Effects of Solid Dairy Manure Application on Greenhouse Gas Emissions and Corn Yield in the Upper Midwest, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manure Treatments and Agronomic Considerations
2.2. Greenhouse Gas Emission Measurements
2.3. Agronomic Soil Testing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Soil Properties
3.3. Applied Manure Nutrients
3.4. Corn Silage Yield
3.5. Greenhouse Gas Emissions: Carbon Dioxide
3.6. Nitrous Oxide Emissions
3.7. Methane Emissions
3.8. Soil Moisture and Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NH4+ | Ammonia |
BP | Bedded pack heifer manure |
C | Carbon |
CO2 | Carbon dioxide |
N2 | Dinitrogen gas |
MARS | Marshfield Agricultural Research Station |
CH4 | Methane |
GHG | Greenhouse gas |
GWP | Global warming potential |
N | Nitrogen |
NO3− | Nitrate |
N2O | Nitrous oxide |
K | Potassium |
SDS | Separated dairy solids |
S | Sulfur |
Appendix A
References
- IPCC. Intergovernmental Panel on Climate Change Special Report. Climate Change and Land. Available online: https://www.ipcc.ch/srccl/ (accessed on 20 March 2024).
- USEPA. United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. National Emissions and Removals. 2024. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 20 March 2024).
- USEPA. United States Environmental Protection Agency. Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 20 March 2024).
- USEPA. United States Environmental Protection Agency. Causes of Climate Change. 2024. Available online: https://www.epa.gov/climatechange-science/causes-climate-change (accessed on 20 March 2024).
- Del Grosso, S.J.; Ogle, S.M.; Nevison, C.; Gurung, R.; Parton, W.J.; Wagner-Riddle, C.; Smith, W.; Winiwarter, W.; Grant, B.; Tenuta, M.; et al. A gap nitrous oxide emission reporting complicates long- term climate mitigation. Proc. Natl. Acad. Sci. USA 2022, 119, e2200354119. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021–The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, G.; Brouder, S.M.; Smith, D.R.; Van Scoyoc, G.E. Greenhouse gas fluxes in an eastern Corn Belt soil: Weather, nitrogen source, and rotation. J. Environ. Qual. 2009, 38, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R.; Clay, D.E.; Clay, S.A.; Moriles-Miller, J.; Daigh, A.L.M.; Reicks, G.; Westhoff, S. Quantification and machine learning based N2O–N and CO2–C emissions predictions from a decomposing rye cover crop. Agron. J. 2022, 116, 1–15. [Google Scholar] [CrossRef]
- Joshi, D.R.; Sieverding, H.L.; Xu, H.; Kwon, H.; Wang, M.; Clay, S.A.; Johnson, J.M.; Thapa, R.; Westhoff, S.; Clay, D.E. A global meta-analysis of cover crop response on soil carbon storage within a corn production system. Agron. J. 2023, 115, 1543–1556. [Google Scholar] [CrossRef]
- Kwon, H.; Liu, X.; Xu, H.; Wang, M. Greenhouse gas mitigation strategies and opportunities for agriculture. Agron. J. 2021, 113, 4639–4647. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Saha, D.; Dumont, M.G.; Hernandez, M.; Adams, M.A. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems 2019, 22, 1424–1443. [Google Scholar] [CrossRef]
- Miller, L.T.; Griffis, T.J.; Erickson, M.D.; Turner, P.A.; Deventer, M.J.; Chen, Z.; Yu, Z.; Venterea, R.T.; Baker, J.M.; Frie, A.L. Response of nitrous oxide emissions to individual rain events and future changes in precipitation. J. Environ. Qual. 2022, 51, 312–324. [Google Scholar] [CrossRef]
- Abdalla, M.; Kumar, S.; Jones, M.; Burke, J.; Williams, M. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the CO2 gas flux from Irish agriculture. Glob. Planet. Chang. 2011, 78, 106–115. [Google Scholar] [CrossRef]
- Faimon, J.; Lang, M. What actually controls the minute to hour changes in soil carbon dioxide concentrations? Geoderma 2018, 323, 52–64. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J.; Smith, D.R.; Hegymegi, P.; Gal, A. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations. Soil Tillage Res. 2007, 95, 182–195. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Phil. Trans. R. Soc. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Basso, B.; Robertson, G.P. Machine learning improves predictions of agricultural nitrous oxide (N2O) emissions from intensively managed cropping systems. Environ. Res. Lett. 2021, 16, 024004. [Google Scholar] [CrossRef]
- Grosz, B.; Matson, A.; Butterbach-Bahl, K.; Clough, T.; Davidson, E.A.; Dechow, R.; DelGrosso, S.; Diamantopoulos, E.; Dörsch, P.; Haas, E.; et al. Modeling denitrification: Can we report what we won’t know? AGU Adv. 2023, 4, e2023AV000990. [Google Scholar] [CrossRef]
- Xia, Y.; Wander, M. Management zone-based estimation of positive and negative nitrous oxide flux in organic corn fields. Soil Sci. Amer. J. 2022, 86, 1043–1057. [Google Scholar] [CrossRef]
- Miller, D.J.; Chai, J.; Guo, F.; de León, M.A.P.; Ryals, R.; Dell, C.J.; Karsten, H.; Hastings, M.G. Cropland soil nitrogen oxide emissions vary with dairy manure incorporation methods. AGE 2024, 7, e20485. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Ketterings, Q.M.; Godwin, G.; Czymmek, K.J. Vermeylen, Agro-environmental consequences of shifting from nitrogen-to phosphorus-Based manure management of corn. Soil Sci. Soc. Am. J. 2017, 81, 1127–11138. [Google Scholar] [CrossRef]
- Gregorich, P.; Rochette, A.J.; VandenBygaart, A.J.; Angers, D. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res. 2004, 83, 53–72. [Google Scholar] [CrossRef]
- Wang, Z.P.; DeLaune, D.; Masscheleyen, P.H.; Patrick, W.H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 1993, 57, 382–385. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere. Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef]
- Dungan, R.S.; Leytem, A.B.; Tarkalson, D.D.; Ippolito, J.A.; Bjorneberg, D.L. Greenhouse gas emissions from an irrigated dairy forage rotation as influenced by fertilizer and manure applications. Soil Sci. Soc. Am. J. 2017, 8, 537–545. [Google Scholar] [CrossRef]
- Dungan, R.S.; Leytem, A.B.; Tarkalson, D.D. Greenhouse gas emissions from an irrigated cropping rotation with dairy manure utilization in a semiarid climate. Agron. J. 2021, 113, 1222–1237. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Kazula, M.J.; Lauer, J.G. Greenhouse gas emissions from soils in corn-based cropping systems. J. Environ. Qual. 2023, 52, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Bockheim, J.G.; Hartemink, A.E. The Soils of Wisconsin; World Soils Book Series; International Union of Soil Scientists; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Peters, J. Lab procedures and methods. University of Wisconsin Soils and Forage Analysis Laboratory. University of Wisconsin Extension. 2013. Available online: http://uwlab.soils.wisc.edu/lab-procedures/ (accessed on 12 December 2023).
- Laboski, C.A.M.; Peters, J.B. Nutrient Application Guidelines for Field, Vegetable, and Fruit Crops in Wisconsin; University of Wisconsin–Extension, Ed.; Cooperative Extension: Madison, WI, USA, 2012. [Google Scholar]
- Parkin, T.B.; Venterea, R.T. Chamber-Based Trace Gas Flux Measurements. In Sampling Protocols; Follett, R.F., Ed.; USDA-ARS: Beltsville, MD, USA, 2010. Available online: https://www.ars.usda.gov/ARSUserFiles/31831/2011%20Parkin%20and%20Venterea%20Trace%20Gas%20Protocol%20Revision%20Final.pdf (accessed on 7 March 2018).
- Venterea, R.T. Simplified method for quantifying theoretical underestimation of chamber-based trace gas fluxes. J. Environ. Qual. 2010, 39, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Cavadini, J. Impacts of low-disturbance dairy manure incorporation on ammonia and greenhouse gas fluxes in a corn silage–winter rye cover crop system. J. Environ. Qual. 2021, 50, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.; Young, E.; Jokela, W.; Cavadini, J. Impacts of Low Disturbance Liquid Dairy Manure Incorporation on Alfalfa Yield and Fluxes of Ammonia, Nitrous Oxide, and Methane. Agriculture 2021, 11, 750. [Google Scholar] [CrossRef]
- Sherman, J.; Young, E.; Jokela, W.; Kieke, B. Manure Application Timing and Incorporation Effects on Ammonia and Greenhouse Gas Emissions in Corn. Agriculture 2022, 12, 1952. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O. Greenhouse gas emissions with low disturbance liquid dairy manure incorporation into a live winter cereal cover crop-corn system. Agronomy 2022, 12, 2978. [Google Scholar] [CrossRef]
- Harbridge, J. Determination of Nitrate in 2M KCl Soil Extracts by Flow Injection Analysis. Quikchem Method 12-107-04-1-J.; Lachat Instruments: Loveland, CO, USA, 2007. [Google Scholar]
- Egan, L. Determination of Ammonia by Flow Injection Analysis. QuikChem Method 90-107-06-3-A; Lachat Instruments: Loveland, CO, USA, 2011. [Google Scholar]
- SAS Institute Inc. SAS 9.4 Guide to Software Updates; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Magdoff, F.R.; Ross, D.; Amadon, J. A soil test for nitrogen availability to corn. Soil Sci. Soc. Am. J. 1984, 48, 1301–1304. [Google Scholar] [CrossRef]
- Malek, I.; Bouteldja, M.; Posta, K.; Foti, S.; Pinter, K.; Nagy, Z.; Balogh, J. Response of soil respiration to biotic and abiotic drivers in a temperate cropland. Eurasian J. Soil Sci. 2021, 54, 1038–1048. [Google Scholar] [CrossRef]
- Fu, C.; Lee, X.; Griffis, T.J.; Baker, J.M.; Turner, P.A. A modeling study of direct and indirect N2O emissions from a representative catchment in the U.S. Corn Belt. Water Resour. Res. 2018, 54, 3632–3653. [Google Scholar] [CrossRef]
- Saha, D.; Kaye, J.P.; Bhowmik, A.; Bruns, M.A.; Wallace, J.M.; Kemanian, A.R. Organic fertility inputs synergistically increase denitrification-derived nitrous oxide emissions in agroecosystems. Ecol. Appl. 2021, 31, e02403. [Google Scholar] [CrossRef]
- Kandel, T.P.; Laerke, P.E.; Elsgaard, L. Annual emissions of CO2, CH4 and N2O from a temperate peat bog: Comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato. Agric. For. Meteorol. 2018, 256, 470–481. [Google Scholar] [CrossRef]
- Alluvione, F.; Halvorson, A.D.; Del Grosso, S.J. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J. Environ. Qual. 2009, 38, 2023–2033. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
Month | 1981–2010 † | 2020 | 2021 | 2022 | 2023 | 1981–2010 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|---|
Monthly Average Temperature (°C) | Monthly Precipitation Totals (mm) | |||||||||
April | 7.2 | −2.9 | 0.0 | −3.8 | −1.5 | 71.1 | −34.3 | −6.8 | 23.9 | 21.8 |
May | 13.7 | −1.5 | −1.1 | 0.5 | 0.5 | 93.2 | −12.9 | 11.4 | −15.5 | −36.2 |
June | 18.9 | 0.1 | 1.5 | −0.7 | 0.4 | 113.0 | 16.5 | 46.8 | −42.1 | −44.7 |
July | 21.2 | 0.3 | −0.8 | −0.9 | −1.4 | 101.0 | 28.3 | 37.9 | −53.2 | −2.6 |
August | 20.1 | −0.5 | −0.3 | −0.5 | −0.6 | 109.0 | −9.7 | 109.9 | −18.3 | −75.8 |
September | 15.4 | −1.9 | 0.0 | −0.3 | 1.1 | 100.0 | −44.0 | −54.8 | 28.3 | 47.3 |
October | 8.6 | −4.3 | 2.6 | −0.5 | −0.2 | 66.3 | −6.9 | −13.7 | −35.3 | 104.7 |
November | 0.8 | 1.9 | −0.2 | 0.2 | 0.2 | 56.4 | 1.7 | −27.7 | 0.6 | −55.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, E.; Sherman, J. Effects of Solid Dairy Manure Application on Greenhouse Gas Emissions and Corn Yield in the Upper Midwest, USA. Sustainability 2024, 16, 11171. https://doi.org/10.3390/su162411171
Young E, Sherman J. Effects of Solid Dairy Manure Application on Greenhouse Gas Emissions and Corn Yield in the Upper Midwest, USA. Sustainability. 2024; 16(24):11171. https://doi.org/10.3390/su162411171
Chicago/Turabian StyleYoung, Eric, and Jessica Sherman. 2024. "Effects of Solid Dairy Manure Application on Greenhouse Gas Emissions and Corn Yield in the Upper Midwest, USA" Sustainability 16, no. 24: 11171. https://doi.org/10.3390/su162411171
APA StyleYoung, E., & Sherman, J. (2024). Effects of Solid Dairy Manure Application on Greenhouse Gas Emissions and Corn Yield in the Upper Midwest, USA. Sustainability, 16(24), 11171. https://doi.org/10.3390/su162411171