Determining Factors Affecting Agroecological Practices’ Acceptance and Use in Mali, West Africa
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
- Expected Performance (Pe). Expected performance refers to the extent to which one individual believes that using a technology would or would not improve their results [15]. In this case, farmers need to know the extent to which the application of agroecological practices would enable them to protect or restore soil fertility and improve crop productivity. Thus, the authors [15] consider that performance is among the important factors influencing the adoption of technologies. Expected performance is the main factor determining behavioural intention to adopt a technology [66]. Expected performance affects and positively influences behavioural intention to adopt a technology [67,68,69]. In the context of this research, our hypothesis was the following:
- Expected Effort (Ef). The effort expectancy or expected effort corresponds to an individual’s perception of whether or not the new technology will allow them to save effort following its adoption [15]. In this research, expected effort refers to the ease or difficulty that the use of agroecological practices could generate for farmers. According to reference [70], it is a determining factor in the acceptance and use of technology. Other studies have shown that the expected effort has a positive influence on behavioural intention to adopt a technology [68,69,71]. Based on these elements, the hypothesis was as follows:
- Social Influence (Si). Social influence refers to the degree to which an individual believes that important people or groups of people could persuade them to accept or adopt a technology [15]. This research aimed to study how the adoption of selected agroecological practices is influenced by specialist services (extension), other farms and other people important to them. Social influence is a determining factor and positively influences behavioural intention to adopt a technology [72]. Several other studies have indicated a positive influence of social influence on behavioural intention to adopt technologies [73,74,75,76]. Based on this literature, the hypothesis was as follows:
- Facilitating Conditions (Fc). Facilitating conditions are defined as the degree to which one individual perceives that the organisational and technical infrastructure exists to support the use of one technology [15]. In the context of this research, the facilitating conditions refer to all the necessary facilities for farmers (technical and organisational support, own or external material and financial resources) that can improve the use of the agroecological practices chosen by producers. Facilitating conditions are considered to be a determinant of the ease or difficulty of carrying out a task or removing a barrier in the environment [68,69]. Several authors [11,77,78,79] have shown a positive influence on behavioural intention and technology adoption. Hence, the following hypothesis was formulated:
- Expected Net Benefit (Eb). Perceived net benefit is proposed as a new independent variable in addition to the four previous variables proposed by [15]. Expected net benefit refers to the degree to which an individual believes that the new technology would allow a benefit greater than the costs incurred to implement it [64]. Referring to consumer theory, the utility derived from a product, which could be applied to agroecological technologies, corresponds to the sum of the utilities of each technology’s perceived characteristics [75]. Farmers are considered consumers of agroecological technologies and interested in related characteristics and their expected net benefits. In this research, the potential net benefit or utility includes, depending on the technology, cost reduction, improved income, environmental protection and health benefits. The propensity to adopt technology is high for farmers who perceive a potential net benefit from the technology [64]. Moreover, the net benefit was a determining factor in the adoption of technologies [65]. Our hypothesis was as follows:
- Moderating Variables. In the formulation of the conceptual framework of the UTAUT model, ref. [15] indicated that experience is likely to moderate the impacts of behavioural intention and actual technology adoption behaviour. Ref. [76] indicates that experience plays a crucial role in the formulation of the intention to adopt conservation agricultural practices. In this research, the specific experience of the respondents with the adoption of practices is based on the hypothesis that with time, individuals who have accumulated a certain amount of positive experience will continue to apply good practices. The sub-hypotheses linked to the mediating variable are as follows:
3. Research Methodology
3.1. Study Area
3.2. Sampling Procedure
- = sample size of households within the eight selected villages;
- = size of the target population, equal to 596;
- = acceptable margin of error (threshold 0.05%);
- = proportion of the population with the characteristics of interest (proportion of farms adopting at least one agroecological practice);
- = 1.96, representing the standard variate at a given confidence level (0.05).
3.3. Data Collection
3.4. Harman’s Single-Factor Test
3.5. Data Analysis
4. Results
4.1. Main Agroecological Practices and Farmers’ Characteristics
4.2. Results of the Measurement Model
4.3. Structural Model
- Original UTAUT Model
- Extended UTAUT Model
5. Discussion and Policy and Practical Implications
5.1. Discussion
5.2. Policy Implications
5.3. Practical Implications
5.3.1. Contour Farming Techniques (CTs)
5.3.2. Organic Fertiliser (OF)
5.3.3. Crop Association (CRA)
5.3.4. Improved Seed Adapted to Agroecological Conditions (ISEED-AE)
5.3.5. Integrated Crop Management Practices (ICMPs)
6. Conclusions, Limitations and Future Research Direction
6.1. Conclusions
6.2. Limitations and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Path Coefficients Results of Original UTAUT (a) and Extended UTAUT (b) Models by Agroecological Practices’ Type
References
- Winterbottom, R.; Reij, C.; Garrity, D.; Glover, J.; Hellums, D.; McGahuey, M.; Scherr, S. Improving Land and Water Management; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Buyinza, J.; Nuberg, I.K.; Muthuri, C.W.; Denton, M.D. Psychological factors influencing farmers’ intention to adopt agroforestry: A structural equation modeling approach. J. Sustain. For. 2020, 39, 854–865. [Google Scholar] [CrossRef]
- Ankamah, J.; Kodua, T.T.; Addae, M. Structural equation modelling of perception for sustainable agriculture as climate change mitigation strategy in Ghana. Environ. Syst. Res. 2021, 10, 26. [Google Scholar] [CrossRef]
- Assefa, S.; Tadesse, S. The principal role of organic fertilizer on soil properties and agricultural productivity-a review. Agric. Res. Technol. 2019, 22, 556192. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crop. Res. 2013, 143, 76–90. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
- Dembele, S.; Soumaré, M.; Diakite, C.H.; Gaillard, D. Dynamiques des paysages régionaux en zone cotonnière du Mali. Tropicultura 2018, 36, 232–242. [Google Scholar]
- Sidibé, M.; Aoudji, A.K.N.; Moumouni, Y.I.; Sacko, I.; Saliou, I.; Koné, B.; Assogbadjo, A.E.; Zannou, A. Spatio-Temporal Dynamics of Land Use in Cotton and Cereal Production Zones, Mali Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali. Rev. Int. Géomatique 2024, 33, 51–76. [Google Scholar] [CrossRef]
- Ataei, P.; Gholamrezai, S.; Movahedi, R.; Aliabadi, V. An analysis of farmers’ intention to use green pesticides: The application of the extended theory of planned behavior and health belief model. J. Rural Stud. 2021, 81, 374–384. [Google Scholar] [CrossRef]
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.A.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef]
- Silva, E.M.; Wezel, A.; Stafford, C.; Brives, J.; Bosseler, N.; Cecchinato, N.; Cossement, C.; Ranaldo, M.; Broome, M. Insights into agroecological farming practice implementation by conservation-minded farmers in North America. Front. Sustain. Food Syst. 2023, 7, 1090690. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Justes, E.; Wezel, A.; Zingari, P.C.; Kahane, R.; Madsen, S.; Scopel, E.; Hérault, A.; Bhérer-Breton, P.; Buckley, R. Agroecological Practices Supporting Food Production and Reducing Food Insecurity in Developing Countries. A Study on Scientific Literature in 17 Countries; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. Available online: https://www.jstor.org/stable/30036540 (accessed on 22 November 2021). [CrossRef]
- Xie, K.; Zhu, Y.; Ma, Y.; Chen, Y.; Chen, S.; Chen, Z. Willingness of tea farmers to adopt ecological agriculture techniques based on the UTAUT Extended Model. Int. J. Environ. Res. Public Health 2022, 19, 15351. [Google Scholar] [CrossRef]
- Nguyen, L.L.H.; Khuu, D.T.; Halibas, A.; Nguyen, T.Q. Factors that influence the intention of smallholder rice farmers to adopt cleaner production practices: An empirical study of precision agriculture adoption. Eval. Rev. 2024, 48, 692–735. [Google Scholar] [CrossRef]
- Hu, S.; Laxman, K.; Lee, K. Exploring factors affecting academics’ adoption of emerging mobile technologies-an extended UTAUT perspective. Educ. Inf. Technol. 2020, 25, 4615–4635. [Google Scholar] [CrossRef]
- Hewavitharana, T.; Nanayakkara, S.; Perera, A.; Perera, P. Modifying the unified theory of acceptance and use of technology (UTAUT) model for the digital transformation of the construction industry from the user perspective. Informatics 2021, 8, 81. [Google Scholar] [CrossRef]
- Khan, I.U.; Hameed, Z.; Khan, S.N.; Khan, S.U.; Khan, M.T. Exploring the effects of culture on acceptance of online banking: A comparative study of Pakistan and Turkey by using the extended UTAUT model. J. Internet Commer. 2022, 21, 183–216. [Google Scholar] [CrossRef]
- Molina-Maturano, J.; Verhulst, N.; Tur-Cardona, J.; Güereña, D.T.; Gardeazábal-Monsalve, A.; Govaerts, B.; Speelman, S. Understanding smallholder farmers’ intention to adopt agricultural apps: The role of mastery approach and innovation hubs in Mexico. Agronomy 2021, 11, 194. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H. Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model. Land 2024, 13, 334. [Google Scholar] [CrossRef]
- Toader, D.-C.; Rădulescu, C.M.; Toader, C. Investigating the Adoption of Blockchain Technology in Agri-Food Supply Chains: Analysis of an Extended UTAUT Model. Agriculture 2024, 14, 614. [Google Scholar] [CrossRef]
- Nyagadza, B.; Mazuruse, G.; Rukasha, T.; Mukarumbwa, P.; Muswaka, C.; Shumbanhete, B. Rural small scale farmers’ smart mobile phone usage acceptance prognosticators for agricultural marketing information access. SN Soc. Sci. 2022, 2, 256. [Google Scholar] [CrossRef] [PubMed]
- Chaveesuk, S.; Chaiyasoonthorn, W.; Kamales, N.; Dacko-Pikiewicz, Z.; Liszewski, W.; Khalid, B. Evaluating the determinants of consumer adoption of autonomous vehicles in Thailand—An extended UTAUT model. Energies 2023, 16, 855. [Google Scholar] [CrossRef]
- Bonke, V.; Musshoff, O. Understanding German farmer’s intention to adopt mixed cropping using the theory of planned behavior. Agron. Sustain. Dev. 2020, 40, 48. [Google Scholar] [CrossRef]
- Li, W. The role of trust and risk in Citizens’ E-Government services adoption: A perspective of the extended UTAUT model. Sustainability 2021, 13, 7671. [Google Scholar] [CrossRef]
- Georgiou, I.; Sapuric, S.; Lois, P.; Thrassou, A. Blockchain for accounting and auditing—Accounting and auditing for cryptocurrencies: A systematic literature review and future research directions. J. Risk Financ. Manag. 2024, 17, 276. [Google Scholar] [CrossRef]
- Gandhi Maniam, P.S.; Acharya, N.; Sassenberg, A.-M.; Soar, J. Determinants of Blockchain Technology Adoption in the Australian Agricultural Supply Chain: A Systematic Literature Review. Sustainability 2024, 16, 5806. [Google Scholar] [CrossRef]
- Almusharraf, A.I. An Investigation of University Students’ Perceptions of Learning Management Systems: Insights for Enhancing Usability and Engagement. Sustainability 2024, 16, 10037. [Google Scholar] [CrossRef]
- Lee, C.-L.; Orton, G.; Lu, P. Global Meta-Analysis of Innovation Attributes Influencing Climate-Smart Agriculture Adoption for Sustainable Development. Climate 2024, 12, 192. [Google Scholar] [CrossRef]
- Safeer, S.; Pulvento, C. Blockchain-Backed Sustainable Management of Italian Tomato Processing Industry. Agriculture 2024, 14, 1120. [Google Scholar] [CrossRef]
- Rübcke von Veltheim, F.; Heise, H. German farmers’ attitudes on adopting autonomous field robots: An empirical survey. Agriculture 2021, 11, 216. [Google Scholar] [CrossRef]
- Colussi, J.; Morgan, E.L.; Schnitkey, G.D.; Padula, A.D. How communication affects the adoption of digital technologies in soybean production: A survey in Brazil. Agriculture 2022, 12, 611. [Google Scholar] [CrossRef]
- Hamazakaza, P.; Kabwe, G.; Kuntashula, E.; Egeru, A.; Asiimwe, R. Adoption of sustainable agriculture intensification in maize-based farming systems of Katete District in Zambia. Land 2022, 11, 880. [Google Scholar] [CrossRef]
- Tarhini, A.; El-Masri, M.; Ali, M.; Serrano, A. Extending the UTAUT model to understand the customers’ acceptance and use of internet banking in Lebanon: A structural equation modeling approach. Inf. Technol. People 2016, 29, 830–849. [Google Scholar] [CrossRef]
- Gigou, J.; Traoré, K.B.; Coulibaly, H.; Vaksman, M.; Kouressy, M. Aménagement en courbes de niveau et rendements des cultures en région Mali-sud. Bull. Réseau Érosion 1996, 19, 391–404. [Google Scholar]
- Yong Ngondjeb, D.; Dia Kamgnia, B.; Nje, P.; Havard, M. L’Évaluation économique de l’investissement dans la conservation des sols: Le cas des aménagements antiérosifs dans le bassin versant du lac Lagdo au Cameroun. Can. J. Agric. Econ. Can. D’agroéconomie 2014, 62, 393–410. [Google Scholar] [CrossRef]
- Araya, T.; Gebremedhin, A.; Baudron, F.; Hailemariam, M.; Birhane, E.; Nyssen, J.; Govaerts, B.; Cornelis, W. Influence of 9 years of permanent raised beds and contour furrowing on soil health in conservation agriculture based systems in Tigray region, Ethiopia. Land Degrad. Dev. 2021, 32, 1525–1539. [Google Scholar] [CrossRef]
- Bationo, A.; Kihara, J.; Vanlauwe, B.; Waswa, B.; Kimetu, J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric. Syst. 2007, 94, 13–25. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Diels, J. Combined application of organic matter and fertilizer. Sustain. Soil Fertil. West Africa 2001, 58, 247–279. [Google Scholar] [CrossRef]
- Wopereis, M.C.S.; Tamélokpo, A.; Ezui, K.; Gnakpénou, D.; Fofana, B.; Breman, H. Mineral fertilizer management of maize on farmer fields differing in organic inputs in the West African savanna. Field Crop. Res. 2006, 96, 355–362. [Google Scholar] [CrossRef]
- Perrin, B.; Lefevre, A. L’association culturale, un levier pour améliorer santé des plantes, fertilité du sol et production des systèmes de culture maraichers diversifiés? Innov. Agron. 2019, 76, 51–70. [Google Scholar] [CrossRef]
- Faye, A.; Faye, A.; Diome, T.; Sembene, M. Genetic diversity and structure of Callosobruchus maculatus populations in the different agro-ecological zones of Senegal. J. Asian Sci. Res. 2023, 13, 16–27. [Google Scholar] [CrossRef]
- Teklu, Y.; Hammer, K. Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia. Genet. Resour. Crop Evol. 2006, 53, 1099–1113. [Google Scholar] [CrossRef]
- Matlon, P.J. A critical review of objectives, methods, and progress to date in sorghum and millet improvement: A case study of ICRISAT/Burkina Faso. In Appropriate Technologies for Farmers in Semi-Arid West Africa; Ohm, H.W., Nagy, J.G., Eds.; International Programme in Agriculture; Perdue University: West Lafayette, IN, USA, 1985; pp. 154–179. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Mukta, M.A.; Hossin, M.S.; Islam, M.K. Soil fertility status and its possible sustainable agricultural packages in Bangladesh. Int. J. Sustain. Agric. Res. 2023, 10, 21–31. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Ganjkhanloo, M.M. Understanding farmers’ ecological conservation behavior regarding the use of integrated pest management-an application of the technology acceptance model. Glob. Ecol. Conserv. 2020, 22, e00941. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric. 1975, 10(2), 130–132. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Madden, T.J.; Ellen, P.S.; Ajzen, I. A comparison of the theory of planned behavior and the theory of reasoned action. Personal. Soc. Psychol. Bull. 1992, 18, 3–9. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 3rd ed.; Free Press: New York, NY, USA; Collier Macmillan: London, UK, 1983; ISBN 978-0-02-926650-2. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Deci, E.L.; Vallerand, R.J.; Pelletier, L.G.; Ryan, R.M. Motivation and education: The self-determination perspective. Educ. Psychol. 1991, 26, 325–346. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundation of Thought and Action; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Königstorfer, J. Akzeptanz von Technologischen Innovationen: Nutzungsentscheidungen von Konsumenten Dargestellt am Beispiel von Mobilen Internetdiensten; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 3834912409. [Google Scholar]
- Mohr, S.; Kühl, R. Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior. Precis. Agric. 2021, 22, 1816–1844. [Google Scholar] [CrossRef]
- Verma, P.; Sinha, N. Technology acceptance model revisited for mobile based agricultural extension services in India. Manag. Res. Pract. 2016, 8, 29–38. [Google Scholar]
- Davis, F.D. A technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results; Massachusetts Institute of Technology: Cambridge, MA, USA, 1985. [Google Scholar]
- Steg, L.; Nordlund, A. Models to explain environmental behaviour. In Environmental psychology: An Introduction; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 185–195. [Google Scholar]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Batte, M.T.; Arnholt, M.W. Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Comput. Electron. Agric. 2003, 38, 125–139. [Google Scholar] [CrossRef]
- Alwahaishi, S.; Snásel, V. Acceptance and use of information and communications technology: A UTAUT and flow based theoretical model. J. Technol. Manag. Innov. 2013, 8, 61–73. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Vasantha, D.S.; Sarika, P. Effect of social influence on intention to use mobile wallet with the mediating effect of promotional benefits. J. Xi’an Univ. Archit. Technol. 2020, 12, 3003–3019. [Google Scholar]
- Cheng, S.-I.; Chen, S.-C.; Yen, D.C. Continuance intention of E-portfolio system: A confirmatory and multigroup invariance analysis of technology acceptance model. Comput. Stand. Interfaces 2015, 42, 17–23. [Google Scholar] [CrossRef]
- Mercurio, D.I.; Hernandez, A.A. Understanding user acceptance of information system for sweet potato variety and disease classification: An empirical examination with an extended technology acceptance model. In Proceedings of the 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 272–277. [Google Scholar]
- Chayomchai, A. The Online Technology Acceptance Model of Generation-Z People in Thailand during COVID-19 Crisis. Manag. Mark. 2020, 15, 496–512. [Google Scholar] [CrossRef]
- Faridi, A.A.; Kavoosi-Kalashami, M.; El Bilali, H. Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Iran. Land Use Policy 2020, 99, 104885. [Google Scholar] [CrossRef]
- Catherine, N.; Geofrey, K.M.; Aballo, G. Effort expectancy, performance expectancy, social influence and facilitating conditions as predictors of behavioural intentions to use ATMs with fingerprint authentication in Ugandan banks. Glob. J. Comput. Sci. Technol. 2017, 17, 9–25. [Google Scholar]
- Jin, Y.; Lin, Q.; Mao, S. Tanzanian Farmers’ Intention to Adopt Improved Maize Technology: Analyzing Influencing Factors Using SEM and fsQCA Methods. Agriculture 2022, 12, 1991. [Google Scholar] [CrossRef]
- Carter, M.R.; Laajaj, R.; Yang, D. Savings, subsidies, and technology adoption: Field experimental evidence from Mozambique. NBER Work. Pap. 2016, 20465, p.35. [Google Scholar]
- Lancaster, K.J. A new approach to consumer theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Hayat, N.; Al Mamun, A.; Nasir, N.A.M.; Selvachandran, G.; Nawi, N.B.C.; Gai, Q.S. Predicting sustainable farm performance—Using hybrid structural equation modelling with an artificial neural network approach. Land 2020, 9, 289. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef]
- Sarstedt, M. A review of recent approaches for capturing heterogeneity in partial least squares path modelling. J. Model. Manag. 2008, 3, 140–161. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage: Newcastle upon Tyne, UK, 2013; ISBN 1446274586. [Google Scholar]
- Kothari, C.R. Research Methodology: Methods and Techniques, 2nd ed.; New Age International: New Delhi, India, 2004; ISBN 8122415229. [Google Scholar]
- Rahi, S.; Othman Mansour, M.M.; Alghizzawi, M.; Alnaser, F.M. Integration of UTAUT model in internet banking adoption context: The mediating role of performance expectancy and effort expectancy. J. Res. Interact. Mark. 2019, 13, 411–435. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Aghmiuni, S.K.; Siyal, S.; Wang, Q.; Duan, Y. Assessment of factors affecting innovation policy in biotechnology. J. Innov. Knowl. 2020, 5, 180–190. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: Berlin/Heidelberg, Germany, 2021; ISBN 3030805190. [Google Scholar]
- Wang, Y.; Yu, L.; Yu, Z. An extended CCtalk technology acceptance model in EFL education. Educ. Inf. Technol. 2022, 27, 6621–6640. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992; p. 80. [Google Scholar]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Newcastle upon Tyne, UK, 2016. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; bin Abu Bakar, Z. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy 2017, 68, 372–382. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum: Hillsdale, MI, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Geisser, S. A new approach to the fundamental problem of applied statistics. Sankhyā Indian J. Stat. Ser. B 1975, 235, 385–397. [Google Scholar]
- Dwivedi, Y.K.; Rana, N.P.; Jeyaraj, A.; Clement, M.; Williams, M.D. Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Inf. Syst. Front. 2019, 21, 719–734. [Google Scholar] [CrossRef]
- Raman, A.; Thannimalai, R.; Rathakrishnan, M.; Ismail, S.N. Investigating the Influence of Intrinsic Motivation on Behavioral Intention and Actual Use of Technology in Moodle Platforms. Int. J. Instr. 2022, 15, 1003–1024. [Google Scholar] [CrossRef]
- Nayal, K.; Raut, R.D.; Narkhede, B.E.; Priyadarshinee, P.; Panchal, G.B.; Gedam, V.V. Antecedents for blockchain technology-enabled sustainable agriculture supply chain. Ann. Oper. Res. 2023, 327, 293–337. [Google Scholar] [CrossRef]
- Green, G.; Sunding, D.; Zilberman, D.; Parker, D. Explaining irrigation technology choices: A microparameter approach. Am. J. Agric. Econ. 1996, 78, 1064–1072. [Google Scholar] [CrossRef]
- Batucan, G.B.; Gonzales, G.G.; Balbuena, M.G.; Pasaol, K.R.B.; Seno, D.N.; Gonzales, R.R. An extended UTAUT model to explain factors affecting online learning system amidst COVID-19 pandemic: The case of a developing economy. Front. Artif. Intell. 2022, 5, 768831. [Google Scholar] [CrossRef]
- Hu, H.; Cao, A.; Chen, S.; Li, H. Effects of risk perception of pests and diseases on tea famers’ green control techniques adoption. Int. J. Environ. Res. Public Health 2022, 19, 8465. [Google Scholar] [CrossRef]
- Abu, T.H.S.T.; Man, N.; Nawi, N.M.; Shah, J.A.; Muhamad, N.; Nor, M.M. Factors Explaining Post Harvest Practices Adoption among Fruit Farmers in Johor. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 549, p. 12095. [Google Scholar]
- Purnomo, S.H.; Lee, Y.-H. E-learning adoption in the banking workplace in Indonesia: An empirical study. Inf. Dev. 2013, 29, 138–153. [Google Scholar] [CrossRef]
- Liu, L.; Miguel Cruz, A.; Rios Rincon, A.; Buttar, V.; Ranson, Q.; Goertzen, D. What factors determine therapists’ acceptance of new technologies for rehabilitation–a study using the Unified Theory of Acceptance and Use of Technology (UTAUT). Disabil. Rehabil. 2015, 37, 447–455. [Google Scholar] [CrossRef]
- Gigou, J.; Coulibaly, L.F. Aménagement des champs pour la culture en courbes de niveau au sud du Mali. Agric. Dev. 1997, 14, 47–57. [Google Scholar]
- Traoré, K.B.; Mc Carthy, G.; Gigou, J.; Doumbia, M.D.; Bagayoko, A.; Yost, R.S.; Konaré, H.; Dioni, L.; Coulibaly, H.; Sidibé, A. Aménagement en Courbes de Niveau et Conservation du Carbone; IRD: Wellington, New Zealand, 2004. [Google Scholar]
- Sogoba, B.; Traoré, B.; Safia, A.; Samaké, O.B.; Dembélé, G.; Diallo, S.; Kaboré, R.; Benié, G.B.; Zougmoré, R.B.; Goïta, K. On-farm evaluation on yield and economic performance of cereal-cowpea intercropping to support the smallholder farming system in the Soudano-Sahelian zone of mali. Agriculture 2020, 10, 214. [Google Scholar] [CrossRef]
- Traoré, A.; Soumaré, M.; Bélières, J.-F.; Hilhorst, T. Quelles Évolutions des Systèmes de Production Céréaliers au Mali? Grain de sel 2011, 54–56. Available online: https://www.inter-reseaux.org/wp-content/uploads/GDS54-56_p18-20_Mali.pdf (accessed on 22 November 2021).
- Sissoko, M.; Smale, M.; Castiaux, A.; Theriault, V. Adoption of new sorghum varieties in Mali through a participatory approach. Sustainability 2019, 11, 4780. [Google Scholar] [CrossRef]
- Mgomezulu, W.R.; Machira, K.; Edriss, A.-K.; Pangapanga-Phiri, I. Modelling farmers’ adoption decisions of sustainable agricultural practices under varying agro-ecological conditions: A new perspective. Innov. Green Dev. 2023, 2, 100036. [Google Scholar] [CrossRef]
- Krah, K.; Michelson, H.; Perge, E.; Jindal, R. Constraints to adopting soil fertility management practices in Malawi: A choice experiment approach. World Dev. 2019, 124, 104651. [Google Scholar] [CrossRef]
- Ketema, M.; Bauer, S. Determinants of manure and fertilizer applications in eastern highlands of Ethiopia. Q. J. Int. Agric. 2011, 50, 237–252. [Google Scholar]
- Rezaei, R.; Safa, L.; Damalas, C.A.; Ganjkhanloo, M.M. Drivers of farmers’ intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Environ. Manag. 2019, 236, 328–339. [Google Scholar] [CrossRef]
- Wale, E.; Chianu, J.N. Farmers’ Demand for Extra Yield from Improved Tef [(Eragrostis tef (Zucc.) Trotter] Varieties in Ethiopia: Implications for Crop Improvement and Agricultural Extension. J. Agric. Sci. Technol. 2015, 17, 1449–1462. [Google Scholar]
- Smale, M.; Assima, A.; Kergna, A.; Thériault, V.; Weltzien, E. Farm family effects of adopting improved and hybrid sorghum seed in the Sudan Savanna of West Africa. Food Policy 2018, 74, 162–171. [Google Scholar] [CrossRef]
- Epule, T.E. Contribution of organic farming towards global food security: An overview. In Organic Farming; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–16. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- Kiss, A.; Meerman, F. Integrated Pest Management and African Agriculture; World Bank: Washington, DC, USA, 1991; ISBN 0821318721. [Google Scholar]
- Tapsoba, P.K.; Aoudji, A.K.N.; Kabore, M.; Kestemont, M.-P.; Legay, C.; Achigan-Dako, E.G. Sociotechnical context and agroecological transition for smallholder farms in Benin and Burkina Faso. Agronomy 2020, 10, 1447. [Google Scholar] [CrossRef]
- Doré, T.; Bellon, S. Les Mondes de L’agroécologie; Blanchet, J., Ed.; Quæ. 78026 Versailles Cedex; Éditions Quae: Versailles, France, 2019. [Google Scholar]
Village | Total Number of Farms | Min Sample Size Required | Final Sample Size |
---|---|---|---|
Cotton zone (Kléla) | |||
Dougoumousso | 85 | 68 | 72 |
Kong-Kala | 85 | 68 | 72 |
Siani | 60 | 51 | 60 |
Nantoumana | 43 | 38 | 43 |
Sub-total 1 | 273 | 225 | 247 |
Cereal zone (Cinzana) | |||
Kondogola | 133 | 96 | 97 |
Minangofa | 63 | 53 | 53 |
Fambougou | 54 | 47 | 48 |
Cinzana village | 73 | 60 | 60 |
Sub-total 2 | 323 | 256 | 258 |
Pooled | 596 | 481 | 505 |
% | 100 | 80.70 | 84.73 |
Practice * | Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | ||
OF | 1 | 7.376 | 28.369 | 28.369 | 7.376 | 28.369 | 28.369 |
CT | 1 | 9.360 | 35.999 | 35.999 | 9.360 | 35.999 | 35.999 |
CRA | 1 | 10.496 | 40.369 | 40.369 | 10.496 | 40.369 | 40.369 |
ICMP | 1 | 11.426 | 43.945 | 43.945 | 11.426 | 43.945 | 43.945 |
ISEED-AE | 1 | 12.258 | 47.147 | 47.147 | 12.258 | 47.147 | 47.147 |
Zones/Communes | Kléla (n = 248) | Cinzana (n = 257) | Pooled (N = 505) |
---|---|---|---|
Farmers’ characteristics and practices | Statistics | ||
Socio-demographic characteristics | |||
Gender of farm manager (1 = male) | 1.00 | 0.97 | 0.99 |
Age of farm manager (years) | 54.12 (14.14) | 52.27 (14.15) | 53.17 (14.17) |
Main occupation (1 = agriculture) | 0.97 | 0.94 | 0.95 |
Marital status of farm manager (1 = married) | 0.99 | 0.95 | 0.97 |
Formal education (1 = formal education) | 0.12 | 0.40 | 0.26 |
Number of years spent in formal school (years) | 6.30 (3.36) | 6.18 (3.08) | 6.20 |
Household size (number) | 23.5 (16.5) | 16.1 (10.8) | 19.7 (14.4) |
Institutional factors | |||
Membership of a farmers’ organisation (1 = yes) | 0.98 | 0.71 | 0.85 |
Training on agricultural best practices (1 = yes) | 0.62 | 0.37 | 0.49 |
Adoption of farming practices (1 = yes) | |||
Contour farming techniques (CTs) | 0.34 | 0.04 | 0.19 |
Organic fertiliser (OF) | 0.87 | 0.94 | 0.90 |
Crop association (CRA) | 0.08 | 0.41 | 0.25 |
Improved seeds (ISEED-AE) | 0.53 | 0.53 | 0.53 |
Integrated crop management practices (ICMPs) | 0.99 | 0.85 | 0.92 |
Specific experience in adopting practices (years) | |||
Contour farming techniques (CTs) | 7.6 (8.8) | 0.83 (3.33) | 4.2 (7.4) |
Organic fertiliser (OF) | 17.9 (11.9) | 20.3 (13.1) | 19.2 (12.6) |
Crop association (CRA) | 1.4 (4.3) | 11.7 (13.9) | 6.7 (11.6) |
Improved seed (ISEED-AE) | 10.4 (12.6) | 6.8 (8.1) | 8.6 (10.7) |
Integrated crop management practices (ICMPs) | 20.7 (11.2) | 14.3 (12.5) | 17.4 (12.3) |
Items | Performance Expectancy (Pe) | Effort Expectancy (Ef) | Social Influence (Si) | Facilitating Conditions (Fc) | Behavioural Intention (Int) | Actual Use Behaviour (Use) | Expected Net Benefit (Eb) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pe1 | Pe2 | Pe3 | Pe4 | Pe5 | Ef1 | Ef2 | Ef3 | Si1 | Si2 | Si3 | Fc1 | Fc2 | Fc3 | Fc4 | Int1 | Int2 | Int3 | Int4 | Use1 | Use2 | Use3 | Use4 | Eb1 | Eb2 | |
Contour farming techniques (CTs) | |||||||||||||||||||||||||
Factor loading | 0.820 | 0.805 | 0.646 | 0.723 | 0.655 | 0.866 | 0.814 | 0.750 | 0.781 | 0.813 | 0.771 | 0.854 | 0.728 | 0.847 | 0.423 | 0.847 | 0.796 | 0.725 | 0.659 | 0.817 | 0.656 | 0.778 | 0.866 | 0.884 | 0.891 |
Crb-α | 0.784 | 0.742 | 0.702 | 0.705 | 0.755 | 0.788 | 0.730 | ||||||||||||||||||
CR | 0.813 | 0.769 | 0.710 | 0.795 | 0.766 | 0.811 | 0.730 | ||||||||||||||||||
AVE | 0.538 | 0.658 | 0.622 | 0.539 | 0.578 | 0.613 | 0.787 | ||||||||||||||||||
Organic fertiliser | |||||||||||||||||||||||||
Factor loading | 0.863 | 0.760 | 0.788 | 0.837 | 0.776 | 0.909 | 0.935 | 0.857 | 0.852 | 0.756 | 0.831 | 0.891 | 0.929 | 0.886 | 0.915 | 0.833 | 0.770 | 0.777 | - | - | 0.781 | 0.854 | 0.829 | 0.958 | 0.937 |
Crb-α | 0.865 | 0.865 | 0.757 | 0.927 | 0.708 | 0.770 | 0.887 | ||||||||||||||||||
CR | 0.872 | 0.872 | 0.808 | 0.931 | 0.716 | 0.806 | 0.911 | ||||||||||||||||||
AVE | 0.649 | 0.649 | 0.663 | 0.820 | 0.630 | 0.676 | 0.897 | ||||||||||||||||||
Crop association (CRA) | |||||||||||||||||||||||||
Factor loading | 0.881 | 0.878 | 0.870 | 0.783 | 0.859 | 0.876 | 0.862 | 0.918 | 0.809 | 0.850 | 0.871 | 0.859 | 0.829 | 0.866 | 0.879 | 0.847 | 0.851 | 0.875 | 0.673 | 0.822 | 0.890 | 0.869 | 0.787 | 0.922 | 0.886 |
Crb-α | 0.908 | 0.863 | 0.797 | 0.881 | 0.827 | 0.865 | 0.779 | ||||||||||||||||||
CR | 0.916 | 0.873 | 0.800 | 0.888 | 0.835 | 0.883 | 0.796 | ||||||||||||||||||
AVE | 0.731 | 0.784 | 0.711 | 0.737 | 0.665 | 0.711 | 0.818 | ||||||||||||||||||
Improved seed adapted to agroecological conditions (ISEED-AE) | |||||||||||||||||||||||||
Factor loading | 0.882 | 0.865 | 0.875 | 0.881 | 0.875 | 0.917 | 0.907 | 0.856 | 0.841 | 0.902 | 0.918 | 0.807 | 0.898 | 0.890 | 0.914 | 0.896 | 0.907 | 0.903 | 0.590 | 0.722 | 0.795 | 0.858 | 0.628 | 0.955 | 0.936 |
Crb-α | 0.924 | 0.873 | 0.865 | 0.901 | 0.846 | 0.747 | 0.882 | ||||||||||||||||||
CR | 0.925 | 0.875 | 0.867 | 0.909 | 0.881 | 0.764 | 0.901 | ||||||||||||||||||
AVE | 0.766 | 0.798 | 0.788 | 0.771 | 0.698 | 0.571 | 0.894 | ||||||||||||||||||
Integrated crop management practices (ICMPs) | |||||||||||||||||||||||||
Factor loading | 0.710 | 0.868 | 0.840 | 0.829 | 0.721 | 0.856 | 0.830 | 0.810 | 0.879 | 0.890 | 0.886 | 0.809 | 0.782 | 0.735 | 0.785 | 0.789 | 0.787 | 0.842 | 0.799 | 0.791 | 0.880 | 0.858 | 0.684 | 0.946 | 0.930 |
Crb-α | 0.853 | 0.778 | 0.862 | 0.783 | 0.818 | 0.818 | 0.863 | ||||||||||||||||||
CR | 0.863 | 0.780 | 0.867 | 0.790 | 0.822 | 0.827 | 0.873 | ||||||||||||||||||
AVE | 0.634 | 0.693 | 0.783 | 0.606 | 0.647 | 0.651 | 0.879 |
Practices | Use | Int | Ef | Eb | Pe | EXP | Fc | Si |
---|---|---|---|---|---|---|---|---|
Contour farming techniques (CTs) | ||||||||
Use | 0.783 | |||||||
Int | 0.600 | 0.760 | ||||||
Ef | 0.618 | 0.388 | 0.811 | |||||
Eb | 0.619 | 0.435 | 0.569 | 0.887 | ||||
PE | 0.611 | 0.442 | 0.633 | 0.581 | 0.733 | |||
EXP-CT | 0.388 | 0.383 | 0.308 | 0.269 | 0.333 | 1.000 | ||
Fc | 0.596 | 0.452 | 0.567 | 0.608 | 0.574 | 0.367 | 0.734 | |
Si | 0.578 | 0.509 | 0.457 | 0.518 | 0.486 | 0.304 | 0.608 | 0.789 |
Organic fertiliser (OF) | ||||||||
Use | 0.822 | |||||||
Int | −0.007 | 0.794 | ||||||
Ef | 0.110 | 0.324 | 0.901 | |||||
Eb | 0.448 | 0.210 | 0.360 | 0.947 | ||||
Pe | −0.020 | 0.513 | 0.465 | 0.337 | 0.806 | |||
EXP-OF | 0.111 | 0.055 | 0.049 | 0.156 | 0.053 | 1.000 | ||
Fc | 0.596 | 0.058 | 0.227 | 0.655 | 0.137 | 0.063 | 0.905 | |
Si | 0.414 | 0.167 | 0.249 | 0.544 | 0.298 | 0.028 | 0.628 | 0.814 |
Crop association (CRA) | ||||||||
Use | 0.843 | |||||||
Int | 0.671 | 0.815 | ||||||
Ef | 0.281 | 0.374 | 0.885 | |||||
Eb | 0.342 | 0.434 | 0.466 | 0.904 | ||||
Pe | 0.348 | 0.486 | 0.665 | 0.511 | 0.855 | |||
EXP-CRA | 0.461 | 0.475 | 0.171 | 0.193 | 0.322 | 1.000 | ||
Fc | 0.387 | 0.439 | 0.605 | 0.570 | 0.557 | 0.150 | 0.859 | |
Si | 0.465 | 0.418 | 0.477 | 0.524 | 0.483 | 0.239 | 0.698 | 0.843 |
Improved seed adapted to agroecological conditions (ISEED-AE) | ||||||||
Use | 0.756 | |||||||
Int | 0.626 | 0.835 | ||||||
Ef | 0.376 | 0.541 | 0.893 | |||||
Eb | 0.491 | 0.656 | 0.695 | 0.945 | ||||
Pe | 0.424 | 0.613 | 0.712 | 0.665 | 0.875 | |||
EXP- ISEED-AE | 0.378 | 0.414 | 0.285 | 0.299 | 0.354 | 1.000 | ||
Fc | 0.524 | 0.622 | 0.576 | 0.742 | 0.520 | 0.279 | 0.878 | |
Si | 0.612 | 0.619 | 0.522 | 0.656 | 0.535 | 0.332 | 0.744 | 0.887 |
Integrated crop management practices (ICMPs) | ||||||||
Use | 0.807 | |||||||
Int | 0.643 | 0.804 | ||||||
Ef | 0.426 | 0.535 | 0.832 | |||||
Eb | 0.525 | 0.554 | 0.544 | 0.938 | ||||
Pe | 0.594 | 0.714 | 0.693 | 0.657 | 0.796 | |||
EXP-ICMP | 0.101 | 0.116 | 0.088 | 0.126 | 0.128 | 1.000 | ||
Fc | 0.525 | 0.670 | 0.559 | 0.564 | 0.695 | 0.178 | 0.778 | |
Si | 0.589 | 0.670 | 0.490 | 0.630 | 0.693 | 0.160 | 0.703 | 0.885 |
Path Hypothesis | Original UTAUT | Extended UTAUT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coeff. β | t Stats | R-sq | f-sq | Q2 | Decision (*) | Coeff. β | t Stats | R-sq | f-sq | Q2 | Decision (*) | |
Contour farming techniques (CTs) | ||||||||||||
H1a: Int -→ Use | 0.382 *** | 8.826 | 0.509 | 0.217 | 0.464 | S | 0.352 *** | 7.931 | 0.574 | 0.189 | 0.534 | S |
H5a: Fc → Use | 0.361 *** | 8.790 | 0.189 | S | 0.198 *** | 4.200 | 0.050 | S | ||||
H2a: Pe → int | 0.169 *** | 3.203 | 0.351 | 0.022 | 0.331 | S | 0.170 *** | 3.208 | 0.351 | 0.022 | S | |
H3a: Ef → Int | 0.066 | 1.456 | 0.004 | NS | 0.066 | 1.458 | 0.004 | NS | ||||
H4a: Si → int | 0.337 *** | 7.807 | 0.124 | S | 0.336 *** | 7.768 | 0.123 | S | ||||
HM3a: EXP-CT x Fc → Use | −0.114 *** | 2.953 | 0.014 | S | −0.048 | 1.237 | 0.003 | NS | ||||
HM2a: EXP-CT x Si → Int | −0.042 | 1.045 | 0.002 | NS | −0.042 | 1.060 | 0.002 | NS | ||||
HM1a: EXP-CT x Ef → Int | 0.035 | 0.758 | 0.001 | NS | 0.035 | 0.757 | 0.001 | NS | ||||
H6a: Eb → Use | 0.294 *** | 6.769 | 0.117 | S | ||||||||
HM4a: Eb x Int → Use | −0.114 *** | 3.129 | 0.022 | S | ||||||||
Organic fertiliser (OF) | ||||||||||||
H1b: Int → Use | −0.046 | 1.374 | 0.362 | 0.003 | 0.354 | NS | −0.065 | 1.823 | 0.368 | 0.006 | 0.359 | NS |
H5b: Fc → Use | 0.594 *** | 19.764 | 0.547 | S | 0.528 *** | 11.707 | 0.236 | S | ||||
H2b: Pe → int | 0.461 *** | 8.464 | 0.219 | S | 0.461 *** | 8.464 | 0.219 | S | ||||
H3b: Ef → Int | 0.108 ** | 2.307 | 0.274 | 0.012 | 0.242 | S | 0.108 ** | 2.307 | 0.274 | 0.012 | 0.242 | S |
H4b: Si → int | 0.000 | 0.005 | 0.000 | NS | 0.000 | 0.005 | 0.000 | NS | ||||
HM3b: EXP-OF x Fc → Use | −0.013 | 0.429 | 0.000 | NS | −0.003 | 0.091 | 0.000 | NS | ||||
HM2b: EXP-OF x Si → Int | −0.027 | 0.614 | 0.001 | NS | −0.027 | 0.614 | 0.001 | NS | ||||
HM1b: EXP-OF x Ef → Int | −0.008 | 0.165 | 0.000 | NS | −0.008 | 0.165 | 0.000 | NS | ||||
H6b: Eb → Use | 0.105 *** | 2.137 | 0.009 | S | ||||||||
HM4b: Eb x Int → Use | −0.005 | 0.137 | 0.000 | NS | ||||||||
Crop association (CRA) | ||||||||||||
H1c: Int → Use | 0.500 *** | 11.017 | 0.516 | 0.324 | 0.368 | S | 0.464 *** | 10.104 | 0.519 | 0.225 | 0.365 | S |
H5c: Fc → Use | 0.155 *** | 5.385 | 0.039 | S | 0.140 *** | 4.054 | 0.025 | S | ||||
H2c: Pe → int | 0.254 *** | 4.797 | 0.050 | S | 0.254 *** | 4.797 | 0.050 | S | ||||
H3c: Ef → Int | 0.072 | 1.665 | 0.387 | 0.004 | 0.369 | NS | 0.072 | 1.665 | 0.387 | 0.004 | 0.369 | NS |
H4c: Si → int | 0.187 *** | 3.912 | 0.040 | S | 0.187 *** | 3.912 | 0.040 | S | ||||
HM3c: EXP-CRA x Fc → Use | 0.183 *** | 4.528 | 0.055 | S | 0.178 *** | 4.149 | 0.005 | S | ||||
HM2c: EXP-CRA x Si → Int | −0.005 | 0.122 | 0.000 | NS | −0.005 | 0.122 | 0.000 | NS | ||||
HM1c: EXP-CRA x Ef → Int | 0.081 | 1.647 | 0.007 | NS | 0.081 | 1.647 | 0.007 | NS | ||||
H6c: Eb → Use | 0.056 | 1.224 | 0.004 | NS | ||||||||
HM4c: Eb x Int → Use | 0.064 | 1.241 | 0.006 | NS | ||||||||
Improved seed adapted to agroecological practices | ||||||||||||
H1d: Int → Use | 0.451 *** | 12.809 | 0.439 | 0.190 | 0.369 | S | 0.451 *** | 12.178 | 0.452 | 0.174 | 0.376 | S |
H5d: Fc → Use | 0.222 *** | 6.810 | 0.053 | S | 0.183 *** | 4.225 | 0.011 | S | ||||
H2d: Pe → int | 0.278 *** | 4.939 | 0.537 | 0.066 | S | 0.278 *** | 4.940 | 0.537 | 0.066 | 0.523 | S | |
H3d: Ef → Int | 0.108 ** | 1.991 | 0.011 | S | 0.108 ** | 1.991 | 0.009 | S | ||||
H4d: Si → int | 0.340 *** | 8.336 | 0.161 | S | 0.340 *** | 8.335 | 0.025 | S | ||||
HM3d: EXP-ISEED-AE x Fc → Use | 0.063 | 1.628 | 0.005 | NS | 0.027 | 0.628 | 0.161 | NS | ||||
HM2d: EXP-ISEED-AE x Si → Int | −0.158 *** | 4.271 | 0.032 | S | −0.158 *** | 4.271 | 0.032 | S | ||||
HM1d: EXP-ISEED-AE x Ef → Int | 0.058 | 1.001 | 0.003 | NS | 0.058 | 1.001 | 0.003 | NS | ||||
H6d: Eb → Use | 0.124 *** | 3.398 | 0.023 | S | ||||||||
HM4d: Eb x Int → Use | 0.027 | 0.628 | 0.001 | NS | ||||||||
Integrated crop management practices (ICMPs) | ||||||||||||
H1e: Int → Use | 0.528 *** | 10.446 | 0.432 | 0.270 | 0.387 | S | 0.428 *** | 8.548 | 0.467 | 0.163 | 0.409 | S |
H5e: Fc → Use | 0.171 *** | 3.195 | 0.028 | S | 0.117 ** | 2.167 | 0.012 | S | ||||
H2e: Pe → int | 0.427 *** | 7.845 | 0.572 | 0.148 | 0.558 | S | 0.427 *** | 7.845 | 0.572 | 0.148 | 0.558 | S |
H3e: Ef → Int | 0.072 | 1.672 | 0.006 | NS | 0.072 | 1.672 | 0.006 | NS | ||||
H4e: Si → int | 0.340 *** | 6.964 | 0.136 | S | 0.340 *** | 6.965 | 0.136 | S | ||||
HM3e: EXP-ICMP x Fc → Use | −0.018 | 0.541 | 0.001 | NS | −0.015 | 0.476 | 0.000 | NS | ||||
HM2e: EXP-ICMP x Si → Int | −0.005 | 0.132 | 0.000 | NS | −0.005 | 0.131 | 0.000 | NS | ||||
HM1e: EXP-ICMP x Ef → Int | −0.014 | 0.350 | 0.000 | NS | −0.014 | 0.350 | 0.000 | NS | ||||
H6e: Eb → Use | 0.255 *** | 6.157 | 0.067 | S | ||||||||
HM4e: Eb x Int → Use | 0.105 *** | 2.920 | 0.014 | S |
Hypotheses | Acceptance Status * | |||
---|---|---|---|---|
Num | Relationship | Description | Original UTAUT | Extended UTAUT |
H1 | H1a: INT → Use | Behavioural intention is a determining factor and positively influences the actual adoption behaviour for CT | S | S |
H1b: INT → Use | Behavioural intention is a determining factor and positively influences the actual adoption behaviour for OF | NS | NS | |
H1c: INT → Use | Behavioural intention is a determining factor and positively influences the actual adoption behaviour for CRA | S | S | |
H1d: INT → Use | Behavioural intention is a determining factor and positively influences the actual adoption behaviour for ISEED-AE | S | S | |
H1e: INT → Use | Behavioural intention is a determining factor and positively influences the actual adoption behaviour for ICMP | S | S | |
H2 | H2a: Pe → Int | Expected performance has a positive influence on the intention to adopt CT | S | S |
H2b: Pe → Int | Expected performance has a positive influence on the intention to adopt OF | S | S | |
H2c: Pe → Int | Expected performance has a positive influence on the intention to adopt CRA | S | S | |
H2d: Pe → Int | Expected performance has a positive influence on the intention to adopt ISEED-AE | S | S | |
H2e: Pe → Int | Expected performance has a positive influence on the intention to adopt ICMP | S | S | |
H3 | H3a: Ef → Int | Expected effort has a positive effect on behavioural intention in the adoption of CT | NS | NS |
H3b: Ef → Int | Expected effort has a positive effect on behavioural intention in the adoption of OF | S | S | |
H3c: Ef → Int | Expected effort has a positive effect on behavioural intention in the adoption of CRA | NS | NS | |
H3d: Ef → Int | Expected effort has a positive effect on behavioural intention in the adoption of ISEED-AE | S | S | |
H3e: Ef → Int | Expected effort has a positive effect on behavioural intention in the adoption of ICMP | NS | NS | |
H4 | H4a: Si → Int | Social influence has a significant and positive effect on behavioural intention to adopt CT | S | S |
H4b: Si → Int | Social influence has a significant and positive effect on behavioural intention to adopt OF | NS | NS | |
H4c: Si → Int | Social influence has a significant and positive effect on behavioural intention to adopt CRA | S | S | |
H4d: Si → Int | Social influence has a significant and positive effect on behavioural intention to adopt ISEED-AE | S | S | |
H4e: Si → Int | Social influence has a significant and positive effect on behavioural intention to adopt ICMP | S | S | |
H5 | H5a: Fc → Int | Facilitating conditions directly and positively influence the adoption of CT | S | S |
H5b: Fc → Int | Facilitating conditions directly and positively influence the adoption of OF | S | S | |
H5c: Fc → Int | Facilitating conditions directly and positively influence the adoption of CRA | S | S | |
H5d: Fc → Int | Facilitating conditions directly and positively influence the adoption of ISEED-AE | S | S | |
H5e: Fc → Int | Facilitating conditions directly and positively influence the adoption of ICMP | S | S | |
H6 | H6a: Eb → Use | Perceived net benefit directly affects and positively influences the adoption of CT | - | S |
H6b: Eb → Use | Perceived net benefit directly affects and positively influences the adoption of OF | - | S | |
H6c: Eb → Use | Perceived net benefit directly affects and positively influences the adoption of CRA | - | S | |
H6d: Eb → Use | Perceived net benefit directly affects and positively influences the adoption of ISEED-AE | - | S | |
H6e: Eb → Use | Perceived net benefit directly affects and positively influences the adoption of ICMP | - | S | |
HM1 | HM1a: EXP-CT × Ef → Int | Experience has a mediating effect on the relationship between the expected effort and BI to adopt CT | NS | NS |
HM1b: EXP-OF × Ef → Int | Experience has a mediating effect on the relationship between the expected effort and BI to adopt OF | NS | NS | |
HM1c: EXP-CRA × Ef → Int | Experience has a mediating effect on the relationship between the expected Ef and BI to adopt CRA | NS | NS | |
HM1d: EXP-ISEED-AE × Ef → Int | Experience has a mediating effect on the relationship between the expected Ef and BI to adopt ISEED-AE | NS | NS | |
HM1e: EXP-ICMP × Ef → Int | Experience has a mediating effect on the relationship between the expected Ef and BI to adopt ICMP | NS | NS | |
HM2 | HM2a: EXP-CT × Si → Int | Experience has a mediating effect on the relationship between the social influence and Int to adopt CT | NS | NS |
HM2b: EXP-OF × Si → Int | Experience has a mediating effect on the relationship between the social influence and Int to adopt OF | NS | NS | |
HM2c: EXP-CRA × Si → Int | Experience has a mediating effect on the relationship between the Si and Int to adopt CRA | NS | NS | |
HM2d: EXP-ISEED-AE × Si → Int | Experience has a mediating effect on the relationship between the Si and Int to adopt ISEED-AE | S | S | |
HM2e: EXP-ICMP × Si → Int | Experience has a mediating effect on the relationship between the Si and Int to adopt ICMP | NS | NS | |
HM3 | HM3a: EXP-CT × Fc → Use | Experience has a mediating effect on the relationship between the Fc and actual use behaviour in adopting CT | S | NS |
HM3b: EXP-OF × Fc → Use | Experience has a mediating effect on the relationship between the Fc and actual use behaviour in adopting OF | NS | NS | |
HM3c: EXP-CRA × Fc → Use | Experience has a mediating effect on the relationship between the Fc and actual use behaviour in adopting CRA | S | S | |
HM3d: EXP-ISEED-AE × Fc → Use | Experience has a mediating effect on the relationship between the Fc and actual use behaviour in adopting ISEED-AE | NS | NS | |
HM3e: EXP-ICMP × Fc → Use | Experience has a mediating effect on the relationship between the Fc and actual use behaviour in adopting ICMP | NS | NS | |
HM4 | HM4a: Eb × Int → Use | Expected net benefit has a mediating effect on the relationship between the Int to adopt and actual use behaviour in adopting CT | - | S |
HM4b: Eb × Int → Use | Expected net benefit has a mediating effect on the relationship between the Int to adopt and actual use behaviour in adopting OF | - | NS | |
HM4c: Eb × Int → Use | Expected net benefit has a mediating effect on the relationship between the Int to adopt and actual use behaviour in adopting CRA | - | NS | |
HM4d: Eb × Int → Use | Expected net benefit has a mediating effect on the relationship between the Int to adopt and actual use behaviour in adopting ISEED-AE | - | NS | |
HM4e: Eb × Int → Use | Expected net benefit has a mediating effect on the relationship between the Int to adopt and actual use behaviour in adopting ICMP | - | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidibé, M.; Zannou, A.; Saliou, I.O.; Sacko, I.; Aoudji, A.K.N.; Assogbadjo, A.E.; Coulibaly, H.; Koné, B. Determining Factors Affecting Agroecological Practices’ Acceptance and Use in Mali, West Africa. Sustainability 2024, 16, 11002. https://doi.org/10.3390/su162411002
Sidibé M, Zannou A, Saliou IO, Sacko I, Aoudji AKN, Assogbadjo AE, Coulibaly H, Koné B. Determining Factors Affecting Agroecological Practices’ Acceptance and Use in Mali, West Africa. Sustainability. 2024; 16(24):11002. https://doi.org/10.3390/su162411002
Chicago/Turabian StyleSidibé, Moumouni, Afio Zannou, Idelphonse O. Saliou, Issa Sacko, Augustin K. N. Aoudji, Achille Ephrem Assogbadjo, Harouna Coulibaly, and Bourema Koné. 2024. "Determining Factors Affecting Agroecological Practices’ Acceptance and Use in Mali, West Africa" Sustainability 16, no. 24: 11002. https://doi.org/10.3390/su162411002
APA StyleSidibé, M., Zannou, A., Saliou, I. O., Sacko, I., Aoudji, A. K. N., Assogbadjo, A. E., Coulibaly, H., & Koné, B. (2024). Determining Factors Affecting Agroecological Practices’ Acceptance and Use in Mali, West Africa. Sustainability, 16(24), 11002. https://doi.org/10.3390/su162411002