Promoting a Circular Economy in Mining Practices
Abstract
:1. Introduction
1.1. Concept of Circular Economy
1.1.1. Circular Economy Principles
1.1.2. Application to the Mining Sector
1.2. Rationale for Circular Economy in Mining
1.2.1. Environmental Concerns and Resource Depletion
1.2.2. Economic Benefits and Sustainable Resource Management
1.3. Scope and Objectives of This Review
1.3.1. Exploration of Circular Economy Practices in Mining
1.3.2. Assessment of Challenges and Opportunities
2. Fundamental Concepts of Circular Mining
2.1. Closing Material Loops
2.1.1. Strategies for Recycling and Reusing Mining By-Products
2.1.2. Design for Modularity and R-Cycle Technologies for Mining By-Products
2.2. Sustainable Mining Practices
2.2.1. Responsible Extraction and Resource Conservation
2.2.2. Minimization of Waste and Loss
3. Circular Economy Strategies in Mining
3.1. Material Recovery and Recycling
3.1.1. Case Studies of Successful Material Recovery Initiatives
3.1.2. Technological Advancements in R-Cycling Physical Mining Waste
4. Innovative Technologies for Circular Mining
4.1. Advanced Separation and Sorting Techniques
4.1.1. Application of Advanced Technologies for Efficient Material Separation
4.1.2. Sensor-Based Sorting and Automation in Mining Processes
4.2. Circular Design Principles
4.2.1. Integration of Circular Design in Mining Equipment and Processes
4.2.2. Sustainable CE Disposal and Disassembly
5. Environmental and Social Impacts
5.1. Environmental Benefits of Circular Mining
5.1.1. Reduction in Environmental Degradation and Pollution
5.1.2. Preservation of Biodiversity and Ecosystems
5.2. Social Considerations and Community Engagement
5.2.1. Community Involvement in Circular Mining Projects
5.2.2. Social Acceptance and Ethical Considerations
6. Challenges and Barriers
6.1. Technological Challenges
6.1.1. Adoption of Innovative Technologies in Traditional Mining Practices
6.1.2. Technical Limitations and Feasibility Issues
6.2. Regulatory and Policy Challenge
6.2.1. Evaluation of Existing Regulations and Policies
6.2.2. Recommendations for Policy Improvements to Support Circular Mining
7. Future Directions and Research Needs
7.1. Research Gaps and Opportunities
7.1.1. Areas Requiring Further Investigation and Development
7.1.2. Potential for Interdisciplinary Collaboration and Knowledge Transfer
7.2. Roadmap for Future Circular Mining Initiatives
7.2.1. Key Steps Toward Widespread Adoption of Circular Practices in Mining
7.2.2. Collaborative Efforts and Partnerships for Industry Transformation
8. Conclusions
8.1. Summary of Key Findings
8.2. Implications for the Future of Mining
8.3. Call to Action for Industry Stakeholders and Policymakers
Author Contributions
Funding
Conflicts of Interest
References
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Ruiz-Real, J.L.; Uribe-Toril, J.; De Pablo Valenciano, J.; Gázquez-Abad, J.C. Worldwide Research on Circular Economy and Environment: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2699. [Google Scholar] [CrossRef]
- Angelis, R.D. Circular Economy and Paradox Theory: A Business Model Perspective. J. Clean. Prod. 2021, 285, 124823. [Google Scholar] [CrossRef]
- Adams, K.T.; Osmani, M.; Thorpe, T.; Thornback, J. Circular Economy in Construction: Current Awareness, Challenges and Enablers. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2017, 170, 15–24. [Google Scholar] [CrossRef]
- Friant, M.C.; Vermeulen, W.J.V.; Salomone, R. A Typology of Circular Economy Discourses: Navigating the Diverse Visions of a Contested Paradigm. Resour. Conserv. Recycl. 2020, 161, 104917. [Google Scholar] [CrossRef]
- Villachica, C.; Clemente-Jul, C.; Villachica, J.; Villachica, L.; Llamosas, J. Circular Economy in Tailings Management. Mine Water Environ. 2021, 40, 23–35. [Google Scholar] [CrossRef]
- Abbadi, A.; Mucsi, G. A Review on Complex Utilization of Mine Tailings: Recovery of Rare Earth Elements and Residue Valorization. J. Environ. Chem. Eng. 2024, 12, 113118. [Google Scholar] [CrossRef]
- Araujo, F.S.M.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and Reuse of Mine Tailings: A Review of Advancements and Their Implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- Adiguzel, D.; Tuylu, S.; Eker, H. Utilization of Tailings in Concrete Products: A Review. Constr. Build. Mater. 2022, 360, 129574. [Google Scholar] [CrossRef]
- Miller, K.D.; Bentley, M.J.; Ryan, J.N.; Linden, K.G.; Larison, C.; Kienzle, B.A.; Katz, L.E.; Wilson, A.M.; Cox, J.T.; Kurup, P.; et al. Mine Water Use, Treatment, and Reuse in the United States: A Look at Current Industry Practices and Select Case Studies. ACS EST Eng. 2022, 2, 391–408. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular Economy and the Matter of Integrated Resources. Sci. Total Environ. 2019, 689, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Hudson-Edwards, K.A.; Kemp, D.; Torres-Cruz, L.A.; Macklin, M.G.; Brewer, P.A.; Owen, J.R.; Franks, D.M.; Marquis, E.; Thomas, C.J. Tailings Storage Facilities, Failures and Disaster Risk. Nat. Rev. Earth Environ. 2024, 5, 612–630. [Google Scholar] [CrossRef]
- Tan, J.; Tan, F.J.; Ramakrishna, S. Transitioning to a Circular Economy: A Systematic Review of Its Drivers and Barriers. Sustainability 2022, 14, 1757. [Google Scholar] [CrossRef]
- Yang, C.; Xin, X.; Li, X.; Li, L. Role of Natural Resource and Mineral Rent on Economic Development: Perspective on Green Reforms and Financial Management. Resour. Policy 2024, 95, 105181. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Halter, F.; Jeanjean, S.; Chauveau, C.; Berro, Y.; Balat-Pichelin, M.; Brilhac, J.F.; Andrieu, A.; Schonnenbeck, C.; Leyssens, G.; Dumand, C. Recyclable Metal Fuels as Future Zero-Carbon Energy Carrier. Appl. Energy Combust. Sci. 2023, 13, 100100. [Google Scholar] [CrossRef]
- Kotarska, I.; Mizera, B.; Stefanek, P. Mining Waste in the Circular Economy—Idea Versus Reality. E3S Web Conf. 2018, 41, 02013. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a Sustainable Circular Economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Eshwar, D.; Chatterjee, S.; Kaunda, R.; Miller, H.; Majdara, A. An Information Entropy–Based Risk (IER) Index of Mining Safety Using Clustering and Statistical Methods. Min. Metall. Explor. 2024, 41, 1693–1708. [Google Scholar] [CrossRef]
- Martinez-Alier, J. Circularity, Entropy, Ecological Conflicts and LFFU. Local Environ. 2022, 27, 1182–1207. [Google Scholar] [CrossRef]
- Demajorovic, J.; Pisano, V.; Pimenta, A.A.F. Reframing the Social Acceptance of Mining Projects: The Contribution of Social Impact Assessment in the Brazilian Amazon. Curr. Sociol. 2024, 72, 649–671. [Google Scholar] [CrossRef]
- More than 2000 Mine Workers Extend Underground Protest into Second Day in South Africa|AP News. Available online: https://apnews.com/article/south-africa-mine-platinum-strike-protest-6bc4a33130cb37e33ca8346021aa84fa (accessed on 4 October 2024).
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef]
- Cole, M.J. ESG Risks to Global Platinum Supply: A Case Study of Mogalakwena Mine, South Africa. Resour. Policy 2023, 85, 104054. [Google Scholar] [CrossRef]
- Environmental, Social and Governance (ESG) Ratings: Council and Parliament Reach Agreement—Consilium. Available online: https://www.consilium.europa.eu/en/press/press-releases/2024/02/05/environmental-social-and-governance-esg-ratings-council-and-parliament-reach-agreement/ (accessed on 4 October 2024).
- Pinchuk, A.; Tkalenko, N.; Marhasova, V. Implementation of Circular Economy Elements in the Mining Regions. E3S Web Conf. 2019, 105, 04048. [Google Scholar] [CrossRef]
- Machairas, E.; Varouchakis, E.A. Cost–Benefit Analysis and Risk Assessment for Mining Activities in Terms of Circular Economy and Their Environmental Impact. Geosciences 2023, 13, 318. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste Management in the Mining Industry of Metals Ores, Coal, Oil and Natural Gas—A Review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef] [PubMed]
- Corporate Environmental Responsibility within the Circular Economy Context: Opportunities for Development and Sustainability. Available online: https://ideas.repec.org/a/nwe/eajour/y2019i2p184-204.html (accessed on 4 October 2024).
- Hamraoui, L.; Bergani, A.; Ettoumi, M.; Aboulaich, A.; Taha, Y.; Khalil, A.; Neculita, C.M.; Benzaazoua, M. Towards a Circular Economy in the Mining Industry: Possible Solutions for Water Recovery through Advanced Mineral Tailings Dewatering. Minerals 2024, 14, 319. [Google Scholar] [CrossRef]
- Igogo, T.; Awuah-Offei, K.; Newman, A.; Lowder, T.; Engel-Cox, J. Integrating Renewable Energy into Mining Operations: Opportunities, Challenges, and Enabling Approaches. Appl. Energy 2021, 300, 117375. [Google Scholar] [CrossRef]
- Pouresmaieli, M.; Ataei, M.; Qarahasanlou, A.N.; Barabadi, A. Integration of Renewable Energy and Sustainable Development with Strategic Planning in the Mining Industry. Results Eng. 2023, 20, 101412. [Google Scholar] [CrossRef]
- Raju, R. Critical Minerals from Primary and Secondary Geological Sources, and Their Recovery-Extraction with Indian Examples. Acad. Eng. 2024, 1, 15. [Google Scholar]
- Buckley, R.; Spagnuolo, E. Techno-Economic Assessment of Underground Mine Dewatering Systems. In Proceedings of the Deep Mining 2024: 10th International Conference on Deep and High Stress Mining, Montreal, QC, Canada, 24–26 September 2024; Cumming-Potvin, D., Andrieux, P., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2024; pp. 1481–1494. [Google Scholar]
- Kinnunen, P.; Obenaus-Emler, R.; Raatikainen, J.; Guignot, S.; Guimerà, J.; Ciroth, A.; Heiskanen, K. Review of Closed Water Loops with Ore Sorting and Tailings Valorisation for a More Sustainable Mining Industry. J. Clean. Prod. 2021, 278, 123237. [Google Scholar] [CrossRef]
- How Past Mining Practices Led to Today’s Permitting Rules in Nevada|DCNR. Available online: https://dcnr.nv.gov/blogs/how-past-mining-practices-led-to-todays-permitting-rules-in-nevada (accessed on 5 October 2024).
- Matebese, F.; Mosai, A.K.; Tutu, H.; Tshentu, Z.R. Mining Wastewater Treatment Technologies and Resource Recovery Techniques: A Review. Heliyon 2024, 10, e24730. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef]
- Do, T.N.; Burke, P.J. Phasing out Coal Power in a Developing Country Context: Insights from Vietnam. Energy Policy 2023, 176, 113512. [Google Scholar] [CrossRef]
- Kretschmann, J. Sustainable Change of Coal-Mining Regions. Min. Metall. Explor. 2020, 37, 167–178. [Google Scholar] [CrossRef]
- Estimated Economic & Fiscal Impacts From New Lithium Mining & Processing Operations in Humboldt County, Nevada|Extension|University of Nevada, Reno. Available online: https://extension.unr.edu/publication.aspx?PubID=5291 (accessed on 5 October 2024).
- “Lithium Loop” Push in Nevada Would Centralize Production, but Not Without Critics. Available online: https://knpr.org/show/knprs-state-of-nevada/2023-11-09/lithium-loop-push-in-nevada-would-centralize-production-but-not-without-critics (accessed on 5 October 2024).
- American Battery Technology Commences Operations of Revolutionary Lithium-Ion Battery Recycling Facility in Nevada—GreentechLead. Available online: https://greentechlead.com/electric-vehicle/american-battery-technology-commences-operations-of-revolutionary-lithium-ion-battery-recycling-facility-in-nevada-44330 (accessed on 5 October 2024).
- Parameswari, K.; Aamri, A.M.S.A.; Gopalakrishnan, K.; Arunachalam, S.; Alawi, A.A.S.A.; Sivasakthivel, T. Sustainable Landfill Design for Effective Municipal Solid Waste Management for Resource and Energy Recovery. Mater. Today Proc. 2021, 47, 2441–2449. [Google Scholar] [CrossRef]
- Bruel, A.; Kronenberg, J.; Troussier, N.; Guillaume, B. Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy. J. Ind. Ecol. 2019, 23, 12–21. [Google Scholar] [CrossRef]
- Kouihen, F.E.; Baba, Y.F.; AitOusaleh, H.; Elharrak, A.; Elalami, K.; Bennouna, E.; Faik, A. Investigation of Thermal Energy Storage System Based on Mining By-Products for the Recovery of Moroccan Mining Industrial Waste Heat. Appl. Therm. Eng. 2023, 230, 120708. [Google Scholar] [CrossRef]
- Baidya, D.; de Brito, M.A.R.; Sasmito, A.P.; Scoble, M.; Ghoreishi-Madiseh, S.A. Recovering Waste Heat from Diesel Generator Exhaust; an Opportunity for Combined Heat and Power Generation in Remote Canadian Mines. J. Clean. Prod. 2019, 225, 785–805. [Google Scholar] [CrossRef]
- Taha, Y.; Elghali, A.; Derhy, M.; Amrani, M.; Hakkou, R.; Benzaazoua, M. Towards an Integrated Approach for Zero Coal Mine Waste Storage: Solutions Based on Materials Circularity and Sustainable Resource Governance. Miner. Process. Extr. Metall. Rev. 2023, 44, 375–388. [Google Scholar] [CrossRef]
- Falshtynskyi, V.; Dychkovskyi, R.; Khomenko, O.; Kononenko, M. On the Formation of a Mine-Based Energy Resource Complex. E3S Web Conf. 2020, 201, 01020. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, Z.; Zhu, M.; Chen, H.; Guo, T.; Zhang, K.; Ma, S.; Sun, L. Hybrid Prediction Method of Blast Furnace Gas Generation Considering Multi-Operation Modes in Steel Plants near the City. Sustain. Energy Technol. Assess. 2023, 56, 103031. [Google Scholar] [CrossRef]
- Li, P.; Sun, F.; Dong, Y.; Wen, L.; Lin, L.; Li, X. Utilization of Drinking Water Treatment Sludge with Coal Fly Ash to Make Permeable Bricks for Low Impact Development. Resour. Conserv. Recycl. 2025, 212, 107932. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and Avenues for Acid Mine Drainage Treatment, Beneficiation, and Valorisation in Circular Economy: A Review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Guo, S.; Cao, M.; Zhang, Y.; Asefi, B.; Sun, S.; Feng, M.; Sun, Q.; Yu, C.-P. A Closed-Loop System to Recycle Rare Earth Elements from Industrial Sludge Using Green Leaching Agents and Porous β-Cyclodextrin Polymer Composite. Resour. Conserv. Recycl. 2022, 180, 106152. [Google Scholar] [CrossRef]
- Madzivire, G.; Maleka, R.M.; Tekere, M.; Petrik, L.F. Cradle to Cradle Solution to Problematic Waste Materials from Mine and Coal Power Station: Acid Mine Drainage, Coal Fly Ash and Carbon Dioxide. J. Water Process Eng. 2019, 30, 100474. [Google Scholar] [CrossRef]
- Maldonado-Alameda, A.; Mañosa, J.; Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Alkali-Activated Binders Using Bottom Ash from Waste-to-Energy Plants and Aluminium Recycling Waste. Appl. Sci. 2021, 11, 3840. [Google Scholar] [CrossRef]
- Chmiela, A.; Wrona, P.; Magdziarczyk, M.; Liu, R.; Zhang, L.; Smolinski, A. Hydrogen Storage and Combustion for Blackout Protection of Mine Water Pumping Stations. Energies 2024, 17, 2357. [Google Scholar] [CrossRef]
- Vyas, S.; Prajapati, P.; Shah, A.V.; Srivastava, V.K.; Varjani, S. Opportunities and Knowledge Gaps in Biochemical Interventions for Mining of Resources from Solid Waste: A Special Focus on Anaerobic Digestion. Fuel 2022, 311, 122625. [Google Scholar] [CrossRef]
- Bora, R.R.; Richardson, R.E.; You, F. Resource Recovery and Waste-to-Energy from Wastewater Sludge via Thermochemical Conversion Technologies in Support of Circular Economy: A Comprehensive Review. BMC Chem. Eng. 2020, 2, 8. [Google Scholar] [CrossRef]
- Islam, M.T.; Iyer-Raniga, U. Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling 2022, 7, 33. [Google Scholar] [CrossRef]
- Alam, M.A.; Sepúlveda, R. Environmental Degradation through Mining for Energy Resources: The Case of the Shrinking Laguna Santa Rosa Wetland in the Atacama Region of Chile. Energy Geosci. 2022, 3, 182–190. [Google Scholar] [CrossRef]
- Maest, A.S. Remining for Renewable Energy Metals: A Review of Characterization Needs, Resource Estimates, and Potential Environmental Effects. Minerals 2023, 13, 1454. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Singh, D.; Avtar, R.; Hwang, G.H.; Setiadi, T.; Lo, W. Technological Solutions for Long-Term Storage of Partially Used Nuclear Waste: A Critical Review. Ann. Nucl. Energy 2022, 166, 108736. [Google Scholar] [CrossRef]
- Agboola, O.; Babatunde, D.E.; Fayomi, O.S.I.; Sadiku, E.R.; Popoola, P.; Moropeng, L.; Yahaya, A.; Mamudu, O.A. A Review on the Impact of Mining Operation: Monitoring, Assessment and Management. Results Eng. 2020, 8, 100181. [Google Scholar] [CrossRef]
- Fabbri, D.; Pizzol, R.; Calza, P.; Malandrino, M.; Gaggero, E.; Padoan, E.; Ajmone-Marsan, F. Constructed Technosols: A Strategy toward a Circular Economy. Appl. Sci. 2021, 11, 3432. [Google Scholar] [CrossRef]
- Akhmaddhian, S.; Supartono, T.; Anugrah, D.; Hidayat, S.; Budiman, H.; Yuhandra, E.; Setiawan, W. The Effectiveness of Post-Mining Land Rehabilitation Policy in Realizing Environmental Sustainability: Lessons from Sukageuri View, Kuningan, West Java. J. Degraded Min. Lands Manag. 2023, 11, 5059. [Google Scholar] [CrossRef]
- Tetteh, E.; Ampofo, K.; Logah, V. Adopted Practices for Mined Land Reclamation in Ghana: A Case Study of Anglogold Ashanti Iduapriem Mine Ltd. J. Sci. Technol. Ghana 2015, 35, 77. [Google Scholar] [CrossRef]
- Githiria, J.M.; Onifade, M. The Impact of Mining on Sustainable Practices and the Traditional Culture of Developing Countries. J. Environ. Stud. Sci. 2020, 10, 394–410. [Google Scholar] [CrossRef]
- Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N. Circular Economy, Degrowth and Green Growth as Pathways for Research on Sustainable Development Goals: A Global Analysis and Future Agenda. Ecol. Econ. 2021, 185, 107050. [Google Scholar] [CrossRef]
- Zorpas, A.A. The Hidden Concept and the Beauty of Multiple “R” in the Framework of Waste Strategies Development Reflecting to Circular Economy Principles. Sci. Total Environ. 2024, 952, 175508. [Google Scholar] [CrossRef]
- Walker, A.M.; Opferkuch, K.; Roos Lindgreen, E.; Raggi, A.; Simboli, A.; Vermeulen, W.J.V.; Caeiro, S.; Salomone, R. What Is the Relation between Circular Economy and Sustainability? Answers from Frontrunner Companies Engaged with Circular Economy Practices. Circ. Econ. Sustain. 2022, 2, 731–758. [Google Scholar] [CrossRef]
- Akomolafe, D.T.; Yerokun, O.M.; Akande, S. Challenges and Prospects of the Deployment of Blue Economy in the Coastal Areas of Ondo State. J. Prod. Oper. Manag. Econ. 2022, 2, 10–23. [Google Scholar] [CrossRef]
- Hobson, K.; Lynch, N. Diversifying and De-Growing the Circular Economy: Radical Social Transformation in a Resource-Scarce World. Futures 2016, 82, 15–25. [Google Scholar] [CrossRef]
- Striani, F. Green and Blue Economy: Definitions, Challenges and Limits. Int. J. Environ. Sustain. Green Technol. 2020, 11, 16–33. [Google Scholar] [CrossRef]
- Urbano, D.; Turro, A.; Wright, M.; Zahra, S. Corporate Entrepreneurship: A Systematic Literature Review and Future Research Agenda. Small Bus. Econ. 2022, 59, 1541–1565. [Google Scholar] [CrossRef]
- Phiri, O.; Mantzari, E.; Gleadle, P. Stakeholder Interactions and Corporate Social Responsibility (CSR) Practices: Evidence from the Zambian Copper Mining Sector. Account. Audit. Account. J. 2018, 32, 26–54. [Google Scholar] [CrossRef]
- Pau, S.; Contu, G.; Rundeddu, V. From Mine Industries to a Place of Culture, Tourism, Research and Higher Education: Case Study of the Great Mine Serbariu. J. Cult. Herit. Manag. Sustain. Dev. 2024, 14, 282–296. [Google Scholar] [CrossRef]
- Yuana, S.L.; Wiliyanto, W.; Hadiyantono, T.A.; Figueroa, M.J.; Hapsari, M.; Pinem, M.L.B. Mundane Circular Economy Policy: Mainstreaming CE Education through the Agency of Schools. J. Clean. Prod. 2024, 440, 140847. [Google Scholar] [CrossRef]
- Xavier, L.H.; Ottoni, M.; Abreu, L.P.P. A Comprehensive Review of Urban Mining and the Value Recovery from E-Waste Materials. Resour. Conserv. Recycl. 2023, 190, 106840. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, Z.; Hu, J.; Cao, A.; Liang, H. A Cost-Benefit Analysis of Landfill Mining and Material Recycling in China. Waste Manag. 2015, 35, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Schoenberger, E. Environmentally Sustainable Mining: The Case of Tailings Storage Facilities. Resour. Policy 2016, 49, 119–128. [Google Scholar] [CrossRef]
- Kim, N.; Park, D. Biosorptive Treatment of Acid Mine Drainage: A Review. Int. J. Environ. Sci. Technol. 2022, 19, 9115–9128. [Google Scholar] [CrossRef]
- Chen, G.; Ye, Y.; Yao, N.; Hu, N.; Zhang, J.; Huang, Y. A Critical Review of Prevention, Treatment, Reuse, and Resource Recovery from Acid Mine Drainage. J. Clean. Prod. 2021, 329, 129666. [Google Scholar] [CrossRef]
- Ferrante, M.; Vitti, M.; Facchini, F.; Sassanelli, C. Mapping the Relations between the Circular Economy Rebound Effects Dimensions: A Systematic Literature Review. J. Clean. Prod. 2024, 456, 142399. [Google Scholar] [CrossRef]
- Díaz-Pilpe, J.; Maldonado-Galarza, F.; Helguero, C.G.; Ramírez, E.; Rejeb, H.B.; Zwolinski, P.; Hidalgo-Crespo, J.; Amaya-Rivas, J.L. Methodology for the Third-Party Reconditioning Process of Automotive Vented Lead-Acid (VLA) Batteries. Procedia CIRP 2023, 118, 970–975. [Google Scholar] [CrossRef]
- Shengo, L.M. Review of Practices in the Managements of Mineral Wastes: The Case of Waste Rocks and Mine Tailings. Water. Air. Soil Pollut. 2021, 232, 273. [Google Scholar] [CrossRef]
- Towards Zero Harm: A Compendium of Papers—Global Tailings Review. Available online: https://globaltailingsreview.org/compendium/ (accessed on 5 October 2024).
- Yu, H.; Zahidi, I.; Chow, M.F.; Liang, D.; Madsen, D.Ø. Reimagining Resources Policy: Synergizing Mining Waste Utilization for Sustainable Construction Practices. J. Clean. Prod. 2024, 464, 142795. [Google Scholar] [CrossRef]
- New Global Industry Standard on Tailings Management Aims to Improve the Safety of Tailings Facilities in the Mining Industry. Available online: https://www.unep.org/news-and-stories/press-release/new-global-industry-standard-tailings-management-aims-improve-safety (accessed on 5 October 2024).
- Manaviparast, H.R.; Miranda, T.; Pereira, E.; Cristelo, N. A Comprehensive Review on Mine Tailings as a Raw Material in the Alkali Activation Process. Appl. Sci. 2024, 14, 5127. [Google Scholar] [CrossRef]
- Kivinen, S. Sustainable Post-Mining Land Use: Are Closed Metal Mines Abandoned or Re-Used Space? Sustainability 2017, 9, 1705. [Google Scholar] [CrossRef]
- Yuan, S.; Sui, W.; Han, G.; Duan, W. An Optimized Combination of Mine Water Control, Treatment, Utilization, and Reinjection for Environmentally Sustainable Mining: A Case Study. Mine Water Environ. 2022, 41, 828–839. [Google Scholar] [CrossRef]
- Khalil, A.; Argane, R.; Benzaazoua, M.; Bouzahzah, H.; Taha, Y.; Hakkou, R. Pb–Zn Mine Tailings Reprocessing Using Centrifugal Dense Media Separation. Miner. Eng. 2019, 131, 28–37. [Google Scholar] [CrossRef]
- Zhu, J.; Mathews, I.; Ren, D.; Li, W.; Cogswell, D.; Xing, B.; Sedlatschek, T.; Kantareddy, S.N.R.; Yi, M.; Gao, T.; et al. End-of-Life or Second-Life Options for Retired Electric Vehicle Batteries. Cell Rep. Phys. Sci. 2021, 2, 100537. [Google Scholar] [CrossRef]
- Bunke, S.; Chen, X.; Machala, M.; Azevedo, I.; Benson, S.; Tarpeh, W.A. Life Cycle Comparison of Battery Recycling and Conventional Material Refining. In ECS Meeting Abstracts; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2022; Volume MA2022-01, p. 586. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Iron and Steel Recycling: Review, Conceptual Model, Irreducible Mining Requirements, and Energy Implications. Renew. Sustain. Energy Rev. 2021, 138, 110553. [Google Scholar] [CrossRef]
- Hu, C.; Yang, Z.; He, M.; Zhan, Y.; Zhang, Z.; Peng, C.; Zeng, L.; Liu, Y.; Yang, Z.; Yin, H.; et al. From Waste to Wealth: Current Advances in Recycling Technologies for Metal Recovery from Vanadium-Titanium Magnetite Tailings. J. Sustain. Metall. 2024, 10, 1007–1035. [Google Scholar] [CrossRef]
- Alterary, S.S.; Marei, N.H. Fly Ash Properties, Characterization, and Applications: A Review. J. King Saud Univ. Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Rabah, M.A.; Barakat, M.A. Energy Saving and Pollution Control for Short Rotary Furnace in Secondary Lead Smelters. Renew. Energy 2001, 23, 561–577. [Google Scholar] [CrossRef]
- Topal, E.; Ramazan, S. A New MIP Model for Mine Equipment Scheduling by Minimizing Maintenance Cost. Eur. J. Oper. Res. 2010, 207, 1065–1071. [Google Scholar] [CrossRef]
- Bao, H.; Knights, P.; Kizil, M.; Nehring, M. Electrification Alternatives for Open Pit Mine Haulage. Mining 2023, 3, 1–25. [Google Scholar] [CrossRef]
- More, K.S.; Wolkersdorfer, C.; Kang, N.; Elmaghraby, A.S. Automated Measurement Systems in Mine Water Management and Mine Workings—A Review of Potential Methods. Water Resour. Ind. 2020, 24, 100136. [Google Scholar] [CrossRef]
- Case Study: Responsible Mining and Minerals—ProQuest. Available online: https://www.proquest.com/docview/2753400329?sourcetype=Trade%20Journals (accessed on 5 October 2024).
- Vassileva, H.T.; Ivanov, E.B.; Ivaylo, S.; Todorov, H.P. Chapter 14—Industry 4.0−based Solid Waste Management and Future Prospects in Circular Economy. In Advances in Energy from Waste; Vambol, V., Vambol, S., Khan, N.A., Mozaffari, N., Mozaffari, N., Eds.; Woodhead Advances in Pollution Research; Woodhead Publishing: Sawston, UK, 2024; pp. 457–502. ISBN 978-0-443-13847-8. [Google Scholar]
- Tian, X.; Forster, J.; Bobicki, E.R. Technological and Economic Considerations for the Application of Combined Microwave Assisted Comminution and Multi-Sensor Ore Sorting. Miner. Eng. 2024, 208, 108582. [Google Scholar] [CrossRef]
- Duan, B.; Bobicki, E.R.; Hum, S.V. Application of Microwave Imaging in Sensor-Based Ore Sorting. Miner. Eng. 2023, 202, 108303. [Google Scholar] [CrossRef]
- Upadhyay, A.; Laing, T.; Kumar, V.; Dora, M. Exploring Barriers and Drivers to the Implementation of Circular Economy Practices in the Mining Industry. Resour. Policy 2021, 72, 102037. [Google Scholar] [CrossRef]
- Tailings of the Future: Hydraulic Dewatered Stacking (HDS) Completes Initial Testing in Chile|Anglo American. Available online: https://www.angloamerican.com/our-stories/environment/tailings-of-the-future-hydraulic-dewatered-stacking-hds-completes-initial-testing-in-chile (accessed on 15 November 2024).
- Charge on Innovation Challenge|Electrifying Mining. Available online: https://chargeoninnovation.com/ (accessed on 15 November 2024).
- Corder, G.D. Insights from Case Studies into Sustainable Design Approaches in the Minerals Industry. Miner. Eng. 2015, 76, 47–57. [Google Scholar] [CrossRef]
- ICMM—ICMM Annual Review 2008. Available online: https://www.icmm.com/en-gb/annual-reports/2008 (accessed on 28 November 2024).
- Noori, S.; Korevaar, G.; Ramirez, A.R. Assessing Industrial Symbiosis Potential in Emerging Industrial Clusters: The Case of Persian Gulf Mining and Metal Industries Special Economic Zone. J. Clean. Prod. 2021, 280, 124765. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Fearnley, L.; Silva, A. Urban Mining in Buildings for a Circular Economy: Planning, Process and Feasibility Prospects. Resour. Conserv. Recycl. 2021, 174, 105754. [Google Scholar] [CrossRef]
- Monazzam, A.; Crawford, J. The Role of Enterprise Risk Management in Enabling Organisational Resilience: A Case Study of the Swedish Mining Industry. J. Manag. Control 2024, 35, 59–108. [Google Scholar] [CrossRef]
- Borms, L. Out With Jobs and in With Skills: Measuring Current Circular Jobs and Analyzing Future Necessary Skills. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2024. [Google Scholar]
- Asbjörnsson, G.; Sköld, A.; Zougari, S.; Yar, A.-G.; Kamel, N.; Turlur-Chabanon, S.; Bhadani, K.; Gowda, V.; Lee, C.; Hulthén, E.; et al. Development of Production and Environmental Platforms for the European Aggregates and Minerals Industries. Miner. Eng. 2024, 206, 108519. [Google Scholar] [CrossRef]
- Setiawan, A.A.; Budianta, D.; Suheryanto, S.; Priadi, D.P. Review: Pollution Due to Coal Mining Activity and Its Impact on Environment. Sriwij. J. Environ. 2018, 3, 1–5. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Farfan, J.; Lohrmann, A.; Kraslawski, A. Environmental Benefits of Circular Economy Approach to Use of Cobalt. Glob. Environ. Change 2022, 76, 102568. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.-Y.; Heidrich, O.; Chen, L.-Y.; Chen, L.-H.; Fishman, T.; Chen, W.-Q. Regional Rare-Earth Element Supply and Demand Balanced with Circular Economy Strategies. Nat. Geosci. 2024, 17, 94–102. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid Mine Drainage from Coal Mining in the United States—An Overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T. The Potential Threat of Mine Drainage to Groundwater Resources. Curr. Opin. Environ. Sci. Health 2022, 27, 100347. [Google Scholar] [CrossRef]
- Zhang, D.-R.; Chen, H.-R.; Xia, J.-L.; Nie, Z.-Y.; Zhao, X.-J.; Pakostova, E. Novel Adsorbent Synthesized from Red Mud and Acid Mine Drainage for Enhanced Contaminant Removal: Industrial Waste Transformation, Adsorbent Performance and Metal(Loid) Removal Mechanisms. Chem. Eng. J. 2023, 465, 142867. [Google Scholar] [CrossRef]
- “Deep Seabed Mining: What Is to Be Done About the Regulatory Lacuna?” By Katherine Reece Thomas. Available online: https://scholarship.law.nd.edu/ndjicl/vol14/iss3/3/ (accessed on 6 October 2024).
- Deep Sea Mining and the Circular Economy: Opportunities and Challenges. Available online: https://www.ijtsrd.com/computer-science/artificial-intelligence/56278/deep-sea-mining-and-the-circular-economy-opportunities-and-challenges/manish-verma (accessed on 6 October 2024).
- Abdussamad, Z.; Harun, A.A.; Muhtar, M.H.; Puluhulawa, F.U.; Swarianata, V.; Elfikri, N.F. Constitutional Balance: Synchronizing Energy and Environmental Policies with Socio-Economic Mandates. E3S Web Conf. 2024, 506, 06006. [Google Scholar] [CrossRef]
- Katz-Lavigne, S. Framing spaces as (il)legitimate: “dirty” cobalt and the (mis)uses of artisanal and small-scale mining sites in south-eastern Democratic Republic of Congo. Can. J. Afr. Stud. Rev. Can. Études Afr. 2024, 58, 109–131. [Google Scholar] [CrossRef]
- Sieged by Mining and Megaprojects, the Munduruku Push for Land Rights in the Amazon. Available online: https://news.mongabay.com/2023/12/sieged-by-mining-and-megaprojects-the-munduruku-push-for-land-rights-in-the-amazon/ (accessed on 16 November 2024).
- Mudd, G.M.; Roche, C.; Northey, S.A.; Jowitt, S.M.; Gamato, G. Mining in Papua New Guinea: A Complex Story of Trends, Impacts and Governance. Sci. Total Environ. 2020, 741, 140375. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tan, Q.; Yu, J.; Wang, M. A Global Perspective on E-Waste Recycling. Circ. Econ. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Tunsu, C.; Petranikova, M.; Gergorić, M.; Ekberg, C.; Retegan, T. Reclaiming Rare Earth Elements from End-of-Life Products: A Review of the Perspectives for Urban Mining Using Hydrometallurgical Unit Operations. Hydrometallurgy 2015, 156, 239–258. [Google Scholar] [CrossRef]
- Odunaike, R.; Talabi, A.; Laoye, J.; Akinyemi, L.; Obasan, M. Assessment of Heavy Metals Contamination of Surface Dust from Waste Electrical and Electronic Equipment at Odogbolu Local Government Area of Ogun State in Southwestern Nigeria. East Afr. J. Environ. Nat. Resour. 2022, 5, 22–33. [Google Scholar] [CrossRef]
- Labour Market Consequences of a Transition to a Circular Economy: A Review Paper; OECD Environment Working Papers, No. 162; OECD Publishing: Paris, France, 2020. [CrossRef]
- Yang, L.; Birhane, G.E.; Zhu, J.; Geng, J. Mining Employees Safety and the Application of Information Technology in Coal Mining: Review. Front. Public Health 2021, 9, 709987. [Google Scholar] [CrossRef]
- Mancini, S.D.; de Medeiros, G.A.; Paes, M.X.; de Oliveira, B.O.S.; Antunes, M.L.P.; de Souza, R.G.; Ferraz, J.L.; Bortoleto, A.P.; de Oliveira, J.A.P. Circular Economy and Solid Waste Management: Challenges and Opportunities in Brazil. Circ. Econ. Sustain. 2021, 1, 261–282. [Google Scholar] [CrossRef]
- Kinnunen, P.H.-M.; Kaksonen, A.H. Towards Circular Economy in Mining: Opportunities and Bottlenecks for Tailings Valorization. J. Clean. Prod. 2019, 228, 153–160. [Google Scholar] [CrossRef]
- How Is Geological Mapping Used in Offshore Mineral Exploration?—MAJR Resources. Available online: https://majrresources.com/how-is-geological-mapping-used-in-offshore-mineral-exploration/ (accessed on 16 November 2024).
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.-M. Recent Progress in Biohydrometallurgy and Microbial Characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Murthy, V.; Ramakrishna, S. A Review on Global E-Waste Management: Urban Mining towards a Sustainable Future and Circular Economy. Sustainability 2022, 14, 647. [Google Scholar] [CrossRef]
- Gedam, V.V.; Raut, R.D.; Jabbour, A.B.L.D.S.; Agrawal, N. Moving the Circular Economy Forward in the Mining Industry: Challenges to Closed-Loop in an Emerging Economy. Resour. Policy 2021, 74, 102279. [Google Scholar] [CrossRef]
- Huang, J.; Pretz, T.; Bian, Z. Intelligent Solid Waste Processing Using Optical Sensor Based Sorting Technology. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 4, pp. 1657–1661. [Google Scholar]
- Singh, R.K.; Kumar, A.; Garza-Reyes, J.A.; de Sá, M.M. Managing Operations for Circular Economy in the Mining Sector: An Analysis of Barriers Intensity. Resour. Policy 2020, 69, 101752. [Google Scholar] [CrossRef]
- The Unforeseen Consequences of Closing Panama’s Cobre Mine. Available online: https://impunityobserver.com/2024/09/09/unforeseen-consequences-closing-cobre-panama/ (accessed on 15 November 2024).
- Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. Design for Sustainability in Automotive Industry: A Comprehensive Review. Renew. Sustain. Energy Rev. 2012, 16, 1845–1862. [Google Scholar] [CrossRef]
- Laurence, D. Establishing a Sustainable Mining Operation: An Overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Deberdt, R.; Billon, P.L. Green Transition Mineral Supply Risks: Comparing Artisanal and Deep-Sea Cobalt Mining in a Time of Climate Crisis. Extr. Ind. Soc. 2023, 14, 101232. [Google Scholar] [CrossRef]
- Mishra, P.C.; Mohanty, M.K. A Review of Factors Affecting Mining Operation. World J. Eng. 2020, 17, 457–472. [Google Scholar] [CrossRef]
- Mining and Water Quality|U.S. Geological Survey. Available online: https://www.usgs.gov/special-topics/water-science-school/science/mining-and-water-quality (accessed on 8 October 2024).
- Cidu, R.; Dadea, C.; Desogus, P.; Fanfani, L.; Manca, P.P.; Orrù, G. Assessment of Environmental Hazards at Abandoned Mining Sites: A Case Study in Sardinia, Italy. Appl. Geochem. 2012, 27, 1795–1806. [Google Scholar] [CrossRef]
Concepts | High-Level Abstraction | Potential for Mining CE | Reference |
---|---|---|---|
Green Economy (GE) | Common core characteristics of many concepts: policies aimed at creating a just economy with energy-efficient processes, renewable resources (solar, wind, geothermal, trees, etc.), and a pollution-free, net-zero (or carbon offset) world. | A hybrid model could enable semi-quantifiable, long-term sustainable goals for mining, balancing resource efficiency, energy use, GHG emissions, pollutants, and ecological regulations. | [68] |
Social and Solidary Economy (SSE) | When communities, grassroots organizations, or other entities promote mutual aid, cooperation, and social justice, it reflects public motivation to pursue equality and community resilience through idealism rather than capital-driven approaches. | In the context of the CE in mining, a solidarity economy ensures that mining benefits local communities, addresses social injustices, and fosters cooperation, helping to reduce corruption and drive demand for sustainable practices. | [69] |
Circular Bioeconomy (CBE) | The integration of four concepts: CE (closed-loop systems with bio-based or biodegradable materials), Bioeconomy (biological processes for creating/refining products), industrial ecology (strengthening industrial and ecological systems), and ecological economics. | Using plant-based materials to rehabilitate mining sites and manage waste sustainably has shown promise in several case studies. If feasible, mining could integrate with agriculture, studying its effects on local ecosystems and aiding in the design of circular systems. | [70] |
Blue Economy (BE) | The water-focused, local development equivalent of the Green Economy of water-based ecosystems. Mainly seeks to harness renewable marine resources, ocean energy, and tourism. Marine minerals are of particular interest. | In CE mining, the Blue Economy can be potentially integrated through sustainable deep-sea mining practices that minimize environmental impact, such as submarine tailings disposal. | [71] |
Share Economy (SE) | An economy where behaviors and practices allow for increased resource efficiency due to collaboration on increasing the ability to access goods and services, reducing the need for intellectual, legal, or physical ownership for a broader subset of a population. | In mining, the Share Economy can enhance resource efficiency by promoting the sharing of data, technology, materials, and facilities. Examples include collaborative initiatives like the Global Tailings Review and eco-parks, which try to optimize resource use by using Share Economy principles. | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antony Jose, S.; Calhoun, J.; Renteria, O.B.; Mercado, P.; Nakajima, S.; Hope, C.N.; Sotelo, M.; Menezes, P.L. Promoting a Circular Economy in Mining Practices. Sustainability 2024, 16, 11016. https://doi.org/10.3390/su162411016
Antony Jose S, Calhoun J, Renteria OB, Mercado P, Nakajima S, Hope CN, Sotelo M, Menezes PL. Promoting a Circular Economy in Mining Practices. Sustainability. 2024; 16(24):11016. https://doi.org/10.3390/su162411016
Chicago/Turabian StyleAntony Jose, Subin, Joy Calhoun, Otoniel B. Renteria, Pedro Mercado, Shinichiro Nakajima, Colton N. Hope, Mario Sotelo, and Pradeep L. Menezes. 2024. "Promoting a Circular Economy in Mining Practices" Sustainability 16, no. 24: 11016. https://doi.org/10.3390/su162411016
APA StyleAntony Jose, S., Calhoun, J., Renteria, O. B., Mercado, P., Nakajima, S., Hope, C. N., Sotelo, M., & Menezes, P. L. (2024). Promoting a Circular Economy in Mining Practices. Sustainability, 16(24), 11016. https://doi.org/10.3390/su162411016