Digital Mergers and Acquisitions and Enterprise Innovation Quality: Analysis Based on Research and Development Investment and Overseas Subsidiaries
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis
2.1. Digital Cross-Border M&As and Innovative Quality
2.2. Moderating Effect: Human Capital
2.3. Internal Channel: R&D Investment
2.4. External Channel: Overseas Subsidiaries
3. Data and Identification Strategy
3.1. Sample and Data Resources
- The first dataset comprises core industries of the digital economy data from the National Bureau of Statistics, categorizing the digital economy industry into five categories: 01, digital product manufacturing industry; 02, digital product service industry; 03, digital technology application industry; 04, digital factor-driven industry; and 05, digital efficiency improvement industry. The 01–04 categories in this classification are considered the core industries of the digital economy.
- The second data source is the cross-border M&A data from the CNRDS cross-border M&A database. This database includes information on targeted parties, merger events, and listed companies’ acquiring parties. It contains details, such as the ID of the merger event, the effective date of the merger event, the name of the acquiring party, the name of the targeted party, the industry of the acquiring party, the industry of the targeted party, and the stock code of the acquiring party, among other information.
- To measure enterprise financial information in our sample, we collected data on the enterprise size, total assets, net profit margin, Tobin Q, enterprise sales expense ratio, enterprise age, property nature, and all invention and utility model patents from the CSMAR database.
- The last data source is the cited data of invention patents from the CNRDS Innovation Patent Research database. This database provides details such as the stock code of the listed company, cited patent number, cited year, company type, invention type, and the number of citations in each year, excluding self-citations.
3.2. Variable Construction
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Control Variables
3.3. Empirical Model
4. Empirical Results
4.1. Baseline Regression
4.2. Robustness Checks
4.2.1. Replacing the Dependent Variable
4.2.2. Replacing Estimation Methodology
4.2.3. Excluding Patent Citation Data That Have Been Cited for Less Than Three Years
4.2.4. Adding Macro Variables
4.2.5. Removing Enterprises in Provincial Capital Cities and Municipalities
4.2.6. Avoiding Result Bias Caused by Unpatentable Data
5. Further Analysis
5.1. Moderating Effects
5.2. Mechanism Analysis
5.2.1. Enterprise R&D Investment
5.2.2. Overseas Subsidiaries
5.3. Heterogeneous Tests
5.3.1. Industry Heterogeneity
5.3.2. Heterogeneity of Enterprise Scale
5.3.3. Regional Heterogeneity
5.3.4. Digital Nature Heterogeneity
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
6.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makridis, C.A.; McGuire, E. The quality of innovation “Booms” during “Busts”. Res. Policy 2023, 52, 104657. [Google Scholar] [CrossRef]
- Rong, Z.; Wu, X.; Boeing, P. The effect of institutional ownership on firm innovation: Evidence from Chinese listed firms. Res. Policy 2017, 46, 1533–1551. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, X.; Ma, S. The effects of institutional investors and their contestability on firm innovation: Evidence from Chinese listed firms. Res. Policy 2023, 52, 104872. [Google Scholar] [CrossRef]
- Bischoff, T.S.; Hipp, A.; Runst, P. Firm innovation and generalized trust as a regional resource. Res. Policy 2023, 52, 104813. [Google Scholar] [CrossRef]
- Tonoyan, V.; Boudreaux, C.J. Gender diversity in firm ownership: Direct and indirect effects on firm-level innovation across 29 eacquiring economies. Res. Policy 2023, 52, 104716. [Google Scholar] [CrossRef]
- Bradley, W.A.; Kolev, J. How does digital piracy affect innovation? Evidence from software firms. Res. Policy 2023, 52, 104701. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Foucart, R.; Li, Q.C. The role of technology standards in product innovation: Theory and evidence from U.K. manufacturing firms. Res. Policy 2021, 50, 104157. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Liu, X.; Zhang, H. Can public R&D subsidy facilitate firms’ exploratory innovation? The heterogeneous effects between central and local subsidy programs. Res. Policy 2021, 50, 104221. [Google Scholar] [CrossRef]
- Akcigit, U.; Baslandze, S.; Lotti, F. Connecting to power: Political connections, innovation, and firm dynamics. Econometrica 2023, 91, 529–564. [Google Scholar] [CrossRef]
- Ivus, O.; Jose, M.; Sharma, R. R&D tax credit and innovation: Evidence from private firms in India. Res. Policy 2021, 50, 104128. [Google Scholar] [CrossRef]
- Speldekamp, D.; Knoben, J.; Saka-Helmhout, A. Clusters and firm-level innovation: A configurational analysis of agglomeration, network and institutional advantages in European aerospace. Res. Policy 2020, 49, 103921. [Google Scholar] [CrossRef]
- Aghion, P.; Bloom, N.; Blundell, R.; Griffith, R.; Howitt, P. Competition and innovation: An inverted-U relationship. Q. J. Econ. 2005, 120, 701–728. [Google Scholar] [CrossRef]
- Hegde, D.; Herkenhoff, K.; Zhu, C. Patent publication and innovation. J. Political Econ. 2023, 131, 1845–1903. [Google Scholar] [CrossRef]
- Acemoglu, D. When does labor scarcity encourage innovation? J. Political Econ. 2010, 118, 1037–1078. [Google Scholar] [CrossRef]
- Aghion, P.; Bergeaud, A.; Van Reenen, J. The impact of regulation on innovation. Am. Econ. Rev. 2023, 113, 2894–2936. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Moore, M.J. Product liability, R&D, and innovation. J. Political Econ. 1993, 101, 161–184. [Google Scholar] [CrossRef]
- Wadhwa, A.; Phelps, C.; Kotha, S. Corporate venture capital portfolios and firm innovation. J. Bus. Ventur. 2016, 31, 95–112. [Google Scholar] [CrossRef]
- Lokuge, S.; Sedera, D.; Grover, V.; Dongming, X. Organizational readiness for digital innovation: Development and empirical calibration of a construct. Inf. Manag. 2019, 56, 445–461. [Google Scholar] [CrossRef]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. Chang. 2022, 182, 121785. [Google Scholar] [CrossRef]
- Appio, F.P.; Frattini, F.; Petruzzelli, A.M.; Neirotti, P. Digital transformation and innovation management: A synthesis of existing research and an agenda for future studies. J. Prod. Innov. Manag. 2021, 38, 4–20. [Google Scholar] [CrossRef]
- Nieto, M.J.; Santamaria, L.; Bammens, Y. Digitalization as a facilitator of open innovation: Are family firms different? Technovation 2023, 128, 102854. [Google Scholar] [CrossRef]
- Van Leeuwen, G.; Farooqui, S. ICT investment and productivity. In Eurostat Final Report Information Society: ICT Impact Assessment by Linking Data From Different Sources; Working Paper; Eurostat Agreement: Luxembourg, 2008; pp. 163–189. [Google Scholar]
- Polder, M.; Leeuwen, G.V.; Mohnen, P.; Raymond, W. Product, Process and Organizational Innovation: Drivers, Complementarity and Productivity Effects; CIRANO-Scientific Publications 2010s-28; CIRANO: Brussels, Belgium, 2010. [Google Scholar] [CrossRef]
- Sedera, D.; Lokuge, S.; Grover, V.; Sarker, S.; Sarker, S. Innovating with enterprise systems and digital platforms: A contingent resource-based theory view. Inf. Manag. 2016, 53, 366–379. [Google Scholar] [CrossRef]
- Del Giudice, M.; Scuotto, V.; Papa, A.; Tarba, S.Y.; Bresciani, S.; Warkentin, M. A self-tuning model for smart manufacturing SMEs: Effects on digital innovation. J. Prod. Innov. Manag. 2021, 38, 68–89. [Google Scholar] [CrossRef]
- Tang, H.; Fang, S.; Jiang, D. The market value effect of digital cross-border M&As: Evidence from China. Econ. Model. 2022, 116, 106006. [Google Scholar] [CrossRef]
- Laucis, M. Digital M&A: Success Factors of M&A Deals in the Digital Space. Ph.D. Thesis, Nova School of Business and Economics, Carcavelos, Portugal, 2015. [Google Scholar]
- Chen, Y.; Wang, L.; Ye, Y.; Tao, Y. digital cross-border M&As and firm productivity in China. Financ. Res. Lett. 2023, 58, 104326. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, F.; Yang, G.; Huang, X. digital cross-border M&As and Firm Innovation: Evidence From China. J. Glob. Inf. Manag. JGIM 2023, 31, 1–27. [Google Scholar] [CrossRef]
- Hanelt, A.; Firk, S.; Hildebrandt, B.; Kolbe, L.M. digital cross-border M&As, digital innovation, and firm performance: An empirical investigation. Eur. J. Inf. Syst. 2021, 30, 3–26. [Google Scholar] [CrossRef]
- Bos, B.; Faems, D.; Noseleit, F. Alliance concentration in multinational companies: Examining alliance portfolios, firm structure, and firm performance. Strateg. Manag. J. 2017, 38, 2298–2309. [Google Scholar] [CrossRef]
- Hoenig, D.; Henkel, J. Quality signals? The role of patents, alliances, and team experience in venture capital financing. Res. Policy 2015, 44, 1049–1064. [Google Scholar] [CrossRef]
- Loebbecke, C.; Picot, A. Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. J. Strateg. Inf. Syst. 2015, 24, 149–157. [Google Scholar] [CrossRef]
- Sarrazin, H.; West, A. Understanding the strategic value of IT in M&A. McKinsey Q. 2011, 12, 1–6. [Google Scholar]
- Svahn, F.; Mathiassen, L.; Lindgren, R. Embracing digital innovation in incumbent firms. MIS Q. 2017, 41, 239–254. [Google Scholar] [CrossRef]
- Yoo, Y.; Henfridsson, O.; Lyytinen, K. Research commentary—The new organizing logic of digital innovation: An agenda for information systems research. Inf. Syst. Res. 2010, 21, 724–735. [Google Scholar] [CrossRef]
- Love, P.E.; Matthews, J. The ‘how’ of benefits management for digital technology: From engineering to asset management. Autom. Constr. 2019, 107, 102930. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1. [Google Scholar]
- Thatchenkery, S.; Katila, R. Innovation and profitability following antitrust intervention against a dominant platform: The wild, wild west? Strateg. Manag. J. 2023, 44, 943–976. [Google Scholar] [CrossRef]
- Flint, D.J.; Woodruff, R.B. The initiators of changes in customers’ desired value: Results from a theory building study. Ind. Mark. Manag. 2001, 30, 321–337. [Google Scholar] [CrossRef]
- Ortega, F.; Peri, G. Openness and income: The roles of trade and migration. J. Int. Econ. 2014, 92, 231–251. [Google Scholar] [CrossRef]
- Marvel, M.R.; Lumpkin, G.T. Technology entrepreneurs’ human capital and its effects on innovation radicalness. Entrep. Theory Pract. 2007, 31, 807–828. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Ghosal, V. Firm-level human capital and innovation: Evidence from China. China Econ. Rev. 2020, 59, 101388. [Google Scholar] [CrossRef]
- Bergh, D.D.; Ketchen, D.J., Jr.; Orlandi, I.; Heugens, P.P.; Boyd, B.K. Information asymmetry in management research: Past accomplishments and future opportunities. J. Manag. 2019, 45, 122–158. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Huang, C.W.; Koedijk, K.G. Unintended consequences of compensation peer groups on corporate innovation. J. Corp. Financ. 2023, 78, 102321. [Google Scholar] [CrossRef]
- Williams, C. Transfer in context: Replication and adaptation in knowledge transfer relationships. Strateg. Manag. J. 2007, 28, 867–889. [Google Scholar] [CrossRef]
- Huu Nguyen, A.; Thuy Doan, D.; Ha Nguyen, L. Corporate governance and agency cost: Empirical evidence from Vietnam. J. Risk Financ. Manag. 2020, 13, 103. [Google Scholar] [CrossRef]
- Moser, P.; Ohmstedt, J.; Rhode, P.W. Patent citations—An analysis of quality differences and citing practices in hybrid corn. Manag. Sci. 2018, 64, 1926–1940. [Google Scholar] [CrossRef]
- Mao, C.X.; Zhang, C. Managerial risk-taking incentive and firm innovation: Evidence from FAS 123R. J. Financ. Quant. Anal. 2018, 53, 867–898. [Google Scholar] [CrossRef]
- Fang, V.W.; Tian, X.; Tice, S. Does stock liquidity enhance or impede firm innovation? J. Financ. 2014, 69, 2085–2125. [Google Scholar] [CrossRef]
- Ying, Z.; Zhilei, S. Urban agglomeration, registered residence system and educational opportunities. Financ. Res. 2017, 3, 86–100. [Google Scholar]
Variable | Obs | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|---|
Innovation | 24,417 | 3.058 | 1.782 | 0 | 8.082 |
DMA | 38,580 | 0.002 | 0.046 | 0 | 1 |
ROA | 28,255 | 0.040 | 0.066 | −0.232 | 0.222 |
Tobin_Q | 29,566 | 2.067 | 1.317 | 0.857 | 8.587 |
Size | 30,035 | 3.093 | 0.055 | 2.990 | 3.255 |
Selexprt | 29,531 | 7.507 | 9.021 | 0.080 | 48.43 |
Firm_age | 30,035 | 2.884 | 0.357 | 0.693 | 4.174 |
SOE | 37,647 | 0.344 | 0.475 | 0 | 1 |
Variable | Baseline Results | Robustness Checks | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
DMA | 0.354 *** | 0.273 ** | 0.102 *** | 0.316 ** | 0.282 ** | 0.533 *** | 0.469 *** | 0.548 *** |
(0.009) | (0.030) | (0.000) | (0.025) | (0.044) | (0.001) | (0.001) | (3.86) | |
ROA | −0.990 *** | −0.762 *** | −0.386 *** | −0.873 *** | −0.890 *** | −0.734 *** | −0.926 *** | −0.941 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (−8.40) | |
Tobin_Q | 0.020 *** | 0.017 *** | 0.017 *** | 0.024 *** | 0.025 *** | 0.022 *** | 0.019 *** | 0.0215 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.006) | (0.000) | (5.54) | |
Size | 1.437 *** | 0.852 *** | 1.620 *** | 1.438 *** | 1.499 *** | 1.698 *** | 1.401 *** | 1.771 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (10.85) | |
Selexprt | 0.001 | 0.001 | 0.007 *** | 0.000 | 0.001 | 0.001 | 0.001 | 0.000290 |
(0.371) | (0.193) | (0.000) | (0.658) | (0.540) | (0.545) | (0.434) | (0.33) | |
Firm_age | 0.169 *** | 0.091 *** | 3.033 *** | 0.127 *** | 0.140 *** | 0.104 *** | 0.146 *** | 0.167 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.007) | (0.000) | (5.92) | |
SOE | 0.234 *** | 0.161 *** | 0.256 *** | 0.236 *** | 0.271 *** | 0.245 *** | 0.237 *** | 0.300 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (15.96) | |
pro_GDP | 0.000 *** | |||||||
(0.000) | ||||||||
Structure | −0.624 *** | |||||||
(0.000) | ||||||||
_cons | −5.834 *** | −3.649 *** | −17.492 *** | −5.745 *** | −5.776 *** | −6.557 *** | −5.690 *** | −6.942 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (−13.75) | |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 18,024 | 18,040 | 18,024 | 11,730 | 11,730 | 7182 | 16,838 | 14,225 |
Variable | Innovation | Innovation | RDexp | Innovation | Innovation | Subsidiaries | Innovation |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
DMA | 1.264 *** | 0.354 *** | 0.380 *** | 0.373 *** | 0.354 *** | 0.486 *** | 0.295 ** |
(0.001) | (0.009) | 0.000 | (0.006) | (0.009) | (0.000) | (0.037) | |
ROA | −0.899 *** | −0.990 *** | −0.172 * | −1.026 *** | −0.990 *** | −0.284 ** | −0.879 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.025) | (0.000) | |
Tobin_Q | 0.023 *** | 0.020 *** | 0.001 ** | 0.018 *** | 0.020 *** | 0.016 *** | 0.014 *** |
(0.000) | (0.000) | (0.024) | (0.000) | (0.000) | (0.000) | (0.009) | |
Size | 1.433 *** | 1.437 *** | 0.501 | 1.521 *** | 1.437 *** | 1.133 *** | 0.809 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Selexprt | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | −0.001 |
(0.713) | (0.371) | (0.765) | (0.493) | (0.371) | (0.166) | (0.381) | |
Firm_age | 0.130 *** | 0.169 *** | −0.008 | 0.191 *** | 0.169 *** | 0.125 *** | 0.196 *** |
(0.000) | (0.000) | (0.706) | (0.000) | (0.000) | (0.000) | (0.000) | |
SOE | 0.250 *** | 0.234 *** | 0.083 *** | 0.231 *** | 0.234 *** | −0.041 * | 0.361 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.055) | (0.000) | |
DMA*HR | 0.225 ** | ||||||
(0.015) | |||||||
HR | 0.031 *** | ||||||
(0.000) | |||||||
RDexp | 0.000 *** | ||||||
(0.000) | |||||||
Subsidiaries | 0.012 *** | ||||||
(0.000) | |||||||
_cons | −5.851 *** | −5.834 *** | −2.289 *** | −6.111 *** | −5.834 *** | −1.550 * | −3.116 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.064) | (0.000) | |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 11,508 | 18,024 | 20,146 | 15,154 | 18,024 | 10,177 | 7601 |
Variable | High-Tech | Non-High-Tech | Big Scale | Small Scale | Easter | Central | Western | Digital | Non-Digital |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
DMA | 0.384 *** | −0.323 | 0.324 * | 0.162 | 0.272 * | 0.507 | 0.946 * | 0.339 * | 0.071 |
(0.006) | (0.491) | (0.060) | (0.462) | (0.067) | (0.239) | (0.050) | (0.082) | (0.714) | |
ROA | −1.166 *** | −0.792 *** | −0.682 *** | −1.209 *** | −1.062 *** | −0.874 *** | −0.488 | −1.237 *** | −1.000 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.169) | (0.000) | (0.000) | |
Tobin_Q | 0.024 *** | 0.018 ** | 0.010 * | 0.029 *** | 0.022 *** | 0.004 | 0.026 *** | 0.010 | 0.023 *** |
(0.000) | (0.014) | (0.057) | (0.000) | (0.000) | (0.656) | (0.000) | (0.434) | (0.000) | |
Size | 2.241 *** | 1.020 *** | −0.265 | 2.213 *** | 1.829 *** | 0.735 ** | 0.536 | 1.817 *** | 1.552 *** |
(0.000) | (0.000) | (0.225) | (0.000) | (0.000) | (0.035) | (0.197) | (0.000) | (0.000) | |
Selexprt | 0.000 | −0.001 | −0.000 | 0.001 | 0.001 | 0.002 | 0.001 | −0.007 *** | 0.002 ** |
(0.770) | (0.284) | (0.848) | (0.346) | (0.572) | (0.256) | (0.756) | (0.003) | (0.023) | |
Firm_age | 0.192 *** | 0.212 *** | 0.144 *** | 0.117 *** | 0.218 *** | −0.077 | 0.229 *** | 0.198 *** | 0.187 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.259) | (0.003) | (0.006) | (0.000) | |
SOE | 0.280 *** | 0.374 *** | 0.161 *** | 0.187 *** | 0.247 *** | 0.378 *** | 0.241 *** | 0.397 *** | 0.220 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
_cons | −8.439 *** | 30.319 *** | −0.528 | −7.928 *** | −7.081 *** | −3.159 *** | −3.546 *** | −7.296 *** | −6.042 *** |
(0.000) | (0.000) | (0.444) | (0.000) | (0.000) | (0.003) | (0.005) | (0.000) | (0.000) | |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 13,173 | 4851 | 7716 | 10,308 | 12,999 | 2970 | 2055 | 2295 | 15,729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Deng, S. Digital Mergers and Acquisitions and Enterprise Innovation Quality: Analysis Based on Research and Development Investment and Overseas Subsidiaries. Sustainability 2024, 16, 1120. https://doi.org/10.3390/su16031120
Xu H, Deng S. Digital Mergers and Acquisitions and Enterprise Innovation Quality: Analysis Based on Research and Development Investment and Overseas Subsidiaries. Sustainability. 2024; 16(3):1120. https://doi.org/10.3390/su16031120
Chicago/Turabian StyleXu, Helian, and Shiqi Deng. 2024. "Digital Mergers and Acquisitions and Enterprise Innovation Quality: Analysis Based on Research and Development Investment and Overseas Subsidiaries" Sustainability 16, no. 3: 1120. https://doi.org/10.3390/su16031120
APA StyleXu, H., & Deng, S. (2024). Digital Mergers and Acquisitions and Enterprise Innovation Quality: Analysis Based on Research and Development Investment and Overseas Subsidiaries. Sustainability, 16(3), 1120. https://doi.org/10.3390/su16031120