Formulation and Characterization of Bio-Briquettes and Bio-Pellets from Ramie (Boehmeria nivea) Biomass as Renewable Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation and Production of Bio-Briquettes and Bio-Pellets
2.2.1. Formulation
2.2.2. Production of Bio-Briquettes
2.2.3. Production of Bio-Pellets
2.3. Proximate Test
2.3.1. Moisture (MC)
- wg1 = weight of the empty crucible (g)
- wg2 = weight of empty crucible + sample (g)
- wg3 = weight of the crucible + sample after heating (g)
2.3.2. Ash (A)
- wg7 = weight of the empty crucible (g)
- wg8 = weight of empty crucible + sample (g)
- wg9 = weight of the crucible + ash (g)
2.3.3. Volatile Matter (VM)
- wg4 = weight of the empty crucible (g)
- wg5 = weight of empty crucible + sample (g)
- wg6 = weight of the crucible + ash (g)
2.3.4. Fixed Carbon
2.3.5. Gross Calorific Value
- Wg = weight of water in calorimeter (kg)
- wg = weight equivalent of apparatus
- T1 = initial temperature of water (°C)
- T2 = final temperature of water (°C)
- wf = weight of fuel sample taken (kg)
2.4. Combustion Test
2.5. Statistical Analysis
3. Results
3.1. Production of Bio-Pellets and Bio-Briquettes
Bio-Briquette Production Results
3.2. Proximate Analysis
3.2.1. Bio-Briquettes
3.2.2. Bio-Pellets
3.3. Combustion Test
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Energy Information Administration. US Department of Energy. Available online: https://www.eia.gov/ (accessed on 13 October 2024).
- Elum, Z.A.; Momodu, A.S. Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. Renew. Sustain. Energy Rev. 2017, 76, 72–80. [Google Scholar] [CrossRef]
- Cheng, J. Biomass to Renewable Energy Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Shukla, S.; Vyas, S. Study of Biomass Bio Pellets, Factors Affecting Its Performance and Technologies Based on Bio Pellets. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 37–44. [Google Scholar]
- Wahyono, Y.; Hadiyanto, H.; Zuli Pratiwi, W.; Dianratri, I. “Biopellet” as One of Future Promising Biomassbased Renewable Energy: A Review. In Proceedings of the E3S Web of Conferences, The 6th International Conference on Energy, Environment, Epidemiology, and Information System (ICENIS 2021), Semarang, Indonesia, 4–5 August 2021; EDP Sciences: Paris, France, 2021; Volume 317, p. 04029. [Google Scholar] [CrossRef]
- Kusumaningrum, W.B.; Munawar, S.S. Prospect of Bio-pellet as an Alternative Energy to Substitute Solid Fuel Based. Energy Procedia 2014, 47, 303–309. [Google Scholar] [CrossRef]
- WECS. Energy Sector Synopsis Report; WECS: Kathmandu, Nepal, 2010. [Google Scholar]
- Pahlavi, G.R.; Purnomo, D.; Bunyamin, A.; Wulandari, A.P. Ramie (Boehmeria nivea) decortication waste bio-briquette business model canvas with design thinking approach. In Renewable Energy Technology and Innovation for Sustainable Development; Springer: Cham, Switzerland, 2017; p. 020014. [Google Scholar]
- Lestari, V.A.; Priambodo, T.B. Kajian Komposisi Lignin dan Selulosa Dari Limbah Kayu Sisa Dekortikasi Rami dan Cangkang Kulit Kopi Untuk Proses Gasifikasi Downdraf. J. Energi Dan Lingkung. 2020, 16, 1–8. [Google Scholar] [CrossRef]
- Iskandar, N.; Nugroho, S.; Feliyana, M.F. Uji Kualitas Produk Briket Arang Tempurung Kelapa Berdasarkan Standar Mutu Sni. J. Ilm. Momentum 2019, 15, 103–108. [Google Scholar] [CrossRef]
- Rueda-Ordóñez, Y.J.; Mariño-Bohórquez, M.A.; Rueda-Ordóñez, D.A. Thermal upgrading of sacha inchi shell: Kinetics and combustion characteristics. Bioresour. Technol. Reports 2021, 15, 100807. [Google Scholar] [CrossRef]
- Erivianto, D. Kajian Ekonomis Pemanfaatan Tandan Kosong Kelapa Sawit Sebagai Bahan Bakar Pltu Biomasa. Semin. Nas. R. 2018, 1, 417–422. [Google Scholar]
- Pitoyo, J.; Suharto, T.E.; Jamilatun, S. Bio-oil from Oil Palm Shell Pyrolysis as Renewable Energy: A Review. Chem. J. Tek. Kim. 2022, 9, 67. [Google Scholar] [CrossRef]
- Boonsombuti, A.; Phinichkha, N.; Supansomboon, S.; Luengnaruemitchai, A. The use of lignin from palm kernel shell (PKS) to fabricate oil palm mesocarp fiber (OPMF) particleboards. Int. J. Adhes. Adhes. 2023, 125, 103425. [Google Scholar] [CrossRef]
- Sarwono, E.; Adinegoro, M.B.; Widarti, B.N. Pengaruh Variasi Komposisi Batang, Pelepah, dan Daun Tanaman Kelapa Sawit Terhadap Kualitas Briket Bioarang. Teknol. Lingkung. 2018, 2, 11–22. [Google Scholar]
- Afrianah, N.; Ruslan, R.; Suryadi, H.R.; Amir, I.; Irsyad, A.; Jasruddin; Nurhayati. Pengaruh Temperatur Karbonisasi Terhadap Karakteristik Briket Berbasis Arang Sekam Padi Dan Tempurung Kelapa. JFT J. Fis. Dan Ter. 2023, 9, 138–147. [Google Scholar] [CrossRef]
- Mustamu, S.; Pattiruhu, G. Pembuatan Biopelet Dari Kayu Putih Dengan Penambahan Gondorukem Sebagai Bahan Bakar Alternatif. J. Hutan Pulau-Pulau Kecil 2018, 2, 91–100. [Google Scholar] [CrossRef]
- Ab Jalil, N.A.; Mokhtaruddin, N.A.; Chia, C.H.; Ahmad, I.K.; Saad, M.J.; Sarif, M. Physical and Chemical Characteristics of Agricultural-Plastic Wastes for Feasibility of Solid Fuel Briquette Production. Sustainability 2022, 14, 15751. [Google Scholar] [CrossRef]
- Mopoung, S.; Udeye, V. Characterization and Evaluation of Charcoal Briquettes Using Banana Peel and Banana Bunch Waste for Household Heating. Am. J. Eng. Appl. Sci. 2017, 10, 353–365. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Mohammed, J.; Muktar, M.; Solomon, O.O.; Madaki, K.S.; Onimisi, A.A. Comparative Evaluation of the Proximate, Mineral and Vitamin Contents of Palm Kernel (E. Guineensis) and Deleb Palm (B. Aethiopum) Nuts. Dutse J. Pure Appl. Sci. 2023, 8, 146–153. [Google Scholar] [CrossRef]
- Sallem-Idrissi, N.; Vanderghem, C.; Pacary, T.; Richel, A.; Debecker, D.P.; Devaux, J.; Sclavons, M. Lignin degradation and stability: Volatile Organic Compounds (VOCs) analysis throughout processing. Polym. Degrad. Stab. 2016, 130, 30–37. [Google Scholar] [CrossRef]
- Raditya, V.Y.A.; Lubis, M.A.R.; Sari, R.K.; Antov, P.; Lee, S.H.; Kristak, L.; Mardawati, E.; Iswanto, A.H. Properties of Ramie (Boehmeria nivea (L.) Gaudich) Fibers Impregnated with Non-Isocyanate Polyurethane Resins Derived from Lignin. Materials 2023, 16, 5704. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, H.; Yao, D.; Zhu, D.; Wang, X.; Shao, J.; Chen, H. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Bioresour. Technol. 2016, 200, 521–527. [Google Scholar] [CrossRef]
- Kujawiak, S.; Makowska, M.; Janczak, D.; Czekała, W.; Krzesiński, W.; Antonowicz, A.; Kupryaniuk, K. An Analysis of the Physicochemical and Energy Parameters of Briquettes Manufactured from Sewage Sludge Mixtures and Selected Organic Additives. Energies 2024, 17, 4573. [Google Scholar] [CrossRef]
- Harsono, S.S.; Tasliman; Fauzi, M.; Wibowo, R.K.K.; Supriyanto, E. Biomass Stove with Low Carbon Monoxide Emission Fueled by Solid Fuel Coffee-Husk Biopellet. Sustainability 2022, 14, 11192. [Google Scholar] [CrossRef]
- Fernandes, E.R.K.; Marangoni, C.; Souza, O.; Sellin, N. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers. Manag. 2013, 75, 603–608. [Google Scholar] [CrossRef]
- Hernowo, P.; Astuti, N.; Prabowo, M.A.; Sutoyo, Y. Pengukuran nilai kalor biomasa bahan baku biofuel. J. Teknol. 2017, 6, 1–5. [Google Scholar]
- Mendoza Martinez, C.L.; Sermyagina, E.; de Cassia Oliveira Carneiro, A.; Vakkilainen, E.; Cardoso, M. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy 2019, 123, 70–77. [Google Scholar] [CrossRef]
- Gramauskas, G.; Jasinskas, A.; Kleiza, V.; Mieldažys, R.; Blažauskas, E.; Souček, J. Evaluation of Invasive Herbaceous Plants Utilization for the Production of Pressed Biofuel. Processes 2023, 11, 2097. [Google Scholar] [CrossRef]
- Marreiro, H.M.P.; Peruchi, R.S.; Lopes, R.M.B.P.; Andersen, S.L.F.; Eliziário, S.A.; Rotella Junior, P. Empirical Studies on Biomass Briquette Production: A Literature Review. Energies 2021, 14, 8320. [Google Scholar] [CrossRef]
- Sharma, M.K.; Priyank, G.; Sharma, N. Biomass Briquette Production: A Propagation of Non-Convention Technology and Future of Pollution Free Thermal Energy Sources. Am. J. Eng. Res. 2015, 4, 44–50. [Google Scholar]
- Anshariah; Imran, A.M.; Widodo, S.; Irvan, U.R. Correlation of fixed carbon content and calorific value of South Sulawesi Coal, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, The 2nd International Conference on Global Issue for Infrastructure, Environment & Socio-Economic Development, South Sulawesi, Indonesia, 12–13 September 2019; IOPscience: Bristol, UK, 2020; Volume 473. [Google Scholar] [CrossRef]
- Arena, U.; Mastellone, M.L. A systematic approach to fixed carbon balance during the fluidized bed combustion of a packaging-derived fuel. Powder Technol. 2000, 110, 110–116. [Google Scholar] [CrossRef]
- Demirbaş, A. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers. Manag. 2003, 44, 1481–1486. [Google Scholar] [CrossRef]
- Sadiku, N.A.; Oluyege, A.O.; Sadiku, I.B. Calorific and Fuel Value Index of Bamboo. Lignocellulose 2016, 5, 34–49. [Google Scholar]
- Aniza, R.; Chen, W.-H.; Kwon, E.E.; Bach, Q.-V.; Hoang, A.T. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. X 2024, 22, 100538. [Google Scholar] [CrossRef]
- Dewi, S.K.; Mufti, A.A.; Lisaftri, Y.; Kurnianingtyas, E. Analysis Of Briquette Quality From Oil Palm Frond And Shell Waste (Case Study of PT. Perkebunan Nusantara VII Unit Bekri). Sustain. Environ. Optim. Ind. J. 2023, 5, 117–128. [Google Scholar] [CrossRef]
Samples | Ramie (R) % | Palm Oil (PO) % | Husk of SI (H) % | Shell of SI (S) % | |
---|---|---|---|---|---|
Bio-Briquettes | B-PO5R5 | 50 | 50 | - | - |
B-PO7R3 | 70 | 30 | - | - | |
B-S5R5 | 50 | - | - | 50 | |
B-S6R4 | 40 | - | - | 60 | |
B-S7R3 | 30 | - | - | 70 | |
B-S8R2 | 20 | - | - | 80 | |
Bio-Pellets | P-PO5R5 | 50 | 50 | - | - |
P-PO7R3 | 30 | 70 | - | - | |
P-S7R3 | 30 | - | - | 70 | |
P-S5R5 | 50 | - | - | 50 | |
P-H7R3 | 30 | - | 70 | - | |
P-H5R5 | 50 | - | 50 | - |
Sample | Moisture in Air-Dried | Ash | Volatile Matter | Fixed Carbon | Gross Calorific Value | |
---|---|---|---|---|---|---|
SNI Briquette | Max 10% | Max 8% | Max 15% | Min 70% | Min 5000 kcal/kg | |
Bio-Briquette | B-PO5R5 | 6.91 ± 0.01 | 10.8 ± 0.01 | 15.48 ± 0.11 | 66.81 ± 0.10 | 6190 ± 3.54 |
B-PO7R3 | 6.88 ± 0.08 | 10.6 ± 0.01 | 15.58 ± 0.05 | 66.94 ± 0.12 | 6194 ± 18.38 | |
B-S5R5 | 8.17 ± 0.03 | 9.78 ± 0.14 | 14.11 ± 0.13 | 67.94 ± 0.04 | 6114 ± 20.15 | |
B-S6R4 | 8.02 ± 0.05 | 8.57 ± 0.03 | 14.45 ± 0.07 | 68.96 ± 0.05 | 6216 ± 8.49 | |
B-S7R3 | 8.16 ± 0.04 | 6.5 ± 0.04 | 16.37 ± 0.16 | 68.97 ± 0.08 | 6350 ± 12.02 | |
B-S8R2 | 8.19 ± 0.04 | 6.24 ± 0.01 | 13.76 ± 0.02 | 71.81 ± 0.03 | 6455 ± 15.56 |
Sample | Moisture in Air-Dried | Ash | Volatile Matter | Fixed Carbon | Gross Calorific Value | |
---|---|---|---|---|---|---|
SNI Biopellet | Max 12% | Max 1.5% | Max 80% | Min 14% | Min 4000 kcal/kg | |
Bio-Pellets | P-PO5R5 | 9.02 ± 0.1 | 5.2 ± 0.01 | 68.32 ± 0.11 | 17.46 ± 0.11 | 4164 ± 7.78 |
P-PO7R3 | 8.61 ± 0.08 | 4.4 ± 0.01 | 68.59 ± 0.07 | 18.4 ± 0.16 | 4212 ± 15.56 | |
P-S7R3 | 10.22 ± 0.01 | 4 ± 0.01 | 60.24 ± 0.06 | 25.54 ± 0.08 | 4232 ± 9.19 | |
P-S5R5 | 9.94 ± 0.01 | 4.7 ± 0.01 | 61.95 ± 0.07 | 23.41 ± 0.09 | 4158 ± 17.68 | |
P-H7R3 | 8.93 ± 0.07 | 5.23 ± 0.01 | 67.5 ± 0.14 | 18.34 ± 0.08 | 3918 ± 9.19 | |
P-H5R5 | 9.75 ± 0.10 | 5.62 ± 0.02 | 67.27 ± 0.00 | 17.36 ± 0.08 | 3891 ± 4.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulandari, A.P.; Rossiana, N.; Zahdi, F.R.M.; Nuraulia, R.; Nur’anifah, R.; Kartika, C.I.; Rahmah, L.A.; Kusmoro, J.; Madihah; Yusnaidar. Formulation and Characterization of Bio-Briquettes and Bio-Pellets from Ramie (Boehmeria nivea) Biomass as Renewable Fuel. Sustainability 2024, 16, 10930. https://doi.org/10.3390/su162410930
Wulandari AP, Rossiana N, Zahdi FRM, Nuraulia R, Nur’anifah R, Kartika CI, Rahmah LA, Kusmoro J, Madihah, Yusnaidar. Formulation and Characterization of Bio-Briquettes and Bio-Pellets from Ramie (Boehmeria nivea) Biomass as Renewable Fuel. Sustainability. 2024; 16(24):10930. https://doi.org/10.3390/su162410930
Chicago/Turabian StyleWulandari, Asri Peni, Nia Rossiana, Farrel Radhysa Muhammad Zahdi, Renasya Nuraulia, Reni Nur’anifah, Chairanisa Intan Kartika, Lulu Aulia Rahmah, Joko Kusmoro, Madihah, and Yusnaidar. 2024. "Formulation and Characterization of Bio-Briquettes and Bio-Pellets from Ramie (Boehmeria nivea) Biomass as Renewable Fuel" Sustainability 16, no. 24: 10930. https://doi.org/10.3390/su162410930
APA StyleWulandari, A. P., Rossiana, N., Zahdi, F. R. M., Nuraulia, R., Nur’anifah, R., Kartika, C. I., Rahmah, L. A., Kusmoro, J., Madihah, & Yusnaidar. (2024). Formulation and Characterization of Bio-Briquettes and Bio-Pellets from Ramie (Boehmeria nivea) Biomass as Renewable Fuel. Sustainability, 16(24), 10930. https://doi.org/10.3390/su162410930