A Systematic Review of BIM-Based Life Cycle Sustainability Assessment for Buildings
Abstract
:1. Introduction
- Goal and scope: The objectives and scopes defined for each case study were reviewed. The analysis included the identification of the system boundaries, that is, the actions or elements that form part of each stage of the life cycle defined according to the EN 15978 standard, as well as the duration of the service life of the construction, the functional unit (FU), and general information regarding the case study: location, typology, and scale. FU is a term defined by ISO 14044 [11] that refers to the reference unit for the various assessments and is defined using the unit elements included in the system boundaries [33,49].
- Life cycle inventory: The LCI addresses the collection of information on the various impact categories and the databases used. At this stage, three types of integration approaches of LCA, LCC, and S-LCA with BIM are identified that have been employed by the different researchers. The tools used and the Level of Development (LOD) of the model are also analyzed.
- Life cycle impact assessment: This section identifies the different methods, categories, and impacts used by researchers to assess the sustainability of the case study.
- Interpretation of the results: Finally, the methods for visualizing the results of the previous sections are interpreted.
2. Methodology
2.1. Definition of the Scope
2.2. Review of the Literature
2.3. Analysis and Reporting of Results
3. Results
3.1. Bibliometric Analysis (Q1)
3.2. Informetric Analysis of Results According to ISO 14040 Structure (Q2 and Q3)
3.2.1. Goal and Scope
3.2.2. Life Cycle Inventory
3.2.3. Life Cycle Impact Assessment
- Conventional approach
- b.
- Static approach
- c.
- Dynamic approach
3.2.4. Interpretation of Results
4. Discussion
4.1. Answers to Research Questions
4.2. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Search Engines | Search String | Results |
---|---|---|
Scopus | TITLE-ABS-KEY (“BIM” OR “Building Information Modeling” OR “Building Information Modeling” AND “LCA” OR “Life Cycle Assessment” AND “LCC” OR “Life Cycle Cost” AND “S-LCA” OR “Social Life Cycle Assessment” AND “Life Cycle Sustainability Assessment” OR “LCSA”) | 448 |
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re”) | ||
WoS | TS = ((“BIM” OR “Building Information Modeling” OR “Building Information Modeling”) AND (“LCA” OR “Life Cycle Assessment”) AND (“LCC” OR “Life Cycle Cost”) AND (“S-LCA” OR “Social Life Cycle Assessment”) AND (“LSCA” or “Life Cycle Sustainability Assessment”)) | 607 |
Document Types: Articles or Proceedings or Review Articles | ||
Search Keywords | “BIM,” “Building Information Modeling,” “Building Information Modeling,” “LCA,” “Life Cycle Assessment,” “LCC,” “Life Cycle Cost,” “S-LCA,” “Social Life Cycle Assessment,” “LCSA,” “Life Cycle Sustainability Assessment” |
Database | Reference | |
---|---|---|
LCA | Ecoinvent | [4,9,13,17,48,57,65,70,73,74,75,81,82,87,92,94,96,109,114,115,121,125,133,147,151,156,158,160] |
GaBi | [1,8,54,91,102,103,104,105,107,140,142,143,147,151,160] | |
ICE | [61,78,97,111,116,132,151,160] | |
Athena | [76,89,99,120,127,155] | |
LCC | Local market or provided by the contractor | [9,61,70,79,82,86,100,107,128,135,141,147,150,153,157,159] |
RSmeans | [57,87,130,146] | |
CYPE | [65,112] | |
Brazilian Cost and Index Research System | [8,152] | |
Andalusia Construction Cost Database | [56,113] | |
Literature | [57] | |
S-LCA | Standards | [61] |
Local market | [54] | |
ACA | [56] | |
BCIRS | [8] | |
SHDB | [57] | |
PSILCA | [9] |
References
- Martínez-Rocamora, A.; Rivera-Gómez, C.; Galán-Marín, C.; Marrero, M. Environmental Benchmarking of Building Typologies through BIM-Based Combinatorial Case Studies. Autom. Constr. 2021, 132, 103980. [Google Scholar] [CrossRef]
- Marrero, M.; Rivero-Camacho, C.; Martínez-Rocamora, A.; Alba-Rodríguez, D.; Lucas-Ruiz, V. Holistic Assessment of the Economic, Environmental, and Social Impact of Building Construction. Application to Housing Construction in Andalusia. J. Clean. Prod. 2024, 434, 140170. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical Review of Bim-Based LCA Method to Buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- EN 15643-1:2021; Sustainability of Construction Works—Sustainability Assessment of Buildings, Part 1; General Framework. BSI: London, UK, 2021.
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing Life Cycle Sustainability Assessment during Design Stages in Building Information Modelling: From Systematic Literature Review to a Methodological Approach. Build. Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Gutiérrez, J.A.; Llatas, C. Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment. Buildings 2023, 13, 1472. [Google Scholar] [CrossRef]
- Filho, M.V.A.P.M.; da Costa, B.B.F.; Najjar, M.; Figueiredo, K.V.; de Mendonça, M.B.; Haddad, A.N. Sustainability Assessment of a Low-Income Building: A BIM-LCSA-FAHP-Based Analysis. Buildings 2022, 12, 181. [Google Scholar] [CrossRef]
- Boje, C.; Hahn Menacho, Á.J.; Marvuglia, A.; Benetto, E.; Kubicki, S.; Schaubroeck, T.; Navarrete Gutiérrez, T. A Framework Using BIM and Digital Twins in Facilitating LCSA for Buildings. J. Build. Eng. 2023, 76, 107232. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- EN 15978:2012; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. CEN: Brussels, Belgium, 2012.
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Integration of LCA and LCC Analysis within a BIM-Based Environment. Autom. Constr. 2019, 103, 127–149. [Google Scholar] [CrossRef]
- ISO 15686:2017; Buildings and Constructed Assets—Service Life Planning. ISO: Geneva, Switzerland, 2017.
- EN 16627:2015; Sustainability of Construction Works—Assessment of Economic Performance of Buildings—Calculation Methods. CEN: Brussels, Belgium, 2015.
- EN 16309:2015; Sustainability of Construction Works—Assessment of Social Performance of Buildings—Calculation Methodology. CEN: Brussels, Belgium, 2015.
- Nehasilová, M.; Lupíšek, A.; Coufalová, P.L.; Kupsa, T.; Veselka, J.; Vlasatá, B.; Železná, J.; Kunová, P.; Volf, M. Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases. Sustainability 2022, 14, 10928. [Google Scholar] [CrossRef]
- Solís-Guzmán, J.; Marrero, M.; Ramírez-De-Arellano, A. Methodology for Determining the Ecological Footprint of the Construction of Residential Buildings in Andalusia (Spain). Ecol. Indic. 2013, 25, 239–249. [Google Scholar] [CrossRef]
- Fenner, A.E.; Kibert, C.J.; Woo, J.; Morque, S.; Razkenari, M.; Hakim, H.; Lu, X. The Carbon Footprint of Buildings: A Review of Methodologies and Applications. Renew. Sustain. Energy Rev. 2018, 94, 1142–1152. [Google Scholar] [CrossRef]
- BuildingSMART Spain. ¿Qué es BIM? Available online: https://www.buildingsmart.es/bim/qu%C3%A9-es/ (accessed on 2 July 2024).
- Safari, K.; AzariJafari, H. Challenges and Opportunities for Integrating BIM and LCA: Methodological Choices and Framework Development. Sustain. Cities Soc. 2021, 67, 102728. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) Uptake: Clear Benefits, Understanding Its Implementation, Risks and Challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- European Parliament. Directive 2014/25/UE; European Parliament: Strasbourg, France, 2014; pp. 1–132. [Google Scholar]
- European Commission. European Construction Sector Observatory Building Information Modelling in the EU Construction Sector; Trend Paper Series; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Hollberg, A.; Genova, G.; Habert, G. Evaluation of BIM-Based LCA Results for Building Design. Autom. Constr. 2020, 109, 102972. [Google Scholar] [CrossRef]
- Cavalliere, C.; Habert, G.; Dell’Osso, G.R.; Hollberg, A. Continuous BIM-Based Assessment of Embodied Environmental Impacts throughout the Design Process. J. Clean. Prod. 2019, 211, 941–952. [Google Scholar] [CrossRef]
- Guignone, G.; Calmon, J.L.; Vieira, D.; Bravo, A. BIM and LCA Integration Methodologies: A Critical Analysis and Proposed Guidelines. J. Build. Eng. 2023, 73, 106780. [Google Scholar] [CrossRef]
- Tam, V.W.; Zhou, Y.; Shen, L.; Le, K.N. Optimal BIM and LCA Integration Approach for Embodied Environmental Impact Assessment. J. Clean. Prod. 2023, 385, 135605. [Google Scholar] [CrossRef]
- Fonseca Arenas, N.; Shafique, M. Recent Progress on BIM-Based Sustainable Buildings: State of the Art Review. Dev. Built Environ. 2023, 15, 100176. [Google Scholar] [CrossRef]
- Tam, V.W.; Zhou, Y.; Illankoon, C.; Le, K.N. A Critical Review on BIM and LCA Integration Using the ISO 14040 Framework. Build. Environ. 2022, 213, 108865. [Google Scholar] [CrossRef]
- Teng, Y.; Xu, J.; Pan, W.; Zhang, Y. A Systematic Review of the Integration of Building Information Modeling into Life Cycle Assessment. Build. Environ. 2022, 221, 109260. [Google Scholar] [CrossRef]
- Xue, K.; Uzzal Hossain, M.; Liu, M.; Ma, M.; Zhang, Y.; Hu, M.; Chen, X.; Cao, G. BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review. Sustainability 2021, 13, 1310. [Google Scholar] [CrossRef]
- Mora, T.D.; Bolzonello, E.; Cavalliere, C.; Peron, F. Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends. Sustainability 2020, 12, 7182. [Google Scholar] [CrossRef]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability 2020, 12, 2670. [Google Scholar] [CrossRef]
- Crippa, J.; Araujo, A.M.F.; Bem, D.; Ugaya, C.M.L.; Scheer, S. A Systematic Review of BIM Usage for Life Cycle Impact Assessment. Built Environ. Proj. Asset Manag. 2020, 10, 603–618. [Google Scholar] [CrossRef]
- Seyis, S. Mixed Method Review for Integrating Building Information Modeling and Life-Cycle Assessments. Build. Environ. 2020, 173, 106703. [Google Scholar] [CrossRef]
- Durão, V.; Costa, A.A.; Silvestre, J.D.; Mateus, R.; Santos, R.; de Brito, J. Current Opportunities and Challenges in the Incorporation of the LCA Method in BIM. Open Constr. Build. Technol. J. 2020, 14, 336–349. [Google Scholar] [CrossRef]
- Muller, M.F.; Esmanioto, F.; Huber, N.; Loures, E.R.; Canciglieri, O. A Systematic Literature Review of Interoperability in the Green Building Information Modeling Lifecycle. J. Clean. Prod. 2019, 223, 397–412. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Wang, X.; Lee, C.-Y. A Mixed Review of the Adoption of Building Information Modelling (BIM) for Sustainability. J. Clean. Prod. 2017, 142, 4114–4126. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Röck, M.; Hoxha, E.; Passer, A. The Challenge of Integrating Life Cycle Assessment in the Building Design Process—A Systematic Literature Review of BIM-LCA Workflows. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 032024. [Google Scholar] [CrossRef]
- Lu, K.; Deng, X.; Jiang, X.; Cheng, B.; Tam, V.W.Y. A Review on Life Cycle Cost Analysis of Buildings Based on Building Information Modeling. J. Civ. Eng. Manag. 2023, 29, 268–288. [Google Scholar] [CrossRef]
- Lu, K.; Jiang, X.; Yu, J.; Tam, V.W.Y.; Skitmore, M. Integration of Life Cycle Assessment and Life Cycle Cost Using Building Information Modeling: A Critical Review. J. Clean. Prod. 2021, 285, 125438. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric Analysis and Review of Literature on the Role of BIM in Sustainable Construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Onososen, A.; Musonda, I.; Tjebane, M.M. Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach. Sustainability 2022, 14, 11052. [Google Scholar] [CrossRef]
- Onososen, A.; Musonda, I. Barriers to BIM-Based Life Cycle Sustainability Assessment for Buildings: An Interpretive Structural Modelling Approach. Buildings 2022, 12, 324. [Google Scholar] [CrossRef]
- Cao, Y.; Kamaruzzaman, S.N.; Aziz, N.M. Building Information Modeling (BIM) Capabilities in the Operation and Maintenance Phase of Green Buildings: A Systematic Review. Buildings 2022, 12, 830. [Google Scholar] [CrossRef]
- Ullah, F. A Beginner’s Guide to Developing Review-Based Conceptual Frameworks in the Built Environment. Architecture 2021, 1, 5–24. [Google Scholar] [CrossRef]
- Zheng, B.; Hussain, M.; Yang, Y.; Chan, A.P.C.; Chi, H.L. Trade-Offs between Accuracy and Efficiency in BIM-LCA Integration. Eng. Constr. Archit. Manag. 2023. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. A validation study of a semi-automatic BIM-LCA tool. In Proceedings of the 2 Congresso Português de Building Information Modelling, Lisbon, Portugal, 17–18 May 2018; pp. 251–260. [Google Scholar]
- Qui, J.; Zhao, R.; Yang, S.; Ke, D. Informetrics: Theory, Methods and Applications; Springer: Singapore, 2017; ISBN 978-981-10-4031-3. [Google Scholar]
- Llatas, C.; Soust-Verdaguer, B.; Hollberg, A.; Palumbo, E.; Quiñones, R. BIM-Based LCSA Application in Early Design Stages Using IFC. Autom. Constr. 2022, 138, 104259. [Google Scholar] [CrossRef]
- Berges-Alvarez, I.; Muñoz Sanguinetti, C.; Giraldi, S.; Marín-Restrepo, L. Environmental and Economic Criteria in Early Phases of Building Design through Building Information Modeling: A Workflow Exploration in Developing Countries. Build. Environ. 2022, 226, 109718. [Google Scholar] [CrossRef]
- Meex, E.; Hollberg, A.; Knapen, E.; Hildebrand, L.; Verbeeck, G. Requirements for Applying LCA-Based Environmental Impact Assessment Tools in the Early Stages of Building Design. Build. Environ. 2018, 133, 228–236. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.A.; Haddad, A. Sustainable Material Choice for Construction Projects: A Life Cycle Sustainability Assessment Framework Based on BIM and Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Gutiérrez Moreno, J.A.; Llatas, C. Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM. Sustainability 2023, 15, 2274. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Bernardino Galeana, I.; Llatas, C.; Montes, M.V.; Hoxha, E.; Passer, A. How to Conduct Consistent Environmental, Economic, and Social Assessment during the Building Design Process. A BIM-Based Life Cycle Sustainability Assessment Method. J. Build. Eng. 2022, 45, 103516. [Google Scholar] [CrossRef]
- Salehabadi, Z.M.; Ruparathna, R. User-Centric Sustainability Assessment of Single Family Detached Homes (SFDH): A BIM-Based Methodological Framework. J. Build. Eng. 2022, 50, 104139. [Google Scholar] [CrossRef]
- Di Santo, N.; Guante Henriquez, L.; Dotelli, G.; Imperadori, M. Holistic Approach for Assessing Buildings’ Environmental Impact and User Comfort from Early Design: A Method Combining Life Cycle Assessment, BIM, and Active House Protocol. Buildings 2023, 13, 1315. [Google Scholar] [CrossRef]
- Zolfaghari, S.M.; Pons, O.; Nikolic, J. Sustainability Assessment Model for Mass Housing’s Interior Rehabilitation and Its Validation to Ekbatan, Iran. J. Build. Eng. 2023, 65, 105685. [Google Scholar] [CrossRef]
- Fazeli, A.; Jalaei, F.; Khanzadi, M.; Banihashemi, S. BIM-Integrated TOPSIS-Fuzzy Framework to Optimize Selection of Sustainable Building Components. Int. J. Constr. Manag. 2022, 22, 1240–1259. [Google Scholar] [CrossRef]
- Alireza, A.F.F.; Rashidi, T.H.; Akbarnezhad, A.; Waller, S.T. BIM-Enabled Sustainability Assessment of Material Supply Decisions. Eng. Constr. Archit. Manag. 2017, 24, 668–695. [Google Scholar] [CrossRef]
- Maslesa, E.; Jensen, P.A.; Birkved, M. Indicators for Quantifying Environmental Building Performance: A Systematic Literature Review. J. Build. Eng. 2018, 19, 552–560. [Google Scholar] [CrossRef]
- Juan, Y.K.; Hsing, N.P. BIM-Based Approach to Simulate Building Adaptive Performance and Life Cycle Costs for an Open Building Design. Appl. Sci. 2017, 7, 837. [Google Scholar] [CrossRef]
- Veselka, J.; Nehasilová, M.; Dvořáková, K.; Ryklová, P.; Volf, M.; Ružička, J.; Lupíšek, A. Recommendations for Developing a BIM for the Purpose of LCA in Green Building Certifications. Sustainability 2020, 12, 6151. [Google Scholar] [CrossRef]
- Santos, R.; Aguiar Costa, A.; Silvestre, J.D.; Pyl, L. Development of a BIM-Based Environmental and Economic Life Cycle Assessment Tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Bertin, I.; Mesnil, R.; Jaeger, J.M.; Feraille, A.; Le Roy, R. A BIM-Based Framework and Databank for Reusing Load-Bearing Structural Elements. Sustainability 2020, 12, 3147. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA Databases Focused on Construction Materials: A Review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Fenz, S.; Giannakis, G.; Bergmayr, J.; Iousef, S. RenoDSS—A BIM-Based Building Renovation Decision Support System. Energy. Build. 2023, 288, 112999. [Google Scholar] [CrossRef]
- Kamari, A.; Kotula, B.M.; Schultz, C.P.L. A BIM-Based LCA Tool for Sustainable Building Design during the Early Design Stage. Smart Sustain. Built Environ. 2022, 11, 217–244. [Google Scholar] [CrossRef]
- Li, Q.; Yang, W.; Kohler, N.; Yang, L.; Li, J.; Sun, Z.; Yu, H.; Liu, L.; Ren, J. A BIM–LCA Approach for the Whole Design Process of Green Buildings in the Chinese Context. Sustainability 2023, 15, 3629. [Google Scholar] [CrossRef]
- Theißen, S.; Höper, J.; Drzymalla, J.; Wimmer, R.; Markova, S.; Meins-Becker, A.; Lambertz, M. Using Open BIM and IFC to Enable a Comprehensive Consideration of Building Services within a Whole-Building LCA. Sustainability 2020, 12, 5644. [Google Scholar] [CrossRef]
- Schneider-Marin, P.; Harter, H.; Tkachuk, K.; Lang, W. Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages. Sustainability 2020, 12, 2633. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; Moya, L. Comparative BIM-Based Life Cycle Assessment of Uruguayan Timber and Concrete-Masonry Single-Family Houses in Design Stage. J. Clean. Prod. 2020, 277, 121958. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Wu, J.; Zhao, B. Building-Information-Modeling Enabled Life Cycle Assessment, a Case Study on Carbon Footprint Accounting for a Residential Building in China. J. Clean. Prod. 2018, 183, 729–743. [Google Scholar] [CrossRef]
- Rezaei, F.; Bulle, C.; Lesage, P. Integrating Building Information Modeling and Life Cycle Assessment in the Early and Detailed Building Design Stages. Build. Environ. 2019, 153, 158–167. [Google Scholar] [CrossRef]
- Basbagill, J.; Flager, F.; Lepech, M.; Fischer, M. Application of Life-Cycle Assessment to Early Stage Building Design for Reduced Embodied Environmental Impacts. Build. Environ. 2013, 60, 81–92. [Google Scholar] [CrossRef]
- Antón, L.Á.; Díaz, J. Integration of Life Cycle Assessment in a BIM Environment. Procedia Eng. 2014, 85, 26–32. [Google Scholar] [CrossRef]
- Iddon, C.R.; Firth, S.K. Embodied and Operational Energy for New-Build Housing: A Case Study of Construction Methods in the UK. Energy Build. 2013, 67, 479–488. [Google Scholar] [CrossRef]
- Shin, Y.S.; Cho, K. BIM Application to Select Appropriate Design Alternative with Consideration of LCA and LCCA. Math. Probl. Eng. 2015, 2015, 281640. [Google Scholar] [CrossRef]
- Peng, C. Calculation of a Building’s Life Cycle Carbon Emissions Based on Ecotect and Building Information Modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Lu, Y.; Le, V.H.; Song, X. Beyond Boundaries: A Global Use of Life Cycle Inventories for Construction Materials. J. Clean. Prod. 2017, 156, 876–887. [Google Scholar] [CrossRef]
- Crippa, J.; Boeing, L.C.; Caparelli, A.P.A.; da Costa, M.; Scheer, S.; Araujo, A.M.F.; Bem, D. A BIM–LCA Integration Technique to Embodied Carbon Estimation Applied on Wall Systems in Brazil. Built Environ. Proj. Asset Manag. 2018, 8, 491–503. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A.; Gómez de Cózar, J.C. BIM-Based LCA Method to Analyze Envelope Alternatives of Single-Family Houses: Case Study in Uruguay. J. Archit. Eng. 2018, 24. [Google Scholar] [CrossRef]
- Lu, K.; Jiang, X.; Tam, V.W.Y.; Li, M.; Wang, H.; Xia, B.; Chen, Q. Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects. Sustainability 2019, 11, 6274. [Google Scholar] [CrossRef]
- Cheng, B.; Lu, K.; Li, J.; Chen, H.; Luo, X.; Shafique, M. Comprehensive Assessment of Embodied Environmental Impacts of Buildings Using Normalized Environmental Impact Factors. J. Clean. Prod. 2022, 334, 130083. [Google Scholar] [CrossRef]
- Ansah, M.K.; Chen, X.; Yang, H.; Lu, L.; Lam, P.T.I. An Integrated Life Cycle Assessment of Different Façade Systems for a Typical Residential Building in Ghana. Sustain. Cities Soc. 2020, 53, 101974. [Google Scholar] [CrossRef]
- Zhu, S.; Feng, H. Is Energy-Efficient Building Sustainable? A Case Study on Individual Housing in Canada under BCESC Energy Updates. Build. Environ. 2023, 239, 110452. [Google Scholar] [CrossRef]
- Hao, J.L.; Cheng, B.; Lu, W.; Xu, J.; Wang, J.; Bu, W.; Guo, Z. Carbon Emission Reduction in Prefabrication Construction during Materialization Stage: A BIM-Based Life-Cycle Assessment Approach. Sci. Total Environ. 2020, 723, 137870. [Google Scholar] [CrossRef]
- Jrade, A.; Jalaei, F. Integrating Building Information Modelling with Sustainability to Design Building Projects at the Conceptual Stage. Build. Simul. 2013, 6, 429–444. [Google Scholar] [CrossRef]
- Li, X.J.; Lai, J.-Y.; Ma, C.Y.; Wang, C. Using BIM to Research Carbon Footprint during the Materialization Phase of Prefabricated Concrete Buildings: A China Study. J. Clean. Prod. 2021, 279, 123454. [Google Scholar] [CrossRef]
- Kylili, A.; Georgali, P.Z.; Christou, P.; Fokaides, P. An Integrated Building Information Modeling (BIM)-Based Lifecycle-Oriented Framework for Sustainable Building Design. Constr. Innov. 2022, 24. [Google Scholar] [CrossRef]
- Najjar, M.K.; Figueiredo, K.; Evangelista, A.C.J.; Hammad, A.W.A.; Tam, V.W.Y.; Haddad, A. Life Cycle Assessment Methodology Integrated with BIM as a Decision-Making Tool at Early-Stages of Building Design. Int. J. Constr. Manag. 2022, 22, 541–555. [Google Scholar] [CrossRef]
- Kehily, D.; Underwood, J. Embedding Life Cycle Costing in 5D BIM. J. Inf. Technol. Constr. 2017, 22, 145–167. [Google Scholar]
- Cavalliere, C.; Dell’Osso, G.R.; Pierucci, A.; Iannone, F. Life Cycle Assessment Data Structure for Building Information Modelling. J. Clean. Prod. 2018, 199, 193–204. [Google Scholar] [CrossRef]
- Li, X.-J.; Xie, W.-J.; Xu, L.; Li, L.-L.; Jim, C.Y.; Wei, T.-B. Holistic Life-Cycle Accounting of Carbon Emissions of Prefabricated Buildings Using LCA and BIM. Energy Build. 2022, 266, 112136. [Google Scholar] [CrossRef]
- Feng, H.; Liyanage, D.R.; Karunathilake, H.; Sadiq, R.; Hewage, K. BIM-Based Life Cycle Environmental Performance Assessment of Single-Family Houses: Renovation and Reconstruction Strategies for Aging Building Stock in British Columbia. J. Clean. Prod. 2020, 250, 119543. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, S.A.; Abuhussain, M.A.; Al-Tamimi, N.; Elnaklah, R.; Kamal, M.A. Life Cycle Assessment of Embodied Carbon and Strategies for Decarbonization of a High-Rise Residential Building. Buildings 2022, 12, 1203. [Google Scholar] [CrossRef]
- Najjar, M.; Figueiredo, K.; Hammad, A.W.A.; Haddad, A. Integrated Optimization with Building Information Modeling and Life Cycle Assessment for Generating Energy Efficient Buildings. Appl. Energy 2019, 250, 1366–1382. [Google Scholar] [CrossRef]
- Feng, H.; Kassem, M.; Greenwood, D.; Doukari, O. Whole Building Life Cycle Assessment at the Design Stage: A BIM-Based Framework Using Environmental Product Declaration. Int. J. Build. Pathol. Adapt. 2023, 41, 109–142. [Google Scholar] [CrossRef]
- Pučko, Z.; Maučec, D.; Šuman, N. Energy and Cost Analysis of Building Envelope Components Using BIM: A Systematic Approach. Energies 2020, 13, 2643. [Google Scholar] [CrossRef]
- Najjar, M.K.; Tam, V.W.Y.; Di Gregorio, L.T.; Evangelista, A.C.J.; Hammad, A.W.A.; Haddad, A. Integrating Parametric Analysis with Building Information Modeling to Improve Energy Performance of Construction Projects. Energies 2019, 12, 1515. [Google Scholar] [CrossRef]
- Najjar, M.; Figueiredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the Environmental Impacts of Building Materials at an Early Stage of Designing a Typical Office Building. J. Build. Eng. 2017, 14, 115–126. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Alecrim, I.; Bragança, L.; Mateus, R. Integrating BIM-Based LCA and Building Sustainability Assessment. Sustainability 2020, 12, 7468. [Google Scholar] [CrossRef]
- Asare, K.A.B.; Ruikar, K.D.; Zanni, M.; Soetanto, R. BIM-Based LCA and Energy Analysis for Optimised Sustainable Building Design in Ghana. SN Appl. Sci. 2020, 2, 1855. [Google Scholar] [CrossRef]
- Sobhkhiz, S.; Taghaddos, H.; Rezvani, M.; Ramezanianpour, A.M. Utilization of Semantic Web Technologies to Improve BIM-LCA Applications. Autom. Constr. 2021, 130, 103842. [Google Scholar] [CrossRef]
- Tushar, Q.; Bhuiyan, M.A.; Zhang, G.; Maqsood, T. An Integrated Approach of BIM-Enabled LCA and Energy Simulation: The Optimized Solution towards Sustainable Development. J. Clean. Prod. 2021, 289, 125622. [Google Scholar] [CrossRef]
- Motalebi, M.; Rashidi, A.; Nasiri, M.M. Optimization and BIM-Based Lifecycle Assessment Integration for Energy Efficiency Retrofit of Buildings. J. Build. Eng. 2022, 49, 104022. [Google Scholar] [CrossRef]
- Raposo, C.; Rodrigues, F.; Rodrigues, H. BIM-Based LCA Assessment of Seismic Strengthening Solutions for Reinforced Concrete Precast Industrial Buildings. Innov. Infrastruct. Solut. 2019, 4, 51. [Google Scholar] [CrossRef]
- Bueno, C.; Pereira, L.M.; Fabricio, M.M. Life Cycle Assessment and Environmental-Based Choices at the Early Design Stages: An Application Using Building Information Modelling. Archit. Eng. Des. Manag. 2018, 14, 332–346. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S.; Metawie, M. Framework for Sustainable Low-Income Housing Projects Using Building Information Modeling. J. Environ. Inform. 2016, 28, 25–38. [Google Scholar] [CrossRef]
- Sandberg, M.; Mukkavaara, J.; Shadram, F.; Olofsson, T. Multidisciplinary Optimization of Life-Cycle Energy and Cost Using a BIM-Based Master Model. Sustainability 2019, 11, 286. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Villaschi, F.S.; Bragança, L. Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM. Sustainability 2021, 13, 8914. [Google Scholar] [CrossRef]
- Bernardino-Galeana, I.; Llatas, C.; Montes, M.V.; Soust-Verdaguer, B.; Canivell, J.; Meda, P. Life Cycle Cost (LCC) and Sustainability. Proposal of an IFC Structure to Implement LCC During the Design Stage of Buildings. In Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment; Springer Series in Geomechanics and Geoengineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 404–426. [Google Scholar]
- Su, S.; Li, S.; Ju, J.; Wang, Q.; Xu, Z. A Building Information Modeling-Based Tool for Estimating Building Demolition Waste and Evaluating Its Environmental Impacts. Waste Manag. 2021, 134, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Ansah, M.K.; Chen, X.; Yang, H.; Lu, L.; Lam, P.T.I. Developing an Automated BIM-Based Life Cycle Assessment Approach for Modularly Designed High-Rise Buildings. Environ. Impact Assess. Rev. 2021, 90, 106618. [Google Scholar] [CrossRef]
- Alwan, Z.; Nawarathna, A.; Ayman, R.; Zhu, M.; ElGhazi, Y. Framework for Parametric Assessment of Operational and Embodied Energy Impacts Utilising BIM. J. Build. Eng. 2021, 42, 102768. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Z.; Xiao, J.; Tiong, R. A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment. Sustainability 2021, 13, 13875. [Google Scholar] [CrossRef]
- Llatas, C.; Quiñones, R.; Bizcocho, N. Environmental Impact Assessment of Construction Waste Recycling versus Disposal Scenarios Using an LCA-BIM Tool during the Design Stage. Recycling 2022, 7, 82. [Google Scholar] [CrossRef]
- Arvizu-Piña, V.A.; Armendáriz López, J.F.; García González, A.A.; Barrera Alarcón, I.G. An Open Access Online Tool for LCA in Building’s Early Design Stage in the Latin American Context. A Screening LCA Case Study for a Bioclimatic Building. Energy Build. 2023, 295, 113269. [Google Scholar] [CrossRef]
- Asgari, S.; Haghir, S.; Noorzai, E. Reducing Energy Consumption in Operation and Demolition Phases by Integrating Multi-Objective Optimization with LCA and BIM. Energy Effic. 2023, 16, 54. [Google Scholar] [CrossRef]
- Taher, A.H.; Elbeltagi, E.E. Integrating Building Information Modeling with Value Engineering to Facilitate the Selection of Building Design Alternatives Considering Sustainability. Int. J. Constr. Manag. 2023, 23, 1886–1901. [Google Scholar] [CrossRef]
- Cheng, B.; Li, J.; Tam, V.W.Y.; Yang, M.; Chen, D. A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study. Sustainability 2020, 12, 685. [Google Scholar] [CrossRef]
- Zanni, M.; Sharpe, T.; Lammers, P.; Arnold, L.; Pickard, J. Developing a Methodology for Integration of Whole Life Costs into BIM Processes to Assist Design Decision Making. Buildings 2019, 9, 114. [Google Scholar] [CrossRef]
- Saridaki, M.; Psarra, M.; Haugbølle, K. Implementing Life-Cycle Costing: Data Integration between Design Models and Cost Calculations. J. Inf. Technol. Constr. 2019, 24, 14–32. [Google Scholar]
- Kiamili, C.; Hollberg, A.; Habert, G. Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM. Sustainability 2020, 12, 3372. [Google Scholar] [CrossRef]
- Le, H.T.T.; Likhitruangsilp, V.; Yabuki, N. A BIM-Integrated Relational Database Management System for Evaluating Building Life-Cycle Costs. Eng. J. 2020, 24, 75–86. [Google Scholar] [CrossRef]
- Marzouk, M.; Abdelkader, E.M.; Al-Gahtani, K. Building Information Modeling-Based Model for Calculating Direct and Indirect Emissions in Construction Projects. J. Clean. Prod. 2017, 152, 351–363. [Google Scholar] [CrossRef]
- Abanda, F.H.; Oti, A.H.; Tah, J.H.M. Integrating BIM and New Rules of Measurement for Embodied Energy and CO2 Assessment. J. Build. Eng. 2017, 12, 288–305. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Kim, W.; Kim, C.; Kim, J.; Yu, J. Integration of IFC Objects and Facility Management Work Information Using Semantic Web. Autom. Constr. 2018, 87, 173–187. [Google Scholar] [CrossRef]
- Rad, M.A.H.; Jalaei, F.; Golpour, A.; Varzande, S.S.H.; Guest, G. BIM-Based Approach to Conduct Life Cycle Cost Analysis of Resilient Buildings at the Conceptual Stage. Autom. Constr. 2021, 123, 103480. [Google Scholar] [CrossRef]
- Xu, J.; Teng, Y.; Pan, W.; Zhang, Y. BIM-Integrated LCA to Automate Embodied Carbon Assessment of Prefabricated Buildings. J. Clean. Prod. 2022, 374, 133894. [Google Scholar] [CrossRef]
- Alwan, Z.; Ilhan Jones, B. IFC-Based Embodied Carbon Benchmarking for Early Design Analysis. Autom. Constr. 2022, 142, 104505. [Google Scholar] [CrossRef]
- Bragadin, M.A.; Guardigli, L.; Calistri, M.; Ferrante, A. Demolishing or Renovating? Life Cycle Analysis in the Design Process for Building Renovation: The ProGETonE Case. Sustainability 2023, 15, 8614. [Google Scholar] [CrossRef]
- Su, S.; Wang, Q.; Han, L.; Hong, J.; Liu, Z. BIM-DLCA: An Integrated Dynamic Environmental Impact Assessment Model for Buildings. Build. Environ. 2020, 183, 107218. [Google Scholar] [CrossRef]
- Liu, S.; Meng, X.; Tam, C. Building Information Modeling Based Building Design Optimization for Sustainability. Energy Build. 2015, 105, 139–153. [Google Scholar] [CrossRef]
- Eleftheriadis, S.; Duffour, P.; Mumovic, D. BIM-Embedded Life Cycle Carbon Assessment of RC Buildings Using Optimised Structural Design Alternatives. Energy Build. 2018, 173, 587–600. [Google Scholar] [CrossRef]
- Nizam, R.S.; Zhang, C.; Tian, L. A BIM Based Tool for Assessing Embodied Energy for Buildings. Energy Build. 2018, 170, 1–14. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Integrated Assessment and Visualization of Building Elements’ Embodied Impacts for Design Guidance in Early Stages. Procedia CIRP 2018, 69, 218–223. [Google Scholar] [CrossRef]
- Naneva, A.; Bonanomi, M.; Hollberg, A.; Habert, G.; Hall, D. Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context. Sustainability 2020, 12, 3748. [Google Scholar] [CrossRef]
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Climate and Resource Footprint Assessment and Visualization of Recycled Concrete for Circular Economy. Resour. Conserv. Recycl. 2021, 174, 105767. [Google Scholar] [CrossRef]
- Zhuang, D.; Zhang, X.; Lu, Y.; Wang, C.; Jin, X.; Zhou, X.; Shi, X. A Performance Data Integrated BIM Framework for Building Life-Cycle Energy Efficiency and Environmental Optimization Design. Autom. Constr. 2021, 127, 103712. [Google Scholar] [CrossRef]
- Sameer, H.; Bringezu, S. Building Information Modelling Application of Material, Water, and Climate Footprint Analysis. Build. Res. Inf. 2021, 49, 593–612. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Liu, Z.; Huang, C.; Du, X. Life Cycle Assessment of Building Demolition Waste Based on Building Information Modeling. Resour. Conserv. Recycl. 2022, 178, 106095. [Google Scholar] [CrossRef]
- Mowafy, N.; El Zayat, M.; Marzouk, M. Parametric BIM-Based Life Cycle Assessment Framework for Optimal Sustainable Design. J. Build. Eng. 2023, 75, 106898. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S.; Roh, S.; Kim, T. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact. Sustainability 2015, 7, 16498–16512. [Google Scholar] [CrossRef]
- Jalaei, F.; Jrade, A.; Nassiri, M. Integrating Decision Support System (DSS) and Building Information Modeling (BIM) to Optimize the Selection of Sustainable Building Components. J. Inf. Technol. Constr. 2015, 20, 399–420. [Google Scholar]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-Based Life Cycle Assessment and Life Cycle Costing of an Office Building in Western Europe. Build. Environ. 2020, 169, 106568. [Google Scholar] [CrossRef]
- Kim, K.P.; Park, K.S. Delivering Value for Money with BIM-Embedded Housing Refurbishment. Facilities 2018, 36, 657–675. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S.; Metawie, M. BIM-Based Approach for Optimizing Life Cycle Costs of Sustainable Buildings. J. Clean. Prod. 2018, 188, 217–226. [Google Scholar] [CrossRef]
- Bueno, C.; Fabricio, M.M. Comparative Analysis between a Complete LCA Study and Results from a BIM-LCA Plug-In. Autom. Constr. 2018, 90, 188–200. [Google Scholar] [CrossRef]
- AbouHamad, M.; Abu-Hamd, M. Framework for Construction System Selection Based on Life Cycle Cost and Sustainability Assessment. J. Clean. Prod. 2019, 241, 118397. [Google Scholar] [CrossRef]
- Lee, J.; Yang, H.; Lim, J.; Hong, T.; Kim, J.; Jeong, K. BIM-Based Preliminary Estimation Method Considering the Life Cycle Cost for Decision-Making in the Early Design Phase. J. Asian Archit. Build. Eng. 2020, 19, 384–399. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S.; Jang, H.; Chae, C.U.; Bok, Y. Development of Building Information Modeling Template for Environmental Impact Assessment. Sustainability 2021, 13, 3092. [Google Scholar] [CrossRef]
- Jalaei, F.; Zoghi, M.; Khoshand, A. Life Cycle Environmental Impact Assessment to Manage and Optimize Construction Waste Using Building Information Modeling (BIM). Int. J. Constr. Manag. 2021, 21, 784–801. [Google Scholar] [CrossRef]
- Kamari, A.; Paari, A.; Torvund, H.Ø. Bim-Enabled Virtual Reality (VR) for Sustainability Life Cycle and Cost Assessment. Sustainability 2021, 13, 249. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Cui, C.; Skitmore, M. BIM-Based Approach for the Integrated Assessment of Life Cycle Carbon Emission Intensity and Life Cycle Costs. Build. Environ. 2022, 226, 109691. [Google Scholar] [CrossRef]
- Morsi, D.M.A.; Ismaeel, W.S.E.; Ehab, A.; Othman, A.A.E. BIM-Based Life Cycle Assessment for Different Structural System Scenarios of a Residential Building. Ain Shams Eng. J. 2022, 13, 101802. [Google Scholar] [CrossRef]
- Altaf, M.; Alalaoul, W.S.; Musarat, M.A.; Abdelaziz, A.A.; Thaheem, M.J. Optimisation of Energy and Life Cycle Costs via Building Envelope: A BIM Approaches. Environ. Dev. Sustain. 2023, 26, 7105–7128. [Google Scholar] [CrossRef]
- Kurian, R.; Kulkarni, K.S.; Ramani, P.V.; Meena, C.S.; Kumar, A.; Cozzolino, R. Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM. Energies 2021, 14, 4237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berges-Alvarez, I.; Martínez-Rocamora, A.; Marrero, M. A Systematic Review of BIM-Based Life Cycle Sustainability Assessment for Buildings. Sustainability 2024, 16, 11070. https://doi.org/10.3390/su162411070
Berges-Alvarez I, Martínez-Rocamora A, Marrero M. A Systematic Review of BIM-Based Life Cycle Sustainability Assessment for Buildings. Sustainability. 2024; 16(24):11070. https://doi.org/10.3390/su162411070
Chicago/Turabian StyleBerges-Alvarez, Ileana, Alejandro Martínez-Rocamora, and Madelyn Marrero. 2024. "A Systematic Review of BIM-Based Life Cycle Sustainability Assessment for Buildings" Sustainability 16, no. 24: 11070. https://doi.org/10.3390/su162411070
APA StyleBerges-Alvarez, I., Martínez-Rocamora, A., & Marrero, M. (2024). A Systematic Review of BIM-Based Life Cycle Sustainability Assessment for Buildings. Sustainability, 16(24), 11070. https://doi.org/10.3390/su162411070