Mechanisms of Heavy Metal Tolerance in Bacteria: A Review
Abstract
:1. Introduction
2. Classification of Metals
3. Heavy Metal Toxicity and Bacterial Reponses
4. Molecular Mechanisms of Heavy Metal Tolerance
4.1. Metal Transport and Efflux Systems
4.1.1. Description of Metal Transporters
4.1.2. Mechanisms of Metal Sequestration and Export
4.2. Metal Chelation and Sequestration
4.3. Genetic Regulation of Metal Tolerance
5. Microbial Community Dynamics
5.1. Impact of Heavy Metal Contamination on Microbial Community Structure
Role of Metal-Tolerant Microorganisms in Maintaining Ecosystem Function
5.2. Evolutionary Mechanisms Leading to Increased Metal Tolerance
5.3. Symbiosis and Interaction with Other Organisms
6. Genetically Engineered Bacteria and Closed-Loop Metal Recovery Systems
6.1. Engineered Bacteria in Industrial and Wastewater Treatments
6.2. Integration into Closed-Loop Systems for Metal Recovery
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Shah, S.B. Heavy metals in the marine environment—An overview. In Heavy Metals in Scleractinian Corals; SpringerBriefs in Earth Sciences; Springer: Cham, Switzerland, 2021; pp. 1–26. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog? IntechOpen: London, UK, 2019; pp. 77–100. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2018; pp. 103–125. [Google Scholar] [CrossRef]
- Parida, L.; Patel, T.N. Systemic impact of heavy metals and their role in cancer development: A review. Environ. Monit. Assess. 2023, 195, 766. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency, Office of Resources Management. Legislation, Programs and Organization—The United States Environmental Protection Agency; Environmental Protection Agency, Office of Resources Management: Washington, DC, USA, 1979. [Google Scholar]
- Centers for Disease Control and Prevention; Agency for Toxic Substances and Disease Registry; Strategic Plan for Public Health Workforce Development. Toward a Life-Long Learning System for Public Health Practitioners; US Department of Health and Human Services: Washington, DC, USA, 2001. [Google Scholar]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: A review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Saad, A.A.; El-Sikaily, A.; Kassem, H. Essential, non-essential metals and human health. Blue Biotechnol. J. 2014, 3, 447. [Google Scholar]
- Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef]
- Sandrin, T.R.; Hoffman, D.R. Bioremediation of organic and metal co-contaminated environments: Effects of metal toxicity, speciation, and bioavailability on biodegradation. In Environmental Bioremediation Technologies; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–34. [Google Scholar]
- Voica, D.M.; Bartha, L.; Banciu, H.L.; Oren, A. Heavy metal resistance in halophilic Bacteria and Archaea. FEMS Microbiol. Lett. 2016, 363, fnw146. [Google Scholar] [CrossRef]
- Inobeme, A. Effect of heavy metals on activities of soil microorganism. In Microbial Rejuvenation of Polluted Environment; Springer: Singapore, 2021; Volume 3, pp. 115–142. [Google Scholar]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 2018, 8, 216. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Essa, A.M.M.; Al Abboud, M.A.; Khatib, S.I. Metal transformation as a strategy for bacterial detoxification of heavy metals. J. Basic Microbiol. 2017, 58, 17–29. [Google Scholar] [CrossRef]
- Joshi, S.; Gangola, S.; Bhandari, G.; Bhandari, N.S.; Nainwal, D.; Rani, A.; Malik, S.; Slama, P. Rhizospheric bacteria: The key to sustainable heavy metal detoxification strategies. Front. Microbiol. 2023, 14, 1229828. [Google Scholar] [CrossRef] [PubMed]
- Nanda, M.; Kumar, V.; Sharma, D. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol. 2019, 212, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Panthi, N.; Mazumdar, I.; Hussain, N. Bioaccumulation and Detoxification of Metals Through Genetically Engineered Microorganism. In Green Technologies for Industrial Waste Remediation; Springer: Berlin/Heidelberg, Germany, 2023; pp. 147–187. [Google Scholar]
- Roy, R.; Samanta, S.; Pandit, S.; Naaz, T.; Banerjee, S.; Rawat, J.M.; Chaubey, K.K.; Saha, R.P. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl. Biochem. Biotechnol. 2023, 196, 1712–1751. [Google Scholar] [CrossRef] [PubMed]
- Gomathy, M.; Sabarinathan, K. Microbial mechanisms of heavy metal tolerance—A review. Agric. Rev. 2010, 31, 133–138. [Google Scholar]
- Halka, M.; Nordstrom, B. Metals and Metalloids; Infobase Publishing: New York, NY, USA, 2019. [Google Scholar]
- Fashola, M.; Anagun, O.; Babalola, O.O. Heavy metal pollution: Toxic effects on bacterial cells. Authorea Preprints 2023, 1–13. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Seraj, F.; Rahman, T. Heavy Metals, Metalloids, Their Toxic Effect and Living Systems. Am. J. Plant Sci. 2018, 9, 2626–2643. [Google Scholar] [CrossRef]
- Young, S.D. Chemistry of heavy metals and metalloids in soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 51–95. [Google Scholar] [CrossRef]
- Darma, A.; Yang, J.; Zandi, P.; Liu, J.; Możdżeń, K.; Xia, X.; Sani, A.; Wang, Y.; Schnug, E. Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic—A Review. Biology 2022, 11, 472. [Google Scholar] [CrossRef]
- Upadhyaya, G.; Roychoudhury, A. Arsenic-toxicity and tolerance: Phytochelatin-mediated detoxification and genetic engineering-based remediation. In Global Arsenic Hazard: Ecotoxicology and Remediation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 481–508. [Google Scholar]
- Pandey, R.; Dwivedi, M.K.; Singh, P.; Patel, B.; Pandey, S.; Patel, B.; Patel, A.; Singh, B. Effluences of heavy metals, way of exposure and bio-toxic impacts: An update. J. Chem. Chem. Sci. 2016, 66, 2319–7625. [Google Scholar]
- Feng, X.; Long, R.; Wang, L.; Liu, C.; Bai, Z.; Liu, X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol. 2022, 284, 120099. [Google Scholar] [CrossRef]
- Franus, M.; Bandura, L.; Madej, J. Mono and Poly-Cationic Adsorption of Heavy Metals Using Natural Glauconite. Minerals 2019, 9, 470. [Google Scholar] [CrossRef]
- Jeyakumar, P.; Debnath, C.; Vijayaraghavan, R.; Muthuraj, M. Trends in Bioremediation of Heavy Metal Contaminations. Environ. Eng. Res. 2022, 28, 220631. [Google Scholar] [CrossRef]
- Kostova, I. The Role of Complexes of Biogenic Metals in Living Organisms. Inorganics 2023, 11, 56. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology: Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 3, pp. 133–164. [Google Scholar]
- Cai, Y.; Fang, M.; Tan, X.; Hu, B.; Wang, X. Highly efficient selective elimination of heavy metals from solutions by different strategies. Sep. Purif. Technol. 2024, 350, 127975. [Google Scholar] [CrossRef]
- Zhang, H.; Huo, S.; Yeager, K.M.; Xi, B.; Zhang, J.; He, Z.; Ma, C.; Wu, F. Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change. Ecol. Indic. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Ghori, N.-H.; Ghori, T.; Hayat, M.; Imadi, S.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.; Srivastava, S. Zinc resistance mechanisms in bacteria. Curr. Sci. 2001, 81, 768–775. [Google Scholar]
- Shuaib, M.; Azam, N.; Bahadur, S.; Romman, M.; Yu, Q.; Xuexiu, C. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microb. Pathog. 2020, 150, 104713. [Google Scholar] [CrossRef]
- Matyar, F.; Kaya, A.; Dinçer, S. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci. Total Environ. 2008, 407, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Mateos, L.M.; Villadangos, A.F.; De la Rubia, A.G.; Mourenza, A.; Marcos-Pascual, L.; Letek, M.; Pedre, B.; Messens, J.; Gil, J.A. The arsenic detoxification system in corynebacteria: Basis and application for bioremediation and redox control. Adv. Appl. Microbiol. 2017, 99, 103–137. [Google Scholar]
- Hossain, S.T.; Mallick, I.; Mukherjee, S.K. Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance. Ecotoxicol. Environ. Saf. 2012, 86, 54–59. [Google Scholar] [CrossRef]
- Karthik, C.; Barathi, S.; Pugazhendhi, A.; Ramkumar, V.S.; Thi, N.B.D.; Arulselvi, P.I. Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J. Hazard. Mater. 2017, 333, 42–53. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Pandey, S.; Thatoi, H.; Panda, C.R. Reduction of Chromium(VI) by Marine Bacterium Brevibacillus laterosporus Under Varying Saline and pH Conditions. Environ. Eng. Sci. 2017, 34, 617–626. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.A.; Asaf, S.; Lubna; Lee, I.-J.; Kim, K.M. Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants 2019, 8, 363. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, J.; Kucharski, M. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013, 18, 769–796. [Google Scholar] [CrossRef]
- Syed, A.; Zeyad, M.T.; Shahid, M.; Elgorban, A.M.; Alkhulaifi, M.M.; Ansari, I.A. Heavy Metals Induced Modulations in Growth, Physiology, Cellular Viability, and Biofilm Formation of an Identified Bacterial Isolate. ACS Omega 2021, 6, 25076–25088. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.-H.; Liu, Y.; Wang, H. Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria. ACS Appl. Mater. Interfaces 2014, 6, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, P.; Cabral, L.; Bento, F.M.; Gianello, C.; Camargo, F.A.O. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. New Biotechnol. 2016, 33, 216–223. [Google Scholar] [CrossRef]
- Xu, F.F.; Imlay, J.A. Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 3614–3621. [Google Scholar] [CrossRef]
- Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE 2019, 14, e0224904. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, L.C.A.; de Oliveira, M.B.M. Effect of heavy metals on the biofilm formed by microorganisms from impacted aquatic environments. In Bacterial Biofilms; IntechOpen: London, UK, 2020; pp. 19–31. [Google Scholar] [CrossRef]
- Priya, A.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.; Poli, A.; Di Donato, P.; Romano, I.; Laezza, G.; Gioiello, A.; Ulgiati, S.; Fratianni, F.; Nazzaro, F.; Orlando, P. Pb2+ effects on growth, lipids, and protein and DNA profiles of the thermophilic bacterium Thermus thermophilus. Microorganisms 2016, 4, 45. [Google Scholar] [CrossRef]
- Tarekegn, M.M.; Salilih, F.Z.; Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020, 6, 1783174. [Google Scholar] [CrossRef]
- Shao, W.; Li, M.; Teng, Z.; Qiu, B.; Huo, Y.; Zhang, K. Effects of Pb (II) and Cr (VI) stress on phosphate-solubilizing bacteria (Bacillus sp. Strain MRP-3): Oxidative stress and bioaccumulation potential. Int. J. Environ. Res. Public Health 2019, 16, 2172. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Sarwar, A.; Saleem, M.A.; Latif, Z.; Opella, S.J. Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus. J. Microbiol. Biotechnol. 2019, 29, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Shee, C.; Cox, B.D.; Gu, F.; Luengas, E.M.; Joshi, M.C.; Chiu, L.-Y.; Magnan, D.; Halliday, J.A.; Frisch, R.L.; Gibson, J.L.; et al. Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife 2013, 2, e01222. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, P.; Hasani, A.; Aghazadeh, M.; Memar, M.Y.; Hasani, A.; Zaree, M.; Rezaee, M.A.; Sadeghi, J. Contribution of Arginine Catabolic Mobile Element and Copper and Mercury Resistance Element in Methicillin-Resistant Staphylococcus aureus: A Vantage Point. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 9916255. [Google Scholar] [CrossRef]
- Thai, T.D.; Lim, W.; Na, D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front. Bioeng. Biotechnol. 2023, 11, 1178680. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathna, N.; Abeyrathna, S.; Morgan, M.T.; Fahrni, C.J.; Meloni, G. Transmembrane Cu(i) P-type ATPase pumps are electrogenic uniporters. Dalton Trans. 2020, 49, 16082–16094. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zhang, H. P-type ATPases use a domain-association mechanism to couple ATP hydrolysis to conformational change. Biophys. Rep. 2019, 5, 167–175. [Google Scholar] [CrossRef]
- Hyre, A.; Casanova-Hampton, K.; Subashchandrabose, S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Padilla-Benavides, T.; Thompson, A.M.G.; McEvoy, M.M.; Argüello, J.M. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: The interaction of Escherichia coli CopA and CusF. J. Biol. Chem. 2014, 289, 20492–20501. [Google Scholar] [CrossRef]
- Adhikary, S.; Saha, J.; Dutta, P.; Pal, A. Bacterial Homeostasis and Tolerance to Potentially Toxic Metals and Metalloids through Diverse Transporters: Metal-Specific Insights. Geomicrobiol. J. 2024, 41, 496–518. [Google Scholar] [CrossRef]
- Athar, M.; Gervasoni, S.; Catte, A.; Basciu, A.; Malloci, G.; Ruggerone, P.; Vargiu, A.V. Tripartite efflux pumps of the RND superfamily: What did we learn from computational studies? Microbiology 2023, 169, 001307. [Google Scholar] [CrossRef]
- Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003, 27, 197–213. [Google Scholar] [CrossRef]
- Rosenberg, M.; Park, S.; Umerov, S.; Ivask, A. Experimental evolution of Escherichia coli on solid silver, copper, stainless steel, and glass surfaces. bioRxiv 2024. [Google Scholar] [CrossRef]
- Meade, J.C. P-type transport ATPases in Leishmania and Trypanosoma. Parasite 2019, 26, 69. [Google Scholar] [CrossRef] [PubMed]
- Gillet, S.; Lawarée, E.; Matroule, J.-Y. Functional diversity of bacterial strategies to cope with metal toxicity. In Microbial Diversity in the Genomic Era; Elsevier: Amsterdam, The Netherlands, 2019; pp. 409–426. [Google Scholar]
- Chatterjee, S.; Kumari, S.; Rath, S.; Priyadarshanee, M.; Das, S. Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020, 12, 1637–1655. [Google Scholar] [CrossRef] [PubMed]
- Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Del Conte, R.; Gonnelli, L. Understanding Copper Trafficking in Bacteria: Interaction between the Copper Transport Protein CopZ and the N-Terminal Domain of the Copper ATPase CopA from Bacillus subtilis. Biochemistry 2003, 42, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Gillan, D.C. Metal resistance systems in cultivated bacteria: Are they found in complex communities? Curr. Opin. Biotechnol. 2016, 38, 123–130. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Tian, L.-J.; Yu, S.-S.; Yu, H.-Q. Roles of cation efflux pump in biomineralization of cadmium into quantum dots in Escherichia coli. J. Hazard. Mater. 2021, 412, 125248. [Google Scholar] [CrossRef]
- Yun, B.-Y.; Xu, Y.; Piao, S.; Kim, N.; Yoon, J.-H.; Cho, H.-S.; Lee, K.; Ha, N.-C. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. J. Microbiol. 2010, 48, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Mozaheb, N.; Mingeot-Leclercq, M.-P. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front. Microbiol. 2020, 11, 600221. [Google Scholar] [CrossRef] [PubMed]
- Roy, R. Effect of cadmium and zinc heavy metals on the soil bacteria isolated from coal mine region. J. Adv. Sci. Res. 2021, 12, 68–77. [Google Scholar] [CrossRef]
- Uqab, B.; Nazir, R.; Ganai, B.A.; Rahi, P. In vitro Sequestration of Molecular and Mass Spectra Characterized Metallophilic Cadmium Tolerant Bacteria for Sustainable Agriculture. Front. Microbiol. 2022, 13, 845853. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.A.; Gajewski, J.P.; Ferlez, B.H.; Ludwig, M.; Baker, C.S.; Golbeck, J.H.; Bryant, D.A. Zn2+-inducible expression platform for Synechococcus sp. strain PCC 7002 based on the smtA promoter/operator and smtB repressor. Appl. Environ. Microbiol. 2017, 83, e02491-16. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Heine, T.; Malik, L.; Hofmann, S.; Joffroy, K.; Senges, C.H.R.; Bandow, J.E.; Tischler, D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021, 9, 111. [Google Scholar] [CrossRef]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front. Plant Sci. 2016, 7, 303. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, M.; Hatha, A.M. Cadmium and lead tolerance mechanisms in bacteria and the role of halotolerant and moderately halophilic bacteria in their remediation. In Handbook of Metal-Microbe Interactions and Bioremediation; CRC Press: Boca Raton, FL, USA, 2017; pp. 557–573. [Google Scholar]
- Braud, A.; Jézéquel, K.; Lebeau, T. Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. J. Hazard. Mater. 2007, 144, 229–239. [Google Scholar] [CrossRef]
- Sá, C.; Matos, D.; Pires, A.; Cardoso, P.; Figueira, E. Effects of volatile sulfur compounds on growth and oxidative stress of Rhizobium leguminosarum E20-8 exposed to cadmium. Sci. Total Environ. 2021, 800, 149478. [Google Scholar] [CrossRef]
- Shylla, L.; Ka-ot, A.L.; Nongkhlaw, M.; Joshi, S. Metallophillic Bacteria and Bioremediation of Heavy Metals. In Extreme Environments; CRC Press: Boca Raton, FL, USA, 2021; pp. 101–116. [Google Scholar]
- Husseini, A.; Akköprü, A. The possible mechanisms of copper resistance in the pathogen Pseudomonas syringae pathovars in stone fruit trees. Phytoparasitica 2020, 48, 705–718. [Google Scholar] [CrossRef]
- Kampf, G. Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sharma, M.; Sharma, S.; Paavan; Gupta, M.; Goyal, S.; Talukder, D.; Akhtar, M.S.; Kumar, R.; Umar, A.; Alkhanjaf, A.A.M. Mechanisms of microbial resistance against cadmium—A review. J. Environ. Health Sci. Eng. 2024, 22, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.D.; Gupta, A.; Reyes-Calderón, A.; Merupo, V.I.; Kalita, G.; Herrera-Celis, J.; Chandra, N.; Sharma, A.; Ramirez, J.T.; Arriaga, L. Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. J. Fluoresc. 2021, 31, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, V.; Guzmán-Moreno, J.; Rodríguez-González, V.; Flores-de la Torre, J.A.; Ramírez-Santoyo, R.M.; Vidales-Rodríguez, L.E. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J. Microbiol. Biotechnol. 2017, 33, 150. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Chandrangsu, P.; Rensing, C.; Helmann, J.D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 2017, 15, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Norambuena, J.; Miller, M.; Boyd, J.M.; Barkay, T. Expression and regulation of the mer operon in Thermus thermophilus. Environ. Microbiol. 2020, 22, 1619–1634. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E. Microorganisms to Combat Pollution; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Brown, N.L.; Stoyanov, J.V.; Kidd, S.P.; Hobman, J.L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 2003, 27, 145–163. [Google Scholar] [CrossRef]
- Andrei, A.; Öztürk, Y.; Khalfaoui-Hassani, B.; Rauch, J.; Marckmann, D.; Trasnea, P.-I.; Daldal, F.; Koch, H.-G. Cu Homeostasis in Bacteria: The Ins and Outs. Membranes 2020, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.M.; El-Gendy, A.O.; Khairalla, A.S. Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance. Open Biotechnol. J. 2018, 12, 56–77. [Google Scholar] [CrossRef]
- Bhardwaj, A. Understanding the diversified microbial operon framework coupled to arsenic transformation and expulsion. Biologia 2022, 77, 3531–3544. [Google Scholar] [CrossRef]
- Rodriguez, J.; Mosquera, J.; Learte-Aymami, S.; Vázquez, M.E.; Mascareñas, J.L. Stimuli-Responsive DNA Binding by Synthetic Systems. Accounts Chem. Res. 2020, 53, 2286–2298. [Google Scholar] [CrossRef] [PubMed]
- Roncarati, D.; Pelliciari, S.; Doniselli, N.; Maggi, S.; Vannini, A.; Valzania, L.; Mazzei, L.; Zambelli, B.; Rivetti, C.; Danielli, A. Metal-responsive promoter DNA compaction by the ferric uptake regulator. Nat. Commun. 2016, 7, 12593. [Google Scholar] [CrossRef] [PubMed]
- Pourciau, C.; Pannuri, A.; Potts, A.; Yakhnin, H.; Babitzke, P.; Romeo, T. Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. mBio 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Ding, C. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int. J. Mol. Sci. 2019, 20, 175. [Google Scholar] [CrossRef]
- Liu, C.; Yu, H.; Zhang, B.; Liu, S.; Liu, C.-G.; Li, F.; Song, H. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol. Adv. 2022, 60, 108019. [Google Scholar] [CrossRef]
- Ifedinezi, O.V.; Nnaji, N.D.; Anumudu, C.K.; Ekwueme, C.T.; Uhegwu, C.C.; Ihenetu, F.C.; Obioha, P.; Simon, B.O.; Ezechukwu, P.S.; Onyeaka, H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics 2024, 13, 1087. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Chen, X.; Du, S.; Deng, Z.; Wang, L.; Chen, S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 2018, 65, 329–338. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.-N.; Shen, J.; Nadar, V.S.; Chen, J. Characterization of a novel ArsR regulates divergent ars operon in Ensifer adhaerens strain ST2. FEMS Microbiol. Lett. 2023, 370, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. Transcription Factors That Defend Bacteria Against Reactive Oxygen Species. Annu. Rev. Microbiol. 2015, 69, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Z.; Zhao, H.; Hu, L.; Dahlgren, R.A.; Xu, J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. Environ. Pollut. 2023, 327, 121548. [Google Scholar] [CrossRef]
- Khan, S.; Hesham, A.E.-L.; Qiao, M.; Rehman, S.; He, J.-Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 2009, 17, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Mounaouer, B.; Nesrine, A.; Abdennaceur, H. Identification and characterization of heavy metal-resistant bacteria selected from different polluted sources. Desalination Water Treat. 2014, 52, 7037–7052. [Google Scholar] [CrossRef]
- Xavier, J.; Costa, P.; Hissa, D.; Melo, V.; Falcão, R.; Balbino, V.; Mendonça, L.; Lima, M.; Coutinho, H.; Verde, L. Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Appl. Geochem. 2019, 105, 1–6. [Google Scholar] [CrossRef]
- Guzmán-Moreno, J.; García-Ortega, L.F.; Torres-Saucedo, L.; Rivas-Noriega, P.; Ramírez-Santoyo, R.M.; Sánchez-Calderón, L.; Quiroz-Serrano, I.N.; Vidales-Rodríguez, L.E. Bacillus megaterium HgT21: A Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration. Microbiol. Spectr. 2022, 10, e0065622. [Google Scholar] [CrossRef]
- Fakhar, A.; Gul, B.; Gurmani, A.R.; Khan, S.M.; Ali, S.; Sultan, T.; Chaudhary, H.J.; Rafique, M.; Rizwan, M. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1868–1914. [Google Scholar] [CrossRef]
- Wimalasekara, R.L.; Seneviratne, K.N.; Jayathilaka, N. Metagenomics in bioremediation of metals for environmental cleanup. In Metagenomics to Bioremediation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 231–259. [Google Scholar]
- Zhao, H.; Lin, J.; Wang, X.; Shi, J.; Dahlgren, R.A.; Xu, J. Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. Environ. Sci. Technol. 2021, 55, 14305–14315. [Google Scholar] [CrossRef]
- Pal, A.; Bhattacharjee, S.; Saha, J.; Sarkar, M.; Mandal, P. Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Crit. Rev. Microbiol. 2022, 48, 327–355. [Google Scholar] [CrossRef] [PubMed]
- Wakelin, S.; Gerard, E.; Black, A.; Hamonts, K.; Condron, L.; Yuan, T.; van Nostrand, J.; Zhou, J.; O’Callaghan, M. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ. Pollut. 2014, 190, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Grégoire, D.S.; Bain, J.G.; Blowes, D.W.; Hug, L.A. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Appl. Environ. Microbiol. 2024, 90, e0014324. [Google Scholar] [CrossRef] [PubMed]
- Neria-González, M.I.; Aguilar-López, R. Heavy Metal Removal Processes by Sulfate-Reducing Bacteria. In Environmental Pollution and Remediation; Springer: Singapore, 2021; pp. 367–394. [Google Scholar]
- Lopez, A.M.Q.; Silva, A.L.D.S.; Maranhão, F.C.D.A.; Ferreira, L.F.R. Plant growth promoting bacteria: Aspects in metal bioremediation and phytopathogen management. In Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1, pp. 51–78. [Google Scholar]
- Ke, T.; Guo, G.; Liu, J.; Zhang, C.; Tao, Y.; Wang, P.; Xu, Y.; Chen, L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 2020, 271, 116314. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Chandra, R. Biofilm-mediated bioremediation of pollutants from the environment for sustainable development. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 177–203. [Google Scholar]
- Engin, A.B.; Engin, E.D.; Engin, A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environ. Toxicol. Pharmacol. 2023, 98, 104081. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Abril, A.; Biełło, K.; Rodríguez-Caballero, G.; Cabello, P.; Sáez, L.P.; Moreno-Vivián, C.; Luque-Almagro, V.M.; Roldán, M.D. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb. Biotechnol. 2024, 17, e14399. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hou, S.; Cui, Y.; Tong, Y.; Yang, H. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J. Ind. Microbiol. Biotechnol. 2019, 47, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Barman, D.; Jha, D.K.; Bhattacharjee, K. Metallotolerant bacteria: Insights into bacteria thriving in metal-contaminated areas. In Microbial Versatility in Varied Environments: Microbes in Sensitive Environments; Springer: Berlin/Heidelberg, Germany, 2020; pp. 135–164. [Google Scholar]
- Melnyk, A.H.; Wong, A.; Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 2014, 8, 273–283. [Google Scholar] [CrossRef]
- Bramhachari, P.; Nagaraju, G.P. Extracellular polysaccharide production by bacteria as a mechanism of toxic heavy metal biosorption and biosequestration in the marine environment. In Marine Pollution and Microbial Remediation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 67–85. [Google Scholar]
- Varposhti, M.; Entezari, F.; Feizabadi, M.M. Synergistic interactions in mixed-species biofilms of pathogenic bacteria from the respiratory tract. Rev. Soc. Bras. Med. Trop. 2014, 47, 649–652. [Google Scholar] [CrossRef]
- Rodriguez-Beltran, J.; Hernandez-Beltran, J.C.R.; DelaFuente, J.; Escudero, J.A.; Fuentes-Hernandez, A.; MacLean, R.C.; Peña-Miller, R.; Millan, A.S. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2018, 2, 873–881. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Sun, G.; Zhang, Y.; Su, J.; Ye, J. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7. Int. J. Mol. Sci. 2015, 16, 23390–23404. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.J.; Hobman, J.L. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 2017, 70, 261–313. [Google Scholar] [PubMed]
- Sun, S.; Wang, M.; Xiang, J.; Shao, Y.; Li, L.; Sedjoah, R.-C.A.-A.; Wu, G.; Zhou, J.; Xin, Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int. J. Biol. Macromol. 2023, 238, 124062. [Google Scholar] [CrossRef]
- Bhat, B.A.; Tariq, L.; Nissar, S.; Islam, S.T.; Islam, S.U.; Mangral, Z.; Ilyas, N.; Sayyed, R.Z.; Muthusamy, G.; Kim, W. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J. Appl. Microbiol. 2022, 133, 2717–2741. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Glick, B.R. The role of plant growth-promoting bacteria in metal phytoremediation. Adv. Microb. Physiol. 2017, 71, 97–132. [Google Scholar] [PubMed]
- Nascimento, F.X.; Hernández, A.G.; Glick, B.R.; Rossi, M.J. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol. Rep. 2020, 25, e00406. [Google Scholar] [CrossRef] [PubMed]
- Jha, C.K.; Sharma, P.; Shukla, A.; Parmar, P.; Patel, R.; Goswami, D.; Saraf, M. Microbial enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: An elixir for plant under stress. Physiol. Mol. Plant Pathol. 2021, 115, 101664. [Google Scholar] [CrossRef]
- Naz, M.; Afzal, M.R.; Qi, S.S.; Dai, Z.; Sun, Q.; Du, D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. Chemosphere 2024, 365, 143397. [Google Scholar] [CrossRef] [PubMed]
- Xin, J. Enhancing soil health to minimize cadmium accumulation in agro-products: The role of microorganisms, organic matter, and nutrients. Environ. Pollut. 2024, 348, 123890. [Google Scholar] [CrossRef]
- Abdelkrim, S.; Jebara, S.H.; Saadani, O.; Chiboub, M.; Abid, G.; Mannai, K.; Jebara, M. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch. Microbiol. 2018, 201, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Sarma, H.; Sonowal, S.; Prasad, M. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds—A microcosmic study. Ecotoxicol. Environ. Saf. 2019, 176, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Leewis, M.-C.; Kasanke, C.; Uhlik, O.; Leigh, M.B. Long-term legacy of phytoremediation on plant succession and soil microbial communities in petroleum-contaminated sub-Arctic soils. SOIL 2024, 10, 551–566. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Qiu, H.; Liu, M.; Li, Y.; He, E. Metal resistant gut microbiota facilitates snails feeding on metal hyperaccumulator plant Sedum alfredii in the phytoremediation field. Ecotoxicol. Environ. Saf. 2022, 236, 113514. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, U.R.; Das, J.; Bano, S. Biological indicators of soil health and biomonitoring. In Advances in Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 327–347. [Google Scholar]
- Pronk, L.J.U.; Bakker, P.A.H.M.; Keel, C.; Maurhofer, M.; Flury, P. The secret life of plant-beneficial rhizosphere bacteria: Insects as alternative hosts. Environ. Microbiol. 2022, 24, 3273–3289. [Google Scholar] [CrossRef]
- Akoijam, N.; Joshi, S. Genome Editing and Genetically Engineered Bacteria for Bioremediation of Heavy Metals. In Genome Editing in Bacteria (Part 2); Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 184–221. [Google Scholar]
- Ranjbar, S.; Malcata, F.X. Is genetic engineering a route to enhance microalgae-mediated bioremediation of heavy metal-containing effluents? Molecules 2022, 27, 1473. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, S.H.; Herzberg, M.; Ben Fekih, I.; Zhang, C.; Bello, S.K.; Li, Y.P.; Su, J.; Xu, J.; Feng, R.; Zhou, S.; et al. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated from a Gold–Copper Mine. Front. Microbiol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Shamim, S.; Rehman, A. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. J. Basic Microbiol. 2013, 55, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Q.; Wang, R.-C.; Lu, X.-C.; Lu, J.-J.; Li, J.; Hu, H. Tolerance and biosorption of heavy metals by Cupriavidus metallidurans strain XXKD-1 isolated from a subsurface laneway in the Qixiashan Pb-Zn sulfide minery in Eastern China. Geomicrobiol. J. 2012, 29, 274–286. [Google Scholar] [CrossRef]
- Nokman, W.; Benluvankar, V.; Packiam, S.M.; Vincent, S. Screening and molecular identification of heavy metal resistant Pseudomonas putida S4 in tannery effluent wastewater. Biocatal. Agric. Biotechnol. 2019, 18, 101052. [Google Scholar] [CrossRef]
- Tasleem, M.; El-Sayed, A.-A.A.A.; Hussein, W.M.; Alrehaily, A. Pseudomonas putida Metallothionein: Structural Analysis and Implications of Sustainable Heavy Metal Detoxification in Madinah. Toxics 2023, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Narasimhulu, K.; Setty, Y.P. Optimization Studies on Biosorption of Ni (ii) and Cd (ii) from Wastewater in a Packed Bed Bioreactor. In Handbook of Research on Uncovering New Methods for Ecosystem Management Through Bioremediation; IGI Global: Hershey, PA, USA, 2015; pp. 367–398. [Google Scholar]
- Hu, S.; Wei, Z.; Liu, T.; Zuo, X.; Jia, X. Adsorption of Hg2+/Cr6+ by metal-binding proteins heterologously expressed in Escherichia coli. BMC Biotechnol. 2024, 24, 15. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-T.; Cheng, W.-J.; Zhang, Q.-X.; Yeh, Y.-C. Gold-Specific Biosensor for Monitoring Wastewater Using Genetically Engineered Cupriavidus metallidurans CH34. ACS Synth. Biol. 2021, 10, 3576–3582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, S.; Yang, J.; Ma, A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers 2022, 14, 1167. [Google Scholar] [CrossRef] [PubMed]
Heavy Metals | Effect on Bacteria | References |
---|---|---|
Arsenic | Deactivation of enzymes Induction of oxidative stress | [45] |
Cadmium | Damage to proteins and nucleic acids Impedes cell division and transcription | [46] |
Chromium | Growth inhibition Elongation of lag phase | [47,48] |
Nickel | Causes oxidative stress Enzyme inhibition and membrane disruption | [49] |
Copper | Disrupts cellular functions Inhibits enzyme activities | [50] |
Lead | Inhibition of cell division Disruption of cellular respiration | [51] |
Zinc | Inhibits growth at high concentrations Alters membrane integrity | [52] |
Mercury | Inhibits protein synthesis Causes cell lysis | [53,54] |
Silver | Antimicrobial effects Disruption of membrane integrity | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nnaji, N.D.; Anyanwu, C.U.; Miri, T.; Onyeaka, H. Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability 2024, 16, 11124. https://doi.org/10.3390/su162411124
Nnaji ND, Anyanwu CU, Miri T, Onyeaka H. Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability. 2024; 16(24):11124. https://doi.org/10.3390/su162411124
Chicago/Turabian StyleNnaji, Nnabueze Darlington, Chukwudi U Anyanwu, Taghi Miri, and Helen Onyeaka. 2024. "Mechanisms of Heavy Metal Tolerance in Bacteria: A Review" Sustainability 16, no. 24: 11124. https://doi.org/10.3390/su162411124
APA StyleNnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024). Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability, 16(24), 11124. https://doi.org/10.3390/su162411124