of Steel Fiber Reinforced Concrete Segments. J. Railw. Sci. Eng. 2023, 20, 3463–3475. [Google Scholar] [CrossRef]
- Gong, C.; Ding, W.; Mosalam, K.M.; Günay, S.; Soga, K. Comparison of the structural behavior of reinforced concrete and steel fiber reinforced concrete tunnel segmental joints. Tunn. Undergr. Space Technol. 2017, 68, 38–57. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, Z.G.; Zhu, H.H.; Shen, Y.; Guan, L.X.; Wen, Z.Y.; Li, Y.L. Experimental Study on the Mechanical Properties of Steel Fiber Reinforced Concrete High Rigid Joints in Deep Buried Drainage Shield Tunnels. J. Build. Struct. 2020, 41, 177–183. [Google Scholar] [CrossRef]
- Liao, S.M.; Yan, Z.G.; Song, B.; Zhu, H.H.; Liu, F.J. Numerical Simulation Test of Local Stress in Steel Fiber Segment Joints. J. Geotech. Eng. 2006, 28, 653–659. [Google Scholar] [CrossRef]
- Gao, D.Y. Research on the Complete stress-strain Curve of Steel Fiber Reinforced Concrete under Axial Compression. J. Hydraul. Eng. 1991, 10, 43–48. [Google Scholar] [CrossRef]
- Lü, X.L.; Zhang, Y.; Nian, X.C. Experimental Study on Axial Compression Stress–strain curve of Steel Fiber Reinforced High Strength Concrete under Monotonic and Repeated Loads. J. Build. Struct. 2017, 38, 135–143. [Google Scholar] [CrossRef]
- Serafini, R.; Dantas, S.R.; Agra, R.R.; de la Fuente, A.; Berto, A.F.; de Figueiredo, A.D. Design-oriented assessment of the residual post-fire bearing capacity of precast fiber reinforced concrete tunnel linings. Fire Saf. J. 2022, 127, 103503. [Google Scholar] [CrossRef]
- Burgers, R.; Walraven, J.; Plizzari, G.; Tiberti, G. Structural behaviour of SFRC tunnel segments during TBM operations. In Proceedings of the World Tunnel Congress ITA-AITES, Citeseer, Prague, Czech Republic, 5–10 May 2007; pp. 1461–1467. [Google Scholar]
- Neu, G.E.; Edler, P.; Freitag, S.; Gudžulić, V.; Meschke, G. Reliability based optimization of steel-fiber segmental tunnel linings subjected to thrust jack loadings. Eng. Struct. 2022, 254, 113752. [Google Scholar] [CrossRef]
- Conforti, A.; Tiberti, G.; Plizzari, G.A. Splitting and crushing failure in FRC elements subjected to a high concentrated load. Compos. Part B Eng. 2016, 105, 82–92. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y. Experimental study on performance of steel fiber reinforced self-compacting concrete (SCC) tunnel lining. J. Build. Mater. 2011, 14, 10–13. [Google Scholar] [CrossRef]
- Greenough, T.; Nehdi, M. Shear behavior of fiber-reinforced self-consolidating concrete slender beams. ACI Mater. J. 2008, 105, 468. [Google Scholar]
Engineering Project | Time | Tunnel Length (m) | Tunnel Diameter (m) | Segment Size (Thick (mm)/Length (m)/Wide (m)) | Compressive Strength | Steel Fiber Model | Steel Fiber Content (kg/m3) |
---|---|---|---|---|---|---|---|
Subway Extension: Contract 34 Germany | 1990–1996 | 2400 | 7.27 | 400/3/- | C40/50 MPa | ZC 50/60 | 60 |
Metro Subway Tunnel Italy | 1992 | 3000 | 6.4 | 300/-/- | - | ZC 50/50 | 40 |
Cigar Lake Uranium Mine Canada | 1998&2005 | 800 | 4.2 | 300/2.4/- | 120 MPa | RC 80/60 BN | 50 |
Water Tunnel Ecuador | 2000 | 5500 | 4 | 200/3/- | C40/50 MPa | RC 80/60 BN | 30 |
CTRL Railroad Tunnel United Kingdom | 2000–2004 | 25000 | 6.84&8.15 | 350/2.3/2.7 | 60 MPa | RC 80/60 BN | 30 |
Oensberg Rail Tunnel (Hydro) Switzerland | 2000 | 340 | 12.04 | 300/-/1.7 | - | RC 80/60 BN | 60 |
Heathrow Picadilly Extension United Kingdom | 2006 | 3200 | 4.5 | 150/-/1 | 80 MPa | RC 80/60 BP | 30 |
Brightwater Sewer Tunnel-East USA | 2006–2009 | 4282 | 5.87 | 254/2.1/1.5 | C40/50 MPa | RC 80/60 BN | 35 |
Airport Link /Northern Busway/ARU-Brisbane Australia | 2010 | 6700 | 12.5 | 400/-/- | - | RC 80/60 BN | 35 |
Sydney Desal Tunnel Australia | 2009 | 4000 | 3.2 | 250/2.1/1.5 | S40(75 MPa) | RC 80/60 BN | 35 |
Singapore MRT Circle Line Phase 6 | 2021 | 4500 | 6.5 | 300/1.5/- | 60 MPa | RC 80/60 BN | 35 |
Number | Steel Fiber Shape | Steel Fiber Size | Steel Fiber Content (%) | Mechanical Property | |||||
---|---|---|---|---|---|---|---|---|---|
l/(mm) | d/(mm) | l/d | CS | STS | FS | TS | |||
1 | Hooked-end [42] | 50 | 1.01 | 48 | 0.19, 0.38, 0.76 | √ | √ | √ | |
2 | Hooked-end [43] | 35/45 | 0.8/0.5 | 43.75/90 | 1, 1.5, 2, 2.5 | √ | √ | √ | |
3 | Short steel fibers [44] | 25 | 0.3 | 83.33 | 0.25, 0.5, 1 | √ | √ | ||
4 | Hooked-end [45] | 60 | 0.9 | 66.7 | 0.33 | √ | √ | ||
5 | Hooked-end [46] | 60 | 0.75/0.71 | 80/85 | 0.33, 0.67, 1 | √ | √ | √ | √ |
6 | Hooked-end [39] | 60 | 0.75 | 80 | 0.3, 0.6, 0.9, 1.2 | √ | √ | √ | |
7 | Hooked-end [47] | 30 | 0.69 | 44 | 1.2, 2.5, 4 | √ | √ | √ | |
8 | Hooked-end [48] | 25/50 | 0.5 | 50/100 | 0.5, 0.75, 1, 1.25 | √ | √ | ||
9 | Hooked-end [49] | 35 | 0.55 | 64 | 0.5, 1.5, 2.5 | √ | |||
10 | Straight shape [50] | 30 | 0.5 | 60 | 0.8, 1.2, 1.6, 2 | √ | |||
11 | Hooked-end [51] | 33 | 0.55 | 60 | 0.2, 0.375, 0.55, 0.75 | √ | √ | ||
12 | Hooked-end [52] | 30 | 0.52 | 57.69 | 0.6, 0.9, 1.2 | √ | |||
13 | Hooked-end [53] | 50 | 0.75/0.71 | 67 | √ | ||||
14 | Hooked-end [54] | 30/40/50/60 | 0.75 | 40/53/67/80 | √ | √ | √ | ||
15 | Hooked-end [55] | 35 | 0.55 | 64 | 0.5, 1, 1.5 | √ | |||
16 | Wave-shape [56] | 35 | √ | √ | √ | ||||
17 | Hooked-end [57] | 35/60 | 0.55/0.75 | 64/80 | 0.5, 1, 1.5 | √ | √ | ||
18 | Hooked-end [58] | 16 | 0.4 | 40 | 1, 2, 3 | √ | √ | ||
19 | Hooked-end [59] | 33/60 | 0.75 | 44/80 | √ | √ | √ | ||
20 | Hooked-end [60] | 35 | 0.55 | 64 | 0.5 | √ | |||
21 | Hooked-end [61] | 30/35 | 0.3/0.6 | 100/58 | 0.5, 1, 1.5 | √ | √ | √ | |
22 | Hooked-end [62] | 25 | 0.5 | 50 | 1.2.3.4.5 | √ | √ | √ | |
23 | Hooked-end [63] | 30 | 0.55 | 55 | 0.5, 1, 1.5 | √ | √ | √ | |
24 | Hooked-end [64] | 30 | 0.52 | 58 | 0.6, 1.2, 1.8 | √ | |||
25 | Hooked-end [35] | 40/50/60 | 0.62/0.62/0.75 | 65/80/80 | 0.5, 1, 1.5 | √ | √ |
Application Field | Application Proportion (%) | Typical Projects | Development Trend |
---|---|---|---|
Tunnel Engineering | 40 | Shanghai Metro, UK CTRL Railway Tunnel | Increasing adoption, now the primary field |
Building Engineering | 30 | High-rise building components (e.g., Beijing-Tianjin New Airport) | Significant growth in high-rise applications |
Road and Bridge Engineering | 20 | Highway bridge decks (e.g., Sydney Harbour Bridge), airport runway pavements | Driven by demand for durability and crack resistance |
Water and Port Engineering | 5 | Freshwater hydraulic projects (e.g., Three Gorges Dam), port and dock structures | Suitable for high-impact and anti-corrosion scenarios |
Other Fields | 5 | Specialized fields (nuclear power plant structures, military engineering) | Stable demand with significant potential for innovation |
Reinforcement Method | Durability | Construction Period | Crack Resistance | Ductility and Plasticity | Life Span |
---|---|---|---|---|---|
Paste fiber cloth | Strong corrosion resistance | Convenient construction | Better improvement of crack resistance performance | Can significantly improve | There are certain limitations |
Bonding steel plate | Epoxy resin adhesive poses a risk of aging, and exposed chemical anchor bolts and steel plates require rust prevention treatment | Steel plate reinforcement requires processes such as cutting, welding, and fixation, with a relatively long construction cycle | Can significantly improve | Can be improved to a certain extent | Short |
SFRC | Not affected by factors such as humidity, corrosion, and ultraviolet radiation | Convenient construction | It can form a three-dimensional dispersed network structure to prevent the expansion of cracks | Good ductility and plasticity | Effectively extending the service life of tunnel segments |
Segment Failure Stage | Microscopic View of Failure | Segment Failure State |
---|---|---|
Crack failure has not started | Crack propagation has not started | |
Formation of crack tip | Cracks begin to form and slowly and steadily expand, with cracks extending up to 1/4 width in the longitudinal direction of the pipe segment | |
Crack propagation | The crack continues to expand to the fiber-reinforced area, and is obstructed by fibers and expands slowly or changes direction around the fibers; Cracks can extend up to 1/2 width in the longitudinal direction of the pipe segment | |
Increased crack propagation | The cracks slowly expand due to the fiber’s anti cracking effect and exhibit a “plastic” characteristic; Cracks can extend up to 3/4 width in the longitudinal direction of the pipe segment | |
Crack propagation through | The crack propagates through the fiber-reinforced zone, with decreasing resistance to expansion and further increasing in length, until it fully penetrates longitudinally through the segment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Xie, Y.; Ding, F.; Sun, D.; Liu, H. Steel Fiber Reinforced Concrete: A Systematic Review of Usage in Shield Tunnel Segment. Sustainability 2024, 16, 10832. https://doi.org/10.3390/su162410832
Ren X, Xie Y, Ding F, Sun D, Liu H. Steel Fiber Reinforced Concrete: A Systematic Review of Usage in Shield Tunnel Segment. Sustainability. 2024; 16(24):10832. https://doi.org/10.3390/su162410832
Chicago/Turabian StyleRen, Xianda, Yongli Xie, Fan Ding, Dazhao Sun, and Haiyang Liu. 2024. "Steel Fiber Reinforced Concrete: A Systematic Review of Usage in Shield Tunnel Segment" Sustainability 16, no. 24: 10832. https://doi.org/10.3390/su162410832
APA StyleRen, X., Xie, Y., Ding, F., Sun, D., & Liu, H. (2024). Steel Fiber Reinforced Concrete: A Systematic Review of Usage in Shield Tunnel Segment. Sustainability, 16(24), 10832. https://doi.org/10.3390/su162410832