Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review
Abstract
:1. Introduction
1.1. Sources of TDW
1.2. Characteristics and Impacts of TDW
1.2.1. Dye
1.2.2. Heavy Metal
1.2.3. Surfactant
1.3. Major Methods for TDW Treatment
1.3.1. Physical Treatment
Removal Mechanism | Dye | Material | Dye Concentration | Decolorization | References |
---|---|---|---|---|---|
Adsorption | Congo Red | ZnO@Ze composite particles | 25–500 mg/L | 90% | [73] |
Adsorption | Methylene Blue | Montmorillonites (Mt) with graphene oxide (GO) (Mt/GO) | 750 mg/L | 94.3% | [74] |
Ion exchange | Methyl Violet 2B | Sulfonic acid and phosphate groups | 30 mg/L | 93% | [75] |
Ion exchange | Acid Orange 7 | Lewatit MonoPlus MP 500 resin | 10 mg/L | 87% | [76] |
Membrane filtration | Rhodamine B | Polyether sulfone | 5 mg/L | 98.9% | [77] |
Membrane filtration | Congo Red | Polypropylene | 50 mg/L | 99.5% | [70] |
1.3.2. Chemical Treatments
Removal Mechanism | Dye | Treatment Conditions | Decolorization | References |
---|---|---|---|---|
Advanced oxidation processes | Direct Blue 86 | Dye concentration 100 mg/L, pH 11, reaction time 35 min | 98% | [84] |
Advanced oxidation processes | Alizarin Yellow R | Dye concentration 100 mg/L, reaction time 2 h | 94.8% | [85] |
Electrochemical | Procion Red MX-5B | Initial dye concentration 50 mg/L, pH 7, flow rate 300 L/h, current density 10 mA/cm2 | 85% | [86] |
Electrochemical | Reactive Red 120 | Initial dye concentration 200 mg/L, NaCl = 7914.29 mg/L, current intensity = 0.12 A, reaction time = 30 min | 99.4% | [87] |
Photocatalysis | Methylene Blue (MB) | Dye concentration 20 mg/L, UV light intensity 4 W, liquid flow rate 2 mL/min, wavelength 254 nm | 99% | [88] |
Photocatalysis | Congo Red (CR) | UV/NO3 photolysis using low-pressure UV (254 nm) | 81.9% | [89] |
1.3.3. Biological Treatments
2. Biological Methods for TDW Treatment
2.1. Bacterial Biodegradation
2.2. Fungal Biodegradation
2.3. Algal Biodegradation
3. Research and Development Needs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiménez-Delgado, G.; Quintero-Ariza, I.; Romero-Gómez, J.; Montero-Bula, C.; Rojas-Castro, E.; Santos, G.; Sá, J.C.; Londoño-Lara, L.; Hernández-Palma, H.; Campis-Freyle, L. Implementation of Lean Six Sigma to Improve the Quality and Productivity in Textile Sector: A Case Study; Springer: Berlin/Heidelberg, Germany, 2023; pp. 395–412. [Google Scholar]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2011, 4, 22–26. [Google Scholar] [CrossRef]
- Liang, X.; Ning, X.-a.; Chen, G.; Lin, M.; Liu, J.; Wang, Y. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotoxicol. Environ. Saf. 2013, 98, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Ai, F.; Jin, L.; Zhu, N.; Meng, X.-Z. Identification of industrial sewage sludge based on heavy metal profiles: A case study of printing and dyeing industry. Environ. Sci. Pollut. Res. 2022, 29, 12377–12386. [Google Scholar] [CrossRef]
- Liu, Z.; Khan, T.A.; Islam, M.A.; Tabrez, U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour. Technol. 2022, 354, 127168. [Google Scholar] [CrossRef]
- Aarab, N.; Hsini, A.; Essekri, A.; Laabd, M.; Lakhmiri, R.; Albourine, A. Removal of an emerging pharmaceutical pollutant (metronidazole) using PPY-PANi copolymer: Kinetics, equilibrium and DFT identification of adsorption mechanism. Groundw. Sustain. Dev. 2020, 11, 100416. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Rangabhashiyam, S.; Dulta, K.; Umeh, C.T.; Iwuozor, K.O.; Aniagor, C.O.; Eshiemogie, S.O.; Iwuchukwu, F.U.; Igwegbe, C.A. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem. Eng. Res. Des. 2022, 184, 419–456. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Snari, R.M.; Alamrani, N.A.; Aljuhani, E.; Bayazeed, A.; Aldawsari, A.M.; El-Metwaly, N.M. Synthesis and adsorption properties of fibrous-like aerogel from acylhydrazone polyviologen: Efficient removal of reactive dyes from wastewater. J. Mater. Res. Technol. 2022, 18, 1822–1833. [Google Scholar] [CrossRef]
- Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Peighambardoust, S.J.; Hemmati, S.; Ramavandi, B. Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater. Mater. Chem. Phys. 2022, 284, 126088. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Emenike, E.C.; Igwegbe, C.A.; Adeniyi, A.G. Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? J. Chem. Lett. 2021, 2, 188–198. [Google Scholar]
- Ali, J.; Bakhsh, E.M.; Hussain, N.; Bilal, M.; Akhtar, K.; Fagieh, T.M.; Danish, E.Y.; Asiri, A.M.; Su, X.; Khan, S.B. A new biosource for synthesis of activated carbon and its potential use for removal of methylene blue and eriochrome black T from aqueous solutions. Ind. Crops Prod. 2022, 179, 114676. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Ogunfowora, L.A.; Adeniyi, A.G.; Igwegbe, C.A. An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media. J. Environ. Chem. Eng. 2021, 9, 105658. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Qiang, X.; Gu, W.; Ma, Z.; Wang, G. An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes. J. Water Process Eng. 2023, 55, 104242. [Google Scholar] [CrossRef]
- Pan, Z.; Song, M.; Zeng, B.; Shen, L.; Zhao, L.; Lin, H. Novel cetyltrimethylammonium bromide modified mixed adsorbent for efficient treatment of dyeing and printing wastewater. Process Saf. Environ. Prot. 2023, 176, 560–567. [Google Scholar] [CrossRef]
- Keshmiri-Naqab, R.; Taghavijeloudar, M. Could organoclay be used as a promising natural adsorbent for efficient and cost-effective dye wastewater treatment? J. Environ. Manag. 2023, 342, 118322. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, T.; Mei, Y.; Pan, B. Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP). Chemosphere 2018, 201, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Solayman, H.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Lu, X.; Liu, L.; Yang, B.; Chen, J. Reuse of printing and dyeing wastewater in processess assessed by pilot-scale test using combined biological process and sub-filter technology. J. Clean. Prod. 2009, 17, 111–114. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Guan, J.; Ding, Y.; He, Y.; Zhang, X.; Shukurov, N.; Romanholo Ferreira, L.F.; Liu, J.; Zhu, M. Biodecolorization and Ecotoxicity Abatement of Disperse Dye-Production Wastewater Treatment with Pycnoporus Laccase. Int. J. Environ. Res. Public Health 2022, 19, 7983. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Bang, D. Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles. Microorganisms 2023, 11, 1273. [Google Scholar] [CrossRef]
- da Rosa, A.L.D.; Carissimi, E.; Dotto, G.L.; Sander, H.; Feris, L.A. Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J. Clean. Prod. 2018, 198, 1302–1310. [Google Scholar] [CrossRef]
- Hasan, M.M.; Shenashen, M.; Hasan, M.N.; Znad, H.; Salman, M.S.; Awual, M.R. Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J. Mol. Liq. 2021, 323, 114587. [Google Scholar] [CrossRef]
- Yaseen, D.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Varadarajan, G.; Venkatachalam, P. Sustainable textile dyeing processes. Environ. Chem. Lett. 2016, 14, 113–122. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Singh, P.; Mishra, P.K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environ. Qual. Manag. 2018, 27, 31–41. [Google Scholar] [CrossRef]
- Chatha, S.A.S.; Asgher, M.; Iqbal, H.M. Enzyme-based solutions for textile processing and dye contaminant biodegradation—A review. Environ. Sci. Pollut. Res. 2017, 24, 14005–14018. [Google Scholar] [CrossRef]
- Sarayu, K.; Sandhya, S. Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 2010, 160, 1241–1253. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeyanju, C.A.; Ogunniyi, S.; Adeniyi, A.G.; Abdulkareem, S.A. An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites. Compos. Interfaces 2021, 28, 925–960. [Google Scholar] [CrossRef]
- Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V.V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 2014, 5, 1–19. [Google Scholar]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Eid, B.M.; Ibrahim, N.A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J. Clean. Prod. 2021, 284, 124701. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of the People’s Republic of China. China Ecological and Environmental Statistics Yearbook. Available online: https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202312/W020231229339540004481.pdf (accessed on 8 December 2024).
- Manu, B.; Chaudhari, S. Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 2002, 82, 225–231. [Google Scholar] [CrossRef]
- Hong, X.; Jiao, F.; Liu, W. Review on dyeing wastewater treatment technology. J. Cent. South Univ. 2023, 54, 1219–1229. [Google Scholar]
- Feng, L.; Liu, J.; Guo, Z.; Pan, T.; Wu, J.; Li, X.; Liu, B.; Zheng, H. Reactive black 5 dyeing wastewater treatment by electrolysis-Ce (IV) electrochemical oxidation technology: Influencing factors, synergy and enhancement mechanisms. Sep. Purif. Technol. 2022, 285, 120314. [Google Scholar] [CrossRef]
- Mahmood, S.; Khalid, A.; Arshad, M.; Mahmood, T.; Crowley, D.E. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit. Rev. Biotechnol. 2016, 36, 639–651. [Google Scholar] [CrossRef]
- Routoula, E.; Patwardhan, S.V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol. 2020, 54, 647–664. [Google Scholar] [CrossRef]
- Bhuiyan, M.R.; Rahman, M.M.; Shaid, A.; Bashar, M.; Khan, M.A. Scope of reusing and recycling the textile wastewater after treatment with gamma radiation. J. Clean. Prod. 2016, 112, 3063–3071. [Google Scholar] [CrossRef]
- Yukseler, H.; Uzal, N.; Sahinkaya, E.; Kitis, M.; Dilek, F.B.; Yetis, U. Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. J. Environ. Manag. 2017, 203, 1118–1125. [Google Scholar] [CrossRef]
- Jorge, A.M.; Athira, K.; Alves, M.B.; Gardas, R.L.; Pereira, J.F. Textile dyes effluents: A current scenario and the use of aqueous biphasic systems for the recovery of dyes. J. Water Process Eng. 2023, 55, 104125. [Google Scholar] [CrossRef]
- Moyo, S.; Makhanya, B.P.; Zwane, P.E. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon 2022, 8, e09632. [Google Scholar] [CrossRef] [PubMed]
- Vyavahare, G.; Jadhav, P.; Jadhav, J.; Patil, R.; Aware, C.; Patil, D.; Gophane, A.; Yang, Y.-H.; Gurav, R. Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J. Clean. Prod. 2019, 207, 296–305. [Google Scholar] [CrossRef]
- Abe, F.R.; Soares, A.M.; de Oliveira, D.P.; Gravato, C. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environ. Pollut. 2018, 235, 255–262. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Mekuyie, M. Heavy metals concentration in effluents of textile industry, Tikur Wuha River and milk of cows watering on this water source, Hawassa, Southern Ethiopia. J. Nat. Sci. Res. 2014, 4, 47–56. [Google Scholar]
- El-Kassas, H.Y.; Mohamed, L.A. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt. J. Aquat. Res. 2014, 40, 301–308. [Google Scholar] [CrossRef]
- Ma, Z.; Chang, H.; Liang, Y.; Meng, Y.; Ren, L.; Liang, H. Research progress and trends on state-of-the-art membrane technologies in textile wastewater treatment. Sep. Purif. Technol. 2023, 333, 125853. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Chebeir, M.; Liu, H. Kinetics and mechanisms of Cr (VI) formation via the oxidation of Cr (III) solid phases by chlorine in drinking water. Environ. Sci. Technol. 2016, 50, 701–710. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Qian, W.; Zhang, Z.-W.; Jin, J.-C.; Chen, Z.-L.; Guo, P.-R.; Dong, F.-X.; Yan, L.; Kong, L.-J.; Chu, W. Removals of Cr (VI) and Cd (II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: Coexisting effect, products and mechanism. Chem. Eng. J. 2020, 397, 125382. [Google Scholar] [CrossRef]
- Huang, Z.; Dai, X.; Huang, Z.; Wang, T.; Cui, L.; Ye, J.; Wu, P. Simultaneous and efficient photocatalytic reduction of Cr (VI) and oxidation of trace sulfamethoxazole under LED light by rGO@ Cu2O/BiVO4 pn heterojunction composite. Chemosphere 2019, 221, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tian, Q.; Hou, L.; Rao, R.; Yao, C.; Zhu, H. The self-boosting ultrafast removal of Cr (VI) and organic dye in textile wastewater through sulfite-induced redox processes. Environ. Pollut. 2024, 355, 124182. [Google Scholar] [CrossRef]
- Dunnick, K.M.; Morris, A.M.; Badding, M.A.; Barger, M.; Stefaniak, A.B.; Sabolsky, E.M.; Leonard, S.S. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats. Nanotoxicology 2016, 10, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Jena, G.; Dutta, K.; Daverey, A. Surfactants in water and wastewater (greywater): Environmental toxicity and treatment options. Chemosphere 2023, 341, 140082. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, A.; Federici, S.; Borgese, L.; Bergese, P.; Ferroni, M.; Depero, L.E.; Bontempi, E. Embodied energy as key parameter for sustainable materials selection: The case of reusing coal fly ash for removing anionic surfactants. J. Clean. Prod. 2017, 141, 230–236. [Google Scholar] [CrossRef]
- Effendi, I.; Nedi, S.; Pakpahan, R. Detergent Disposal into Our Environmentand Its Impact on Marine Microbes. IOP Conf. Ser. Earth Environ. Sci. 2017, 97, 012030. [Google Scholar] [CrossRef]
- Bal, G.; Thakur, A. Distinct approaches of removal of dyes from wastewater: A review. Mater. Today Proc. 2022, 50, 1575–1579. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit. Process Biochem. 2002, 37, 973–981. [Google Scholar] [CrossRef]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.-S.; Jeon, B.-H.; Park, Y.-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Chieng, H.I.; Lim, L.B.; Priyantha, N. Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: Adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination Water Treat. 2015, 55, 664–677. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf. A Physicochem. Eng. Asp. 2005, 264, 17–28. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Samsami, S.; Mohamadizaniani, M.; Sarrafzadeh, M.-H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 2020, 143, 138–163. [Google Scholar] [CrossRef]
- Marin, N.M.; Pascu, L.F.; Demba, A.; Nita-Lazar, M.; Badea, I.A.; Aboul-Enein, H. Removal of the Acid Orange 10 by ion exchange and microbiological methods. Int. J. Environ. Sci. Technol. 2019, 16, 6357–6366. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Kunduzcu, G.; Arica, M.Y. Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes. Polym. Eng. Sci. 2020, 60, 192–201. [Google Scholar] [CrossRef]
- Shao, H.; Qi, Y.; Liang, S.; Qin, S.; Yu, J. Polypropylene composite hollow fiber ultrafiltration membranes with an acrylic hydrogel surface by in situ ultrasonic wave-assisted polymerization for dye removal. J. Appl. Polym. Sci. 2019, 136, 47099. [Google Scholar] [CrossRef]
- Fradj, A.B.; Boubakri, A.; Hafiane, A.; Hamouda, S.B. Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration. Results Chem. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Ağtaş, M.; Yılmaz, Ö.; Dilaver, M.; Alp, K.; Koyuncu, I. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J. Clean. Prod. 2020, 256, 120359. [Google Scholar] [CrossRef]
- Madan, S.; Shaw, R.; Tiwari, S.; Tiwari, S.K. Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl. Surf. Sci. 2019, 487, 907–917. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, W.; He, S.; Yu, S.; Chen, Y.; Lu, L.; Shu, Z.; Cui, H.; Zhang, Y.; Jin, H. Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Appl. Clay Sci. 2019, 168, 304–311. [Google Scholar] [CrossRef]
- Wu, J.-S.; Liu, C.-H.; Chu, K.H.; Suen, S.-Y. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 2008, 309, 239–245. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Anion exchange resins as effective sorbents for acidic dye removal from aqueous solutions and wastewaters. Solvent Extr. Ion Exch. 2012, 30, 507–523. [Google Scholar] [CrossRef]
- Shi, P.; Hu, X.; Wang, Y.; Duan, M.; Fang, S.; Chen, W. A PEG-tannic acid decorated microfiltration membrane for the fast removal of Rhodamine B from water. Sep. Purif. Technol. 2018, 207, 443–450. [Google Scholar] [CrossRef]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Bio/Technol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Llorca, M.; Pérez, J.S.; Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. J. Hazard. Mater. 2017, 323, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.P.; Argyriou, R.; Economou, C.N.; Charalampous, N.; Dailianis, S.; Tatoulis, T.I.; Tekerlekopoulou, A.G.; Vayenas, D.V. Treatment of printing ink wastewater using electrocoagulation. J. Environ. Manag. 2019, 237, 442–448. [Google Scholar] [CrossRef]
- Morsi, M.; Al-Sarawy, A.; El-Dein, W.S. Electrochemical degradation of some organic dyes by electrochemical oxidation on a Pb/PbO2 electrode. Desalination Water Treat. 2011, 26, 301–308. [Google Scholar] [CrossRef]
- Elahmadi, M.F.; Bensalah, N.; Gadri, A. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes. J. Hazard. Mater. 2009, 168, 1163–1169. [Google Scholar] [CrossRef]
- Slokar, Y.M.; Le Marechal, A.M. Methods of decoloration of textile wastewaters. Dye. Pigment. 1998, 37, 335–356. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A.; Madkour, F.F. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egypt. J. Aquat. Res. 2017, 43, 11–19. [Google Scholar] [CrossRef]
- Cui, D.; Guo, Y.-Q.; Cheng, H.-Y.; Liang, B.; Kong, F.-Y.; Lee, H.-S.; Wang, A.-J. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. J. Hazard. Mater. 2012, 239, 257–264. [Google Scholar] [CrossRef]
- Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M.A.; Panizza, M. Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim. Acta 2018, 263, 1–7. [Google Scholar] [CrossRef]
- Najafpoor, A.A.; Davoudi, M.; Rahmanpour Salmani, E. Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator. J. Environ. Health Sci. Eng. 2017, 15, 11. [Google Scholar] [CrossRef]
- Sima, J.; Hasal, P. Photocatalytic degradation of textile dyes in a TiO2/UV system. Chem. Eng. Trans. 2013, 32, 79–84. [Google Scholar]
- Wang, S.; Luo, C.; Tan, F.; Cheng, X.; Ma, Q.; Wu, D.; Li, P.; Zhang, F.; Ma, J. Degradation of Congo red by UV photolysis of nitrate: Kinetics and degradation mechanism. Sep. Purif. Technol. 2021, 262, 118276. [Google Scholar] [CrossRef]
- Popli, S.; Patel, U.D. Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: A review. Int. J. Environ. Sci. Technol. 2015, 12, 405–420. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Albuquerque, C.D.C.; Salgueiro, A.A.; Sarubbo, L.A. Color removal from industrial dyeing and laundry effluent by microbial consortium and coagulant agents. Process Saf. Environ. Prot. 2018, 118, 203–210. [Google Scholar] [CrossRef]
- McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.; Marchant, R.; Smyth, W. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001, 56, 81–87. [Google Scholar] [CrossRef]
- Elbanna, K.; Hassan, G.; Khider, M.; Mandour, R. Safe Biodegradation of Textile Azo Dyes by Newly Isolated Lactic Acid Bacteria and Detection of Plasmids Associated with Degradation. J. Bioremediation Biodegrad. 2010, 1, 112. [Google Scholar]
- Vikas, K.; Preeti, P.; Sudip Kumar, S.; Sangeeta, R. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Water Environ. Res. 2024, 96, e10959. [Google Scholar]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Schoeberl, P.; Brik, M.; Bertoni, M.; Braun, R.; Fuchs, W. Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater. Sep. Purif. Technol. 2005, 44, 61–68. [Google Scholar] [CrossRef]
- Hasan, M.; Al Biruni, M.T.; Azad, S.; Ahmed, T. Adsorptive removal of dye from textile wastewater employing Moringa oleifera leaves biochar as a natural biosorbent. Biomass Convers. Biorefinery 2024, 14, 11075–11091. [Google Scholar] [CrossRef]
- Kumar, M.R.; King, P.; Wolde, Z.; Mulu, M. Application of optimization response surface for the biosorption of crystal violet dye from textile wastewater onto Clerodendrum fragrans leaves. Biomass Convers. Biorefinery 2023, 13, 17133–17148. [Google Scholar] [CrossRef]
- Muhamad, N.; Sinchai, P.S.; Tansom, U. Banana peel as bioremediation agent in textile dyes decolorization for wastewater management. Biochem. Syst. Ecol. 2023, 106, 104582. [Google Scholar] [CrossRef]
- Ramzan, U.; Shakoori, F.R.; Zahid, M.T.; Majeed, W.; Zahra, I.; Abbas, S.Z.; Hedfi, A.; Hassan, S.; Shakoori, A.R.; Mutery, A.A. Biodegradation and decolorization of textile azo dyes by Paramecium caudatum isolated from industrial wastewater. Water 2022, 14, 3553. [Google Scholar] [CrossRef]
- Valdez-Vazquez, I.; Robledo-Rizo, J.G.; Muñoz-Páez, K.M.; Pérez-Rangel, M.; de la Luz Ruiz-Aguilar, G.M. Simultaneous hydrogen production and decolorization of denim textile wastewater: Kinetics of decolorizing of indigo dye by bacterial and fungal strains. Braz. J. Microbiol. 2020, 51, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, E.; Manage, P. Decolourisation and detoxification of CI Direct Blue 201 textile dye by two fungal strains of genus Aspergillus. J. Natl. Sci. Found. Sri Lanka 2020, 106, 104582. [Google Scholar] [CrossRef]
- Al-Fawwaz, A.T.; Abdullah, M. Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. Int. J. Environ. Sci. Dev. 2016, 7, 95. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, Q.; Xu, H.; Chen, H.; Xue, G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. Sci. Total Environ. 2024, 907, 167975. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.G.; Jaikumar, V. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Shafqat, M.; Khalid, A.; Mahmood, T.; Siddique, M.T.; Han, J.I.; Habteselassie, M.Y. Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. J. Chem. Technol. Biotechnol. 2017, 92, 2760–2768. [Google Scholar] [CrossRef]
- Solis-Oba, M.M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Zhuang, M.; Sanganyado, E.; Zhang, X.; Xu, L.; Zhu, J.; Liu, W.; Song, H. Azo dye degrading bacteria tolerant to extreme conditions inhabit nearshore ecosystems: Optimization and degradation pathways. J. Environ. Manag. 2020, 261, 110222. [Google Scholar] [CrossRef]
- Cerboneschi, M.; Corsi, M.; Bianchini, R.; Bonanni, M.; Tegli, S. Decolorization of acid and basic dyes: Understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Appl. Microbiol. Biotechnol. 2015, 99, 8235–8245. [Google Scholar] [CrossRef]
- Pan, H.; Xu, X.; Wen, Z.; Kang, Y.; Wang, X.; Ren, Y.; Huang, D. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963. Bioengineered 2017, 8, 630–641. [Google Scholar] [CrossRef]
- Velayutham, K.; Madhava, A.K.; Pushparaj, M.; Thanarasu, A.; Devaraj, T.; Periyasamy, K.; Subramanian, S. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ. Technol. 2018, 39, 2900–2907. [Google Scholar] [CrossRef]
- Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination 2010, 260, 137–146. [Google Scholar] [CrossRef]
- Cheriaa, J.; Khaireddine, M.; Rouabhia, M.; Bakhrouf, A. Removal of triphenylmethane dyes by bacterial consortium. Sci. World J. 2012, 2012, 512454. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res. 2018, 25, 4446–4458. [Google Scholar] [CrossRef] [PubMed]
- Meerbergen, K.; Willems, K.A.; Dewil, R.; Van Impe, J.; Appels, L.; Lievens, B. Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. J. Biosci. Bioeng. 2018, 125, 448–456. [Google Scholar] [CrossRef] [PubMed]
- El Bouraie, M.; El Din, W.S. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 2016, 26, 209–216. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kumar, A. Optimization and kinetic studies on decolorization of Vat Green XBN by a newly isolated bacterial strain Proteus mirabilis PMS. J. Water Process Eng. 2020, 37, 101529. [Google Scholar] [CrossRef]
- Ewida, A.Y.; El-Sesy, M.E.; Abou Zeid, A. Complete degradation of azo dye acid red 337 by Bacillus megaterium KY848339. 1 isolated from textile wastewater. Water Sci. 2019, 33, 154–161. [Google Scholar] [CrossRef]
- Unnikrishnan, S.; Khan, M.H.; Ramalingam, K. Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Sci. Eng. 2018, 11, 265–275. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Joshiba, G.J. Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technol. Environ. Policy 2021, 23, 173–181. [Google Scholar] [CrossRef]
- Mohamad Hanapi, N.H.; Sayid Abdullah, S.H.Y.; Khairuddin, Z.; Mahmod, N.H.; Monajemi, H.; Ismail, A.; Lananan, F.; Suhaili, Z.; Endut, A.; Juahir, H. COD removal and colour degradation of textile dye effluents by locally isolated microbes. Int. J. Environ. Anal. Chem. 2022, 102, 7835–7850. [Google Scholar] [CrossRef]
- Hossen, M.Z.; Hussain, M.E.; Hakim, A.; Islam, K.; Uddin, M.N.; Azad, A.K. Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents. Heliyon 2019, 5, e02068. [Google Scholar] [CrossRef]
- Barathi, S.; Aruljothi, K.; Karthik, C.; Padikasan, I.A.; Ashokkumar, V. Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere 2022, 286, 131914. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Garg, A.; Mukherji, S. Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. J. Environ. Manag. 2020, 263, 110383. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. [Google Scholar] [CrossRef]
- Sivasubramani, K.; Ganesh, P.; Sivagurunathan, P.; Kolanjinathan, K.; Raman, H. Biodegradation potential of an estuarine bacterium Bacillus megaterium PNS 15 against an azo dye, reactive Blue 194. J. Appl. Biol. Biotechnol. 2021, 9, 126–132. [Google Scholar]
- Falade, A.; Mabinya, L.; Okoh, A.; Nwodo, U. Peroxidases Produced by New Ligninolytic Bacillus strains Isolated from Marsh and Grassland Decolourized Anthraquinone and Azo Dyes. Pol. J. Environ. Stud. 2019, 28, 3163–3172. [Google Scholar] [CrossRef]
- Legerská, B.; Chmelová, D.; Ondrejovič, M. Degradation of synthetic dyes by laccases–a mini-review. Nova Biotechnol. Chim. 2016, 15, 90–106. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Elshikh, M.S.; Al Khulaifi, M.M.; Hadibarata, T.; Yuniarto, A.; Syafiuddin, A. Biotransformation and Detoxification of Antraquione Dye Green 3 using halophilic Hortaea sp. Int. Biodeterior. Biodegrad. 2019, 140, 72–77. [Google Scholar] [CrossRef]
- Adenan, N.H.; Lim, Y.Y.; Ting, A.S.Y. Discovering decolorization potential of triphenylmethane dyes by actinobacteria from soil. Water Air Soil Pollut. 2020, 231, 560. [Google Scholar] [CrossRef]
- Jang, M.-S.; Lee, Y.-M.; Kim, C.-H.; Lee, J.-H.; Kang, D.-W.; Kim, S.-J.; Lee, Y.-C. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: Purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Appl. Environ. Microbiol. 2005, 71, 7955–7960. [Google Scholar] [CrossRef]
- Parshetti, G.; Parshetti, S.; Telke, A.; Kalyani, D.; Doong, R.; Govindwar, S.P. Biodegradation of crystal violet by Agrobacterium radiobacter. J. Environ. Sci. 2011, 23, 1384–1393. [Google Scholar] [CrossRef]
- Thiruppathi, K.; Rangasamy, K.; Ramasamy, M.; Muthu, D. Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environ. Chall. 2021, 4, 100078. [Google Scholar] [CrossRef]
- Dissanayake, M.; Liyanage, N.; Herath, C.; Rathnayake, S.; Fernando, E.Y. Mineralization of persistent azo dye pollutants by a microaerophilic tropical lake sediment mixed bacterial consortium. Environ. Adv. 2021, 3, 100038. [Google Scholar] [CrossRef]
- Das, A.; Mishra, S. Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study. J. Environ. Chem. Eng. 2017, 5, 612–627. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kumar, A. Biodegradation of Indanthrene Blue RS dye in immobilized continuous upflow packed bed bioreactor using corncob biochar. Sci. Rep. 2021, 11, 13390. [Google Scholar] [CrossRef]
- Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Gupta, V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2022, 343, 126154. [Google Scholar] [CrossRef]
- Herath, I.S.; Udayanga, D.; Jayasanka, D.; Hewawasam, C. Textile dye decolorization by white rot fungi–A review. Bioresour. Technol. Rep. 2024, 25, 101687. [Google Scholar] [CrossRef]
- Heinfling, A.; Martínez, M.J.; Martinez, A.; Bergbauer, M.; Szewzyk, U. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl. Environ. Microbiol. 1998, 64, 2788–2793. [Google Scholar] [CrossRef]
- Aydin, G.; Kunduhoglu, B. Biological decolorization of some reactive textile dyes by eight fungal isolates obtained from soil and textile industry wastewater. Fresenius Environ. Bull. 2014, 23, 1322–1328. [Google Scholar]
- Durruty, I.; Fasce, D.; González, J.F.; Wolski, E.A. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum. Bioprocess Biosyst. Eng. 2015, 38, 1019–1031. [Google Scholar] [CrossRef]
- Gül, Ü.D. Treatment of dyeing wastewater including reactive dyes (Reactive Red RB, Reactive Black B, Remazol Blue) and Methylene Blue by fungal biomass. Water SA 2013, 39, 593–598. [Google Scholar] [CrossRef]
- Thampraphaphon, B.; Phosri, C.; Pisutpaisal, N.; Thamvithayakorn, P.; Chotelersak, K.; Sarp, S.; Suwannasai, N. High potential decolourisation of textile dyes from wastewater by manganese peroxidase production of newly immobilised Trametes hirsuta PW17-41 and FTIR analysis. Microorganisms 2022, 10, 992. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chu, Y.; Zhao, Z.; Xu, X. Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int. Biodeterior. Biodegrad. 2017, 117, 236–244. [Google Scholar] [CrossRef]
- Upadhyay, R.; Przystaś, W. Decolorization of Two Dyes Using White Rot Fungus (BWPH) Strain and Evaluation of Zootoxicity of Post Process Samples. Archit. Civ. Eng. Environ. 2022, 15, 87–94. [Google Scholar] [CrossRef]
- Sun, S.; Liu, P.; Ullah, M. Efficient azo dye biodecolorization system using lignin-co-cultured white-rot fungus. J. Fungi 2023, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Papinutti, V.L.; Forchiassin, F. Modification of malachite green by Fomes sclerodermeus and reduction of oxicity to Phanerochaete chrysosporium. FEMS Microbiol. Lett. 2004, 231, 205–209. [Google Scholar] [CrossRef]
- Couto, S.R. Dye removal by immobilised fungi. Biotechnol. Adv. 2009, 27, 227–235. [Google Scholar] [CrossRef]
- Arica, M.Y.; Sharif, F.A.; Alaeddinoǧlu, N.; Hasirci, N.; Hasirci, V. Covalent immobilization of Aspergillus niger on pHEMA membrane: Application to continuous flow reactors. J. Chem. Technol. Biotechnol. 1993, 58, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Shoda, M. Batch decolorization of molasses by suspended and immobilized fungus of Geotrichum candidum Dec 1. J. Biosci. Bioeng. 1999, 88, 586–589. [Google Scholar] [CrossRef]
- Mtui, G.; Sawada, T.; Kuwahara, M.; Nakamura, Y. Lignin-degrading Enzyme Production by Bjerkandera Adusta Immobilized on Polyurethane Foam. J. Biosci. Bioeng. 1999, 88, 41–47. [Google Scholar]
- Couto, S.R.; Sanromán, M.A.; Hofer, D.; Gübitz, G. Stainless steel sponge: A novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresour. Technol. 2004, 95, 67–72. [Google Scholar] [CrossRef]
- Papinutti, L.; Martínez, M.J. Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 1064–1070. [Google Scholar] [CrossRef]
- Przystaś, W.; Zabłocka-Godlewska, E.; Grabińska-Sota, E. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz. J. Microbiol. 2018, 49, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Mahmood, R.A.; Islam, S.; Ardiati, F.C.; Solihat, N.N.; Alam, M.B.; Lee, S.H.; Yanto, D.H.Y.; Kim, S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. Chemosphere 2023, 313, 137505. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.A. Coconut flesh: A novel raw material for laccase production by Trametes hirsuta under solid-state conditions.: Application to Lissamine Green B decolourization. J. Food Eng. 2005, 71, 208–213. [Google Scholar] [CrossRef]
- Ergun, S.O.; Urek, R.O. Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann. Agrar. Sci. 2017, 15, 273–277. [Google Scholar] [CrossRef]
- Adak, A.; Tiwari, R.; Singh, S.; Sharma, S.; Nain, L. Laccase production by a novel white-rot fungus Pseudolagarobasidium acaciicola LA 1 through solid-state fermentation of Parthenium biomass and its application in dyes decolorization. Waste Biomass Valorization 2016, 7, 1427–1435. [Google Scholar] [CrossRef]
- Contato, A.G.; Inácio, F.D.; Brugnari, T.; de Araújo, C.A.V.; Maciel, G.M.; Haminiuk, C.W.I.; Peralta, R.M.; de Souza, C.G.M. Solid-state fermentation with orange waste: Optimization of Laccase production from Pleurotus pulmonarius CCB-20 and decolorization of synthetic dyes. Acta Scientiarum. Biol. Sci. 2020, 42, e52699. [Google Scholar] [CrossRef]
- Bankole, P.O.; Adekunle, A.A.; Govindwar, S.P. Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha: Co-biomass decolorization of cibacron brilliant red 3B-A dye. Int. J. Biol. Macromol. 2018, 120, 19–27. [Google Scholar] [CrossRef]
- Diorio, L.A.; Fréchou, D.S.; Levin, L.N. Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system. Rev. Argent. De Microbiol. 2021, 53, 3–10. [Google Scholar] [CrossRef]
- Paz, A.; Carballo, J.; Pérez, M.J.; Domínguez, J.M. Biological treatment of model dyes and textile wastewaters. Chemosphere 2017, 181, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Dulta, K.; Kurniawan, S.B.; Omoarukhe, F.O.; Ewuzie, U.; Eshiemogie, S.O.; Ojo, A.U.; Abdullah, S.R.S. Progress in microalgae application for CO2 sequestration. Clean. Chem. Eng. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Rehman, M.S.U.; Javed, F.; Akhtar, M.; Mushtaq, A.; Hafeez, A.; Din, A.A.; Iqbal, J.; Rashid, N.; Rehman, F. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere 2021, 281, 130758. [Google Scholar] [CrossRef]
- Tarbajova, V.; Kolackova, M.; Chaloupsky, P.; Dobesova, M.; Capal, P.; Pilat, Z.; Samek, O.; Zemanek, P.; Svec, P.; Sterbova, D.S. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. J. Hazard. Mater. 2023, 460, 132450. [Google Scholar] [CrossRef]
- Kulkarni, A.N.; Watharkar, A.D.; Rane, N.R.; Jeon, B.-H.; Govindwar, S.P. Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicol. Environ. Saf. 2018, 148, 17–25. [Google Scholar] [CrossRef]
- Maruthanayagam, A.; Mani, P.; Kaliappan, K.; Chinnappan, S. In vitro and in silico studies on the removal of methyl orange from aqueous solution using Oedogonium subplagiostomum AP1. Water Air Soil Pollut. 2020, 231, 232. [Google Scholar] [CrossRef]
- Mahini, R.; Esmaeili, H.; Foroutan, R. Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turk. J. Biochem. 2018, 43, 623–631. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A review of the latest advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Sarkar, P.; Dey, A. Phycoremediation–An emerging technique for dye abatement: An overview. Process Saf. Environ. Prot. 2021, 147, 214–225. [Google Scholar] [CrossRef]
- Dotto, G.; Lima, E.; Pinto, L. Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresour. Technol. 2012, 103, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, N.F.; Lima, E.C.; Royer, B.; Bach, M.V.; Dotto, G.L.; Pinto, L.A.; Calvete, T. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J. Hazard. Mater. 2012, 241, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, L.C.; Zavaleta, M.P.; Eustaquio, W.M.; Bobadilla, J.M. Removal of aniline blue dye using live microalgae Chlorella vulgaris. J. Energy Environ. Sci. 2018, 2, 6–12. [Google Scholar] [CrossRef]
- Li, Y.; Meng, F.; Zhou, Y. Adsorption Behavior of Acid Bordeaux B from Aqueous Solution onto Waste Biomass of Enteromorpha prolifera. Pol. J. Environ. Stud. 2014, 23, 783–792. [Google Scholar]
- Özer, A.; Akkaya, G.; Turabik, M. Biosorption of acid blue 290 (AB 290) and acid blue 324 (AB 324) dyes on Spirogyra rhizopus. J. Hazard. Mater. 2006, 135, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Sultan, M.; Jahanzeb, Q. Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. Afr. J. Biotechnol. 2008, 7, 2649–2655. [Google Scholar]
- Vijayaraghavan, K.; Yun, Y.-S. Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dye. Pigment. 2008, 76, 726–732. [Google Scholar] [CrossRef]
- Tan, C.-y.; Li, G.; Lu, X.-Q.; Chen, Z.-l. Biosorption of Basic Orange using dried A. filiculoides. Ecol. Eng. 2010, 36, 1333–1340. [Google Scholar] [CrossRef]
Process | Wastewater Composition | pH Value | Characteristics |
---|---|---|---|
Sizing | Starch, wax, cellulose | High BOD and COD concentrations | |
Desizing | Sizing decomposition products, fiber debris, starch alkali, various additives | Alkalinity | High pollutant concentrations and turbidity |
Scouring | Heavy metals, cellulose, fruit acids, waxes, oils, surfactants, nitrogen-containing compounds | Strong alkalinity | High concentration, high color intensity, significant suspended solids, large fluctuations in water quality |
Bleaching | Heavy metals, residual bleaching agents, trace amounts of acetic acid, oxalic acid, sodium thiosulfate | Alkalinity | Lower pollution levels |
Mercerizing | Sodium hydroxide with mass fraction of 3% to 5% | Strong alkalinity | High suspended solids, low biodegradability |
Dyeing | Heavy metals, pulp, dyes, additives, surfactants, etc. | Strong alkalinity | Variable water quality, low suspended solids, poor biodegradability |
Printing | Pulp, additives | High concentration, high chroma, high suspended solids, significant water quality variation | |
Finishing | Heavy metals, fiber fragments, resins, formaldehyde, pulp, etc. | Lower pollution levels |
Removal Mechanism | Material | Raw Material Preparation | Dye Removal | Decolorization | References |
---|---|---|---|---|---|
Biosorption | Biochar | Moringa oleifera leaves | Methylene Blue | 98% | [97] |
Biosorption | Biosorbent | Clerodendrum fragrans leaves | Crystal Violet | 96.7% | [98] |
Biosorption | Bioremediation agent | Banana peel | Methylene Blue Basic Fuchsin | >90% | [99] |
Biodegradation | Bioremediation agent | Paramecium caudatum isolated from industrial wastewater | Reactive Red Reactive Blue Levafix Reactive Yellow | 90.9% 83.1% 85.4% | [100] |
Biodegradation | Bacteria | Lactobacillus BT20 | Indigo dye | 90% | [101] |
Biodegradation | Fungi | Aspergillus aculeatus Aspergillus nomius | CI Direct Blue 201 | 98% | [102] |
Biosorption | Algae | Desmodesmus sp. | Methylene Blue Malachite Green | 98.6% | [103] |
Bacterial | Source of Bacterial Strains | Dye Removal | Decolorization | References |
---|---|---|---|---|
Lactobacillus BT20 | Fermented textile wastewater | Indigo | 90% | [101] |
Proteus mirabilis PMS | Textile dyeing and printing wastewater | Vat Green XBN | 94.96% | [117] |
Bacillus megaterium KY848339.1 | Textile wastewater | Acid Red 337 | 91% | [118] |
Acinetobacter baumannii | Marine sediment | Reactive Red | 96.2% | [119] |
M. yunnaenensis | Textile wastewater | Methyl Orange | 98% | [120] |
C1, C3W, C3K | Textile wastewater | Yellow 2G (Y) Chrysoiodine R | 92% 73.73% | [121] |
Alcaligenes faecalis AZ26, Bacillus cereus AZ27, Bacillus sp. | Textile wastewater | Novacron Super Black G | 90% | [122] |
Bacillus subtilis, Brevibacillus borstelensis, Bacillus firmus | Reactive Red 170 | >80% | [123] |
Fungal Species | Treatment Conditions | Dye Removal | Decolorization | References |
---|---|---|---|---|
Aspergillus carneus | pH 5, 27 °C, Oscillation rate 130 rpm | Reactive Red H8B Remazol Black B Remazol Brillant Blue R | 93.4% 94.6% 93.4% | [140] |
Penicillium chrysogenum | pH 6, 25 °C, Oscillation rate 120 rpm | Direct Blue 200 Direct Yellow 86 Direct Black 22 | 87.5% 94% 96% | [141] |
Aspergillus sp. H1T | pH 7, 37 °C, Oscillation rate 100 rpm | Indigo dye | 96% | [101] |
Rhizopus arrhizus | pH 3, pH 6, 30 ± 1 °C | Reactive Red RB Reactive Black B Remazol Blue Methylene Blue | 71.8% 100% 100% 92.5% | [142] |
Trametes hirsuta PW17-41 | pH 5, 30 °C, Oscillation rate 100 rpm | Navy EC-R Ruby S3B Super Black G | 95.4% | [143] |
Algal Species | Treatment Conditions | Dye Removal | Decolorization | References |
---|---|---|---|---|
Chlorella vulgaris | Illumination 4000–5000 lux, aeration 300 mL/min | Methylene Blue | 99.7% | [166] |
Chlorella sorokiniana | Illumination 130 µmol/m2/s, photoperiod 16/8 h (light/dark), 24 ± 1 °C, oscillation rate 120 rpm | Dzo Dye | 70% | [167] |
Desmodesmus sp. | Inoculum concentration of 0.25 g/L, 25 °C, pH 6.8 | Methylene Blue Malachite Green | 98.6% | [103] |
Dermatocarpon vellereceum | pH 8, 40 °C | Navy Blue HE22 | 95% | [168] |
Oedogonium subplagiostomum AP1 | pH 6.5, contact time of 5.5 d, algal dose of 400 mg/L, dye concentration of 500 mg/L | Methyl Orange | 95% | [169] |
Padina sanctae-crucis | Dye concentration of 10 mg/L, pH 8, adsorbent dose of 2 g/L, time of 80 min | Methyl Violet | 98.85% | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, J.; Duan, D.; Zhang, Z.; Liu, C.; Cai, W.; Zhao, Z. Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review. Sustainability 2024, 16, 10867. https://doi.org/10.3390/su162410867
Liu Y, Chen J, Duan D, Zhang Z, Liu C, Cai W, Zhao Z. Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review. Sustainability. 2024; 16(24):10867. https://doi.org/10.3390/su162410867
Chicago/Turabian StyleLiu, Yuqi, Junsheng Chen, Dianrong Duan, Ziyang Zhang, Chang Liu, Wei Cai, and Ziwen Zhao. 2024. "Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review" Sustainability 16, no. 24: 10867. https://doi.org/10.3390/su162410867
APA StyleLiu, Y., Chen, J., Duan, D., Zhang, Z., Liu, C., Cai, W., & Zhao, Z. (2024). Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review. Sustainability, 16(24), 10867. https://doi.org/10.3390/su162410867