Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Extraction of Leaf Oil
2.2. GC-MS Characterization
2.3. Test Insects
2.4. Contact Toxicity
2.5. Fumigation Toxicity
2.6. Repellence Activity Assay
2.7. Phytotoxicity Study on Paddy Grains
2.8. Data Analysis
3. Results
3.1. GC-MS Chemical Characterization and Yield
3.2. Contact Toxicity
3.3. Fumigation Toxicity
3.4. Repellent Activity
3.5. Phytotoxicity of Callistemon lanceolatus Leaf Oils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Tripathi, A.K. Pests of Stored Grains. In Pests and Their Management; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 311–359. [Google Scholar] [CrossRef]
- Upadhyay, R.; Ahmad, S. Management Strategies for Control of Stored Grain Insect Pests in Farmer Stores and Public Ware Houses. World J. Agric. Sci. 2011, 7, 527–549. [Google Scholar]
- Ramachandran, M.; Baskar, K.; Jayakumar, M. Essential Oil Composition of Callistemon citrinus (Curtis) and Its Protective Efficacy against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). PLoS ONE 2022, 17, e0270084. [Google Scholar] [CrossRef]
- Campbell, J.F.; Athanassiou, C.G.; Hagstrum, D.W.; Zhu, K.Y. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. Annu. Rev. Entomol. 2022, 67, 347–365. [Google Scholar] [CrossRef]
- Viswan, K.; Rahana, V.; Pushpalatha, E. Repellent and Adulticidal Efficacy of Essential Oils of Two Indigenous Plants from Myrtaceae Family Against Lasioderma serricorne F. J. Biopestic. 2013, 7, 70–74. [Google Scholar]
- Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina, Á.A. Insecticidal and Repellent Activities of the Essential Oil of Callistemon citrinus (Myrtaceae) against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Neotrop. Entomol. 2012, 42, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Balachandra, B.A.H.E.; Pathirathna, P.U.; Paranagama, P.A. Control of Stored Grain Pest, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) Using the Essential Oil Isolated from Plectranthus zeylanicus. Nat. Prod. Res. 2012, 26, 2219–2222. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Bio pesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Carrascosa, M.; Sánchez-Moreno, S.; Alonso-Prados, J.L. Effects of Organic and Conventional Pesticides on Plant Biomass, Nematode Diversity and the Structure of the Soil Food Web. Nematology 2015, 17, 11–26. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Visakh, N.U.; Sasidharan, A.; Pathrose, B.; Olatunji, O.J.; Al-Ansari, A.; Alfarhan, A.; Ramesh, V. Chemical Composition, Antioxidant, Anti-Bacterial, and Anti-Cancer Activities of Essential Oils Extracted from Citrus limetta Risso Peel Waste Remains after Commercial Use. Molecules 2022, 27, 8329. [Google Scholar] [CrossRef]
- Albaqami, J.J.; Hamdi, H.; Narayanankutty, A.; Visakh, N.U.; Sasidharan, A.; Kuttithodi, A.M.; Famurewa, A.C.; Pathrose, B. Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics 2022, 11, 1547. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Gupta, P.; Srivastava, Y. Plants Based Insecticides as Promising Source of Bio pesticides—A Review. ISSN 2021, 11, 51–57. [Google Scholar] [CrossRef]
- Cascaes, M.M.; Guilhon, G.M.S.P.; Andrade, E.H.d.A.; Zoghbi, M.d.G.B.; Santos, L.d.S. Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants. Int. J. Mol. Sci. 2015, 16, 23881–23904. [Google Scholar] [CrossRef] [PubMed]
- Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina, A.A. Volatile Composition of the Essential Oil of Callistemon citrinus Leaves from Iran. J. Essent. Oil-Bear. Plants 2012, 15, 703–707. [Google Scholar] [CrossRef]
- Chachad, D.P.; Laiane, A.; Uniyal, K.; Varma, U.; Jadhav, P.; Satvekar, T.; Ghag-Sawant, M.; Mondal, M.A.; Doshi, N. Chemical Characterization; Antimicrobial and Larvicidal Activity of Essential Oil from Callistemon citrinus (Bottle Brush) Leaves. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ahmad, K.; Hafeez, Z.B.; Bhat, A.R.; Rizvi, M.A.; Thakur, S.C.; Azam, A.; Athar, F. Antioxidant and Apoptotic Effects of Callistemon lanceolatus Leaves and Their Compounds against Human Cancer Cells. Biomed. Pharmacother. 2018, 106, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Nazreen, S.; Mahboob Alam, M.; Hamid, H.; Ali, M.; Sarwar Alam, M. Chemical Constituents with Antimicrobial and Antioxidant Activity from the Aerial Parts of Callistemon lanceolatus (Sm.) Sweet. Nat. Prod. Res. 2019, 34, 3275–3279. [Google Scholar] [CrossRef]
- Park, S.S.; Lim, W.; Jeong, W.; Bazer, F.W.; Lee, D.; Song, G. Sideroxylin (Callistemon lanceolatus) Suppressed Cell Proliferation and Increased Apoptosis in Ovarian Cancer Cells Accompanied by Mitochondrial Dysfunction, the Generation of Reactive Oxygen Species, and an Increase of Lipid Peroxidation. J. Cell. Physiol. 2018, 233, 8597–8604. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, A. Antioxidant and Anticancer Activity of Callistemon lanceolatus Extracts. Free Radic. Biol. Med. 2019, 145, S69–S70. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Prakash, O. Pharmacognostic Study and Anti–Inflammatory Activity of Callistemon lanceolatus Leaf. J. Trop. Biomed. 2011, 1, 177–181. [Google Scholar] [CrossRef]
- Sowndhararajan, K. A Review of the Chemical Composition and Biological Activities of Callistemon lanceolatus (Sm.) Sweet. J. Appl. Pharm. Sci. 2021, 11, 65–73. [Google Scholar] [CrossRef]
- Kavitha, K.S.; Satish, S. Antibacterial activity of Callistemon lanceolatus DC. against human phytopathogenic bacteria. J. Pharm. Res. 2013, 7, 235–240. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Dubey, N.K. Antifungal, Aflatoxin Inhibition and Antioxidant Activity of Callistemon lanceolatus (Sm.) Sweet Essential Oil and Its Major Component 1,8-Cineole against Fungal Isolates from Chickpea Seeds. Food Control 2012, 25, 27–33. [Google Scholar] [CrossRef]
- Sales, T.A.; Cardoso, M.D.G.; Guimarães, L.G.D.L.; Camargo, K.C.; Rezende, D.A.C.S.; Brandão, R.M.; Souza, R.V.; Ferreira, V.R.F.; Marques, A.E.; Magalhães, M.L.; et al. Essential Oils from the Leaves and Flowers of Callistemon viminalis: Chemical Characterization and Evaluation of the Insecticide and Antifungal Activities. Am. J. Plant Sci. 2017, 8, 2516–2529. [Google Scholar] [CrossRef]
- Ndomo, A.F.; Tapondjou, L.A.; Ngamo, L.T.; Hance, T. Insecticidal Activities of Essential Oil of Callistemon viminalis applied as Fumigant and Powder against Two Bruchids. J. Appl. Entomol. 2010, 134, 333–341. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Chemical Characterisation, Insecticidal and Antioxidant Activities of Essential Oils from Four Citrus spp. Fruit Peel Waste. Food Biosci. 2022, 50, 102163. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A.; Alfarhan, A.; Ramesh, V. Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. Insects 2022, 13, 480. [Google Scholar] [CrossRef] [PubMed]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Extraction and Chemical Characterisation of Agro-waste from Turmeric Leaves as a Source of Bio active Essential Oils with Insecticidal and Antioxidant Activities. Waste Manag. 2023, 169, 1–10. [Google Scholar] [CrossRef]
- Debbabi, H.; El Mokni, R.; Nardoni, S.; Chaieb, I.; Maggi, F.; Nzekoue, F.K.; Caprioli, G.; Hammami, S. Chemical Diversity and Biological Activities of Essential Oils from Native Populations of Clinopodium menthifolium Subsp. Ascendens (Jord.) Govaerts. ESPR 2021, 28, 13624–13633. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Kumar, A.; Mishra, P. Nawal Kishore Dubey Efficacy of Essential Oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and Their Major Constituents on Mortality, Oviposition and Feeding Behaviour of Pulse Beetle, Callosobruchus chinensis L. Food Agric. 2011, 91, 2277–2283. [Google Scholar] [CrossRef]
- Gad, H.A.; Ayoub, I.M.; Wink, M. Phytochemical Profiling and Seasonal Variation of Essential Oils of Three Callistemon Species Cultivated in Egypt. PLoS ONE 2019, 14, e0219571. [Google Scholar] [CrossRef]
- Misra, L.N.; Huq, F.; Ahmad, A.; Dixit, A.K. Chemical Composition of the Essential Oils of Callistemon lanceolatus DC and C. polandii F.M. Bailey. J. Essent. Oil Res. 1997, 9, 625–628. [Google Scholar] [CrossRef]
- Shrestha, S.; Poudel, A.; Satyal, P.; Dosoky, N.; Chhetri, B.; Setzer, W.; Correspondence, W. Setzer Chemical Composition and Biological Activity of the Leaf Essential Oil of Callistemon citrinus from Nepal. J. Essent. 2015, 3, 29–33. [Google Scholar]
- Chaaban, S.B.; Hamdi, S.H.; Mahjoubi, K.; Jemâa, J.M.B. Composition and Insecticidal Activity of Essential Oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). JPDP 2019, 126, 237–246. [Google Scholar] [CrossRef]
- Basaid, K.; Chebli, B.; Mayad, E.H.; Furze, J.N.; Bouharroud, R.; Krier, F.; Barakate, M.; Paulitz, T. Biological Activities of Essential Oils and Lipopeptides Applied to Control Plant Pests and Diseases: A Review. Int. J. Pest Manag. 2020, 67, 1–23. [Google Scholar] [CrossRef]
- Brito, V.D.; Achimón, F.; Pizzolitto, R.P.; Ramírez Sánchez, A.; Gómez Torres, E.A.; Zygadlo, J.A.; Zunino, M.P. An Alternative to Reduce the Use of the Synthetic Insecticide against the Maize Weevil Sitophilus zeamais through the Synergistic Action of Pimenta racemosa and Citrus sinensis Essential Oils with Chlorpyrifos. J. Pest Sci. 2020, 94, 409–421. [Google Scholar] [CrossRef]
- Abdelmalek, E.M.; Ramadan, M.A.; Darwish, F.M.; Assaf, M.H.; Mohamed, N.M.; Ross, S.A. Callistemon Genus—A Review on Phytochemistry and Biological Activities. Med. Chem. 2021, 30, 1031–1055. [Google Scholar] [CrossRef]
- Singh, S.; Saini, M.K. Broad Spectrum Activity of Essential Oils in Managing Stored Grain Pests. Indian J. Entomol. 2022, 83, 854–864. [Google Scholar] [CrossRef]
- Fall, R.; Ngom, S.; Sall, D.; Sembène, M.; Samb, A. Chemical Characterization of Essential Oil from the Leaves of Callistemon viminalis (D.R.) Melaleuca leucadendron (Linn.). Asian Pac. J. Trop. Biomed. 2017, 7, 347–351. [Google Scholar] [CrossRef]
- Khani, M.; Marouf, A.; Amini, S.; Yazdani, D.; Farashiani, M.E.; Ahvazi, M.; Khalighi-Sigaroodi, F.; Hosseini-Gharalari, A. Efficacy of Three Herbal Essential Oils against Rice Weevil, Sitophilus oryzae (Coleoptera: Curculionidae). J. Essent. Oil-Bear. Plants 2017, 20, 937–950. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Shawir, M.S.; Abou-Taleb, H.K. Chemical Composition, Insecticidal and Biochemical Effects of Essential Oils of Different Plant Species from Northern Egypt on the Rice Weevil, Sitophilus oryzae L. J. Pest Sci. 2015, 89, 219–229. [Google Scholar] [CrossRef]
- Danga, S.P.Y.; Nukenine, E.N.; Younoussa, L.; Adler, C.; Esimone, C.O. Efficacy of Plectranthus glandulosus (Lamiaceae) and Callistemon rigidus (Myrtaceae) Leaf Extract Fractions to Callosobruchus maculatus (Coleoptera: Bruchidae). J. Insect Sci. 2015, 15, 139. [Google Scholar] [CrossRef]
- Khan, M.M.; Siddiqui, J.A.; Ullah, R.M.K.; Raza, M.F. Effect of Different Biopesticides on Mortality and Their Synergetic Effect on the Fecundity of Tribolium castaneum (Herbst, 1797). J. Biopestic. 2020, 13, 142–152. [Google Scholar] [CrossRef]
- Janaki, S.; Zandi-Sohani, N.; Ramezani, L.; Szumny, A. Chemical Composition and Insecticidal Efficacy of Cyperus rotundus Essential Oil against Three Stored Product Pests. Int. Biodeterior. Biodegrad. 2018, 133, 93–98. [Google Scholar] [CrossRef]
- Devi, M.A.; Sahoo, D.; Singh, T.B.; Rajashekar, Y. Toxicity, Repellency and Chemical Composition of Essential Oils from Cymbopogon Species against Red Flour Beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). JCF 2019, 15, 181–191. [Google Scholar] [CrossRef]
- Hamzavi, F.; Moharramipour, S.; Talebi, A.A. Fumigant toxicity of Eucalyptus camaldulensis and Callistemon viminalis essential oils against Tribolium confusum. Iran. J. Plant Prot. Sci. 2011, 42, 241–249. [Google Scholar] [CrossRef]
- Lee, B.-H.; Annis, P.C.; Tumaalii, F.; Choi, W.-S. Fumigant Toxicity of Essential Oils from the Myrtaceae Family and 1,8-Cineole against 3 Major Stored-Grain Insects. J. Stored Prod. Res. 2004, 40, 553–564. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.L.; Xu, S.; Zhao, N.; Zhou, L.; Cheng, J.; Liu, Z.L. Evaluation of Repellency of Some Chinese Medicinal Herbs Essential Oils against Liposcelis bostrychophila (Psocoptera: Liposcelidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2013, 106, 513–519. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Taghinezhad, E.; Setzer, W.N.; Chen, G. Susceptibility of Tribolium castaneum (Coleoptera: Tenebrionidae) to the Fumigation of Two Essential Satureja Oils: Optimization and Modeling. Processes 2021, 9, 1243. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential Oils in Stored Product Insect Pest Control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- da Silva Lunguinho, A.; das Graças Cardoso, M.; Ferreira, V.R.F.; Konig, I.F.M.; Gonçalves, R.R.P.; Brandão, R.M.; Caetano, A.R.S.; Nelson, D.L.; Remedio, R.N. Acaricidal and Repellent Activity of the Essential Oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii against Rhipicephalus spp. Vet. Parasitol. 2021, 300, 109594. [Google Scholar] [CrossRef] [PubMed]
- Paranagama, P.A.; Gunasekera, J.J. The Efficacy of the Essential Oils of Sri Lankan Cinnamomum zeylanicum Fruit and Micromelum minutum Leaf against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Essent. Oil Res. 2011, 23, 75–82. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A. Characterization of Secondary Metabolites from the Leaves of Curry Leaf (Murraya koenigii L.) Essential Oils with Insecticidal Activities against Stored Product Insects. Biocatal. Agric. Biotechnol. 2023, 54, 102973. [Google Scholar] [CrossRef]
- Bali, A.S.; Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K. Chemical Characterization and Phytotoxicity of Foliar Volatiles and Essential Oil of Callistemon viminalis. J. Essent. Oil-Bear. Plants 2017, 20, 535–545. [Google Scholar] [CrossRef]
Peak No. | a Retention Time | Compounds | %Area | b RSI | Identification Method |
---|---|---|---|---|---|
1. | 5.50 | α-pinene | 10.28 | 803 | MS |
2. | 6.17 | 3-carene | 2.78 | 888 | MS |
3. | 6.34 | α-Myrcene | 2.73 | 893 | MS |
4. | 6.61 | α-Phellandrene | 9.55 | 920 | MS |
5. | 7.03 | 1,8-cineole | 19.17 | 902 | MS |
6. | 7.19 | Eucalyptol | 1.14 | 905 | MS |
7. | 7.26 | α-ocimene | 1.90 | 928 | MS |
8. | 7.47 | ç-terpinene | 3.44 | 912 | MS |
9. | 7.92 | 2-Carene | 2.82 | 915 | MS |
10. | 8.06 | 1,6-Octadien-3-ol, 3,7-dimethyl- | 2.48 | 944 | MS |
11. | 9.23 | Borneol | 1.08 | 942 | MS |
12. | 9.41 | Terpinen-4-ol | 3.89 | 926 | MS |
13. | 9.70 | α-terpineol | 11.51 | 912 | MS |
14. | 12.74 | Eugenol | 1.26 | 956 | MS |
15. | 14.15 | Caryophyllene | 1.83 | 958 | MS |
16. | 15.73 | α-Guanine | 1.29 | 912 | MS |
17. | 16.19 | Dur hydroquinone | 3.64 | 917 | MS |
18. | 16.67 | Ethanone, 1-(2,4,5-tri methoxyphenyl)- | 3.05 | 904 | MS |
19. | 17.52 | Spathulenol | 1.52 | 955 | MS |
20. | 17.67 | Globulol | 2.03 | 964 | MS |
21. | 18.47 | 2-Naphthalenemethanol | 1.31 | 943 | MS |
22. | 20.04 | 4,6-di-t-Butylpytagallol | 3.42 | 909 | MS |
23. | 28.02 | Phytol | 1.20 | 902 | MS |
24. | 32.63 | ç-Sitosterol | 1.50 | 961 | MS |
Test Storage Insects | Exposure Time (h) | LC50 (mg/cm2) | LC90 (mg/cm2) | Slope ± SEM a | χ2 (df) |
---|---|---|---|---|---|
T. castaneum | 24 | 1.35 (1.15–2.04) | 2.45 (1.87–5.14) | 1.16 ± 0.38 | 0.75 (3) |
48 | 0.97 (0.79–1.11) | 1.51 (1.28–2.68) | 2.38 ± 0.84 | 0.01 (3) | |
L. serricorne | 24 | 0.52 (0.35–0.66) | 1.35 (1.08–2.10) | 1.55 ± 0.38 | 0.03 (3) |
48 | 0.50 (0.30–0.64) | 1.08 (0.86–2.19) | 2.40 ± 0.84 | 0.04 (3) | |
C. maculatus | 24 | 0.58 (0.45–1.15) | 1.12 (0.79–2.86) | 2.35 ± 0.82 | 0.66 (3) |
48 | 0.31 (0.21–0.43) | 0.84 (0.62–1.69) | 2.41 ± 0.75 | 0.10 (3) |
Insects | Time Interval (h) | LC50 (μL/L Air) | LC90 (μL/L Air) | Slope ± SEM a | χ2 (df) |
---|---|---|---|---|---|
T. castaneum | 24 | 22.60 | 32.34 | 0.13 ± 0.33 | 0.40 (3) |
(20.84–26.27) | (27.93–44.82) | ||||
48 | 19.84 | 31.42 | |||
(17.79–22.43) | (26.75–47.62) | 0.11 ± 0.03 | 2.03 (3) | ||
L. serricorne | 24 | 5.48 | 9.23 | 0.34 ± 0.04 | 2.83 (3) |
(4.78–6.19) | (8.14–10.82) | ||||
48 | 4.17 | 8.52 | |||
(4.07–5.76) | (7.24 -10.75) | 0.27 ± 0.04 | 2.61 (3) | ||
C. maculatus | 24 | 1.43 | 2.24 | 1.43 ± 0.25 | 0.02 (2) |
(1.22–1.61) | (2.08–2.77) | ||||
48 | 1.27 | 2.09 | |||
(1.02–1.41) | (1.94–2.95) | 1.04 ± 0.25 | 0.20 (2) |
Test Insects | Dose (mg/cm2) | Mean Repellence | Repellent Class |
---|---|---|---|
T. castaneum | 1 | 36.63 ± 6.99 d | II |
2 | 48.28 ± 5.85 c | III | |
3 | 60.51 ± 10.21 b | IV | |
4 | 70.53 ± 12.88 b | IV | |
5 | 81.08 ± 4.99 a | V | |
L. serricorne | 1 | 24.96 ± 13.95 c | II |
2 | 42.18 ± 13.60 b | III | |
3 | 48.28 ± 5.85 b | III | |
4 | 54.96 ± 14.56 ab | III | |
5 | 66.63 ± 10.51 a | IV | |
C. maculatus | 0.1 | 28.30 ± 10.27 b | II |
0.2 | 36.06 ± 7.42 b | II | |
0.3 | 53.30 ± 6.34 a | III | |
0.4 | 59.41 ± 9.03 a | III | |
0.5 | 60.51 ± 10.21 a | IV |
Concentration (µg/mL) | Seed Germination Percentage after Treatment | |||
---|---|---|---|---|
48 h | 72 h | 96 h | 120 h | |
500 | 73.3 ± 25.1 b | 80.0 ± 10 a | 86.6 ± 5.7 a | 96.6 ± 5.7 a |
750 | 76.6 ± 25.1 b | 96.5 ± 5.7 a | 96.6 ± 5.7 a | 96.6 ± 5.7 a |
1000 | 70.0 ± 20.0 b | 93.3 ± 5.7 a | 93.3 ± 5.7 a | 96.6 ± 5.7 a |
c Control | 86.6 ± 5.7 a | 93.3 ± 5.7 a | 93.3 ± 5.7 a | 100 ± 0 a |
Concentration (µg/mL) | Seedling Growth of Treatments after | |||
---|---|---|---|---|
48 h | 72 h | 96 h | 120 h | |
Radicle (mm) | ||||
500 | 0.9 ± 0.57 a | 9.7 ± 4.7 a | 13.7 ± 5.0 a | 30 ± 5.0 a |
750 | 1.0 ± 0.0 a | 9.1 ± 2.98 a | 14.1 ± 1.1 a | 31 ± 2.6 a |
1000 | 1.0 ± 0.09 a | 10.8 ± 4.51 a | 13.1 ± 4.4 a | 30.5 ± 5.6 a |
b Control | 1.2 ± 0.57 a | 11.4 ± 1.05 a | 14.8 ± 0.5 a | 31.1 ± 8.4 a |
Concentration (µg/mL) | Seedling Growth of Treatments after | |||
---|---|---|---|---|
48 h | 72 h | 96 h | 120 h | |
Plumule (mm) | ||||
500 | 0.0 ± 0.0 a | 0.5 ± 0.0 a | 7.3 ± 0.83 a | 10.3 ± 0.85 a |
750 | 0.0 ± 0.0 a | 0.9 ± 0.0 a | 8.7 ± 1.02 a | 9.13 ± 0.5 a |
1000 | 0.0 ± 0.0 a | 0.6 ± 1.03 a | 7.3 ± 0.65 a | 9.63 ± 0.65 a |
b Control | 0.0 ± 0.0 a | 1.0 ± 1.00 a | 8.4 ± 0.60 a | 10.2 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ankitha, T.A.; Visakh, N.U.; Pathrose, B.; Mori, N.; Baeshen, R.S.; Shawer, R. Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests. Sustainability 2024, 16, 1055. https://doi.org/10.3390/su16031055
Ankitha TA, Visakh NU, Pathrose B, Mori N, Baeshen RS, Shawer R. Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests. Sustainability. 2024; 16(3):1055. https://doi.org/10.3390/su16031055
Chicago/Turabian StyleAnkitha, Thachappilly A., Naduvilthara U. Visakh, Berin Pathrose, Nicola Mori, Rowida S. Baeshen, and Rady Shawer. 2024. "Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests" Sustainability 16, no. 3: 1055. https://doi.org/10.3390/su16031055
APA StyleAnkitha, T. A., Visakh, N. U., Pathrose, B., Mori, N., Baeshen, R. S., & Shawer, R. (2024). Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests. Sustainability, 16(3), 1055. https://doi.org/10.3390/su16031055