Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Actor Involvement
- Local stakeholders: 19 stakeholders including local waste management authorities, other local authorities, academic and research institutions, and private companies involved in municipal biowaste management. These stakeholders helped to (i) validate the information related to the state of the art of the current biowaste management scenario, (ii) select the most realistic and sustainable alternative scenario, (iii) identify the related existing drivers and challenges in the current biowaste management system and for the implementation of the alternative scenario, and (iv) give feedback on policy recommendations for a successful implementation of the alternative scenario.
- International external experts: 18 external experts were selected to provide input after each round of Living Labs. For these tasks, experts from academic and research institutions, research clusters, environmental consultancy companies and engineering companies were selected. Their contribution was key to validate and support internal decision-making and preliminary results, as well as to answer the specific technical questions prepared by the consortium.
2.2. Research Desk Analysis: Elaboration of the Policy Framework Database, Identification of GPs, and Identification of Regulatory Drivers and Barriers to the MAB Alternative Scenario
- Legal/Administrative (L/A): EU-wide, national, regional, and local legislation and its implementation, e.g., through binding targets, administrative penalties for non-compliance, etc.
- Technical (Tec): Technological innovations, best available techniques (BAT), available infrastructure and equipment, waste quality requirements, etc.
- Economic (Ec): Capacity for investment in innovation, BAT and new product chains, profitability threshold, market situation of raw materials and bio-based products, economic incentives such as tax reductions, waste charges/fees and subsidies.
- Environment/Health (E/H): Greenhouse gas emissions, possible other impacts on environment and health.
- Social (Soc): Public acceptance of new biowaste collection systems and bio-based products, awareness raising campaigns on biowaste separate collection or biowaste-based products.
- Stakeholder involvement (SI): Involvement of various stakeholders from science, industry, politics, citizens, and NGOs in decision-making processes; interdisciplinary exchange via stakeholder platforms.
2.3. Status Quo Analysis of the Current Municipal Biowaste Management in the Metropolitan Area of Barcelona
2.4. Assessment of the Alternative Scenario for Municipal Biowaste in the MAB
2.5. Multi-Actor Identification of Operational (Non-Regulatory) Drivers and Barriers
2.6. Multi-Actor Formulation of Policy Recommendations
3. Results
3.1. Drivers and Barriers to Improving the Separate Collection of Municipal Biowaste
3.2. Policy Recommendations to Improving the Separate Collection of Municipal Biowaste
3.3. Drivers and Barriers to Enhancing the Production of Biogas to Be Upgraded into Biomethane
3.4. Policy Recommendations to Introduce and Increase the Production of Biomethane
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Favoino, E.; Giavini, M.; Rupp, M. Bio-Waste Generation in the EU: Current Capture Levels and Future Potential; This Report Was Commissioned by the Bio-based Industries Consortium (BIC); Zero Waste Europe: Brussels, Belgium, 2020. [Google Scholar]
- The European Parliament and the European Council. Directive 2008/98/EC Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Waste Framework Directive). Off. J. Eur. Union 2008, L312, 1–59. [Google Scholar]
- COM/2020/98 Final Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020.
- COM/2018/673 Final Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society, and the Environment; European Commission: Brussels, Belgium, 2018; Volume 10.
- European Commission. Bioeconomy: The European Way to Use Our Natural Resources; Action Plan 2018; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- COM/2019/640 Final COM/2019/640 Final. Communication from the Commission to the European, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal; European Commission: Brussels, Belgium, 2019; pp. 1–24. [Google Scholar]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bioeconomy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Research and Innovation; Platt, R.; Bauen, A.; Reumerman, P.; Geier, C.; Van Ree, R.; Vural Gursel, I.; Garcia, L.; Behrens, M.; et al. EU Biorefinery Outlook to 2030: Studies on Support to Research and Innovation Policy in the Area of Bio-Based Products and Services; Publications Office: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Zuin, V.G.; Ramin, L.Z. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top. Curr. Chem. 2018, 376, 3. [Google Scholar]
- Lokesh, K.; Ladu, L.; Summerton, L. Bridging the Gaps for a “circular” Bioeconomy: Selection Criteria, Bio-Based Value Chain and Stakeholder Mapping. Sustainability 2018, 10, 1695. [Google Scholar] [CrossRef]
- Fiorentino, G.; Ansanelli, G.; Ncube, A.; Zucaro, A. State of the Art of Biowaste Production and Management in the Pilot Areas; Deliverable D2.1 of WP2; Biocircularcities Project: Brussels, Belgium, 2022. [Google Scholar]
- Ansanelli, G.; Fiorentino, G.; Zucaro, A. LCA and LCC Analyses of the Selected Systems Producing and Managing Biowaste in the Pilot Areas; Deliverable D2.2 of WP2; Biocircularcities Project: Brussels, Belgium, 2023. [Google Scholar]
- Ansanelli, G.; Fiorentino, G.; Zucaro, A. LCT Recommendations through the LCA and LCC Analyses of the Selected Systems Producing and Managing Biowaste in the Pilot Areas; Deliverable D2.3 of WP2; Biocircularcities Project: Brussels, Belgium, 2023. [Google Scholar]
- Meisterl, K.; Chifari, R. Regulatory Gap and Opportunity Analysis for a Circular Bioeconomy; Deliverable D3.2 of WP3; Biocircularcities Project: Brussels, Belgium, 2023. [Google Scholar]
- Meisterl, K.; Chifari, R. Policy Recommendations for Implementing Circular Bioeconomy in the Pilot Areas; Deliverable D3.3 of WP3; Biocircularcities Project: Brussels, Belgium, 2023. [Google Scholar]
- SWD/2022/230 Final SWD/2022/230final: Commission Staff Working Document: Implementing the Repower EU Action Plan: Investment, Hydrogen Accelerator and Achieving the Biomethane Targets, Accompanying COM/2022/230 Final; European Union: Brussels, Belgium, 2022.
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Salemdeeb, R.; Saint, R.; Clark, W.; Lenaghan, M.; Pratt, K.; Millar, F. A Pragmatic and Industry-Oriented Framework for Data Quality Assessment of Environmental Footprint Tools. Resour. Environ. Sustain. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Kambanou, M.L.; Sakao, T. Using Life Cycle Costing (LCC) to Select Circular Measures: A Discussion and Practical Approach. Resour. Conserv. Recycl. 2020, 155, 104650. [Google Scholar] [CrossRef]
- Schütz, F.; Heidingsfelder, M.L.; Schraudner, M. Co-Shaping the Future in Quadruple Helix Innovation Systems: Uncovering Public Preferences toward Participatory Research and Innovation. J. Des. Econ. Innov. 2019, 5, 128–146. [Google Scholar] [CrossRef]
- Chifari, R.; Lo Piano, S.; Bukkens, S.G.F.; Giampietro, M. A Holistic Framework for the Integrated Assessment of Urban Waste Management Systems. Ecol. Indic. 2018, 94, 24–36. [Google Scholar] [CrossRef]
- Lopez, M.; Chifari, R. Policy Framework and Good Practices on Circular Bioeconomy and Biowaste Management; Deliverable D3.1 of WP3; Biocircularcities Project: Brussels, Belgium, 2021. [Google Scholar]
- AMB Àrea Metropolitana de Barcelona. Population 2021. Available online: https://www.amb.cat/s/es/web/area-metropolitana/coneixer-l-area-metropolitana/poblacio.html (accessed on 6 November 2023).
- Law 7/2022 National Law 7/2022 on Waste and Contaminated Soils for a Circular Economy. Ley 7/2022, de 8 de Abril, de Residuos y Suelos Contaminados para Una Economía Circular; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2022; Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2022-5809 (accessed on 6 November 2023).
- DECISIVE: A Decentralised Management Scheme for Innovative Valorisation of Urban Biowaste. Available online: https://www.decisive2020.eu/ (accessed on 10 December 2023).
- European Bioplastics. EN 13432 Certified Bioplastics: Performance in Industrial Composting; European Bioplastics e.V.: Berlin, Germany, 2015. [Google Scholar]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef]
- Accinelli, C.; Saccà, M.L.; Mencarelli, M.; Vicari, A. Deterioration of Bioplastic Carrier Bags in the Environment and Assessment of a New Recycling Alternative. Chemosphere 2012, 89, 136–143. [Google Scholar] [CrossRef]
- NF T51-800; Plastics—Specifications for Plastics Suitable for Domestic Composting. Plastiques—Spécifications Pour Les Plastiques Aptes Au Compostage Domestique NF T51-800. C-Label: Istanbul, Turkey, 2015.
- Hoop; Valuewaste; Scalibur; WaysTUP!; Cityloops. ROOTS-Circular Policies for Changing the Biowaste System Position Paper; European Biomass Industry Association: Brussels, Belgium, 2022. [Google Scholar]
- Morlok, J.; Schoenberger, H.; Styles, D.; Galvez-Martos, J.-L.; Zeschmar-Lahl, B. The Impact of Pay-As-You-Throw Schemes on Municipal Solid Waste Management: The Exemplar Case of the County of Aschaffenburg, Germany. Resources 2017, 6, 8. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Bassa Echaurren, M.; Aulinas Masó, M.; Giavini, M.; Doubell, M.; Bagatella, E.; Venturi, R. Carbon Footprint and Life Cycle Economic Costs of Pilot Know-as-You-Throw Schemes in Italy and Spain. Available online: https://ssrn.com/abstract=4352966 (accessed on 12 November 2023).
- Lisai, S.; Marengo, P.; Velache, C. Collection of Experiences about Pay as You Throw (PAYT) and Know as You Throw (KAYT); REthinkWASTE Project: Brussels, Belgium, 2021. [Google Scholar]
- Condamine, P. The Story of Milan. Successfully Collecting Food Waste for over 1.4 Million Inhabitants. Zero Waste Europe. 2012. Available online: https://zerowastecities.eu/wp-content/uploads/2021/11/Milan-Case-Study-1.pdf (accessed on 8 November 2023).
- Ricci-Jürgensen, M. Food Waste Collection in Metropolitan Areas: Milan (Italy). Presentation to the Environment Committee Meeting of the City of London. 2014. Available online: https://meetings.london.gov.uk/documents/b10746/Minutes%20-%20Appendix%202%20-%20Food%20Waste%20in%20Milan%20Wednesday%2009-Jul-2014%2014.00%20Environment%20Committee.pdf?T=9 (accessed on 8 November 2023).
- PNIEC Spain’s National Integrated Energy and Climate Plan. Plan Nacional Integrado de Energía y Clima (PNIEC) 2021–2030; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020; Available online: https://www.miteco.gob.es/content/dam/miteco/images/es/pnieccompleto_tcm30-508410.pdf (accessed on 8 November 2023).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. (RED II); European Commission: Brussels, Belgium, 2018.
- COM/2022/230 Final: Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—REPowerEU Plan; European Commission: Brussels, Belgium, 2022.
- Spanish Biogas Roadmap. Hoja de Ruta Del Biogás; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022; Available online: https://www.miteco.gob.es/content/dam/miteco/es/energia/files-1/es-es/Novedades/Documents/00HR_Biogas_V6.pdf (accessed on 8 November 2023).
- Statistica. Spanish Natural Gas Consumption 2010–2021. 2021. Available online: https://es.statista.com/estadisticas/797237/consumo-de-gas-natural-en-espana/ (accessed on 9 November 2023).
- EBA Statistical Report 2022. Tracking Biogas and Biomethane Deployment across Europe; European Biomass Industry Association: Brussels, Belgium, 2022.
- Guevara, P.R. Spanish Biomethane Here We Go! Análisis de las Potencias Europeas en Biometano para Entender por qué y cómo Replicar el Modelo en España. Retema Rev. Técnica Medio Ambiente. Rev. Digit. Espec. Bioenergía 2022, 241, 60–72. [Google Scholar]
- IRU Mobility Package 03—The Last Part of the European Commission’s Mobility Package Proposals Covering Legislative Initiatives in the Areas of Safe, Clean and Connected Mobility; IRU: Geneva, Switzerland, 2018.
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for Transformation of Biogas to Biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Residuos Profesional MITECO Awards 76.5 Million to Unique Biogas Facility Projects. 2023. Available online: https://www.residuosprofesional.com/miteco-otorga-ayudas-biogas/ (accessed on 7 November 2023).
- Gustafsson, M.; Ammenberg, J. IEA Bioenergy Task 37-A Perspective on the State of the Biogas Industry from Selected Member Countries; IEA Bioenergy: Paris, France, 2022; Available online: https://task37.ieabioenergy.com/wp-content/uploads/sites/32/2022/02/IEA_T37_CountryReportSummary_2021.pdf (accessed on 7 November 2023).
- MéthaFrance In Numbers. Key Data on the Methanisation Sector in France and Associated Resources for Further Information. 2023. Available online: https://www.methafrance.fr/en-chiffres (accessed on 7 November 2023).
- Energia Oltre. All the Numbers of Biomethane in Italy and Europe. 2023. Available online: https://energiaoltre.it/tutti-i-numeri-del-biometano-in-italia-e-in-europa/ (accessed on 7 November 2023).
- Order TED/1026/2022 of 28 October, Approving the Procedure for the Management of the System of Guarantees of Origin of Gas from Renewable Sources. Orden TED/1026/2022, de 28 de Octubre, por la que se aprueba el Procedimiento de Gestión del Sistema de Garantías de Origen del Gas Procedente de Fuentes Renovables; Ministerio para la Transición Ecológica y el Reto Demográfico 2022. Available online: https://www.boe.es/eli/es/o/2022/10/28/ted1026 (accessed on 7 November 2023).
- Ferreira, S.F.; Buller, L.S.; Berni, M.; Forster-Carneiro, T. Environmental Impact Assessment of End-Uses of Biomethane. J. Clean. Prod. 2019, 230, 613–621. [Google Scholar] [CrossRef]
- EBA News. Overview on Key EU Policies for the Biogas Sector. 2019. Available online: https://www.europeanbiogas.eu/overview-on-key-eu-policies-for-the-biogas-sector/ (accessed on 8 November 2023).
- Tratzi, P.; Torre, M.; Paolini, V.; Tomassetti, L.; Montiroli, C.; Manzo, E.; Petracchini, F. Liquefied Biomethane for Heavy-Duty Transport in Italy: A Well-to-Wheels Approach. Transp. Res. D Transp. Environ. 2022, 107, 103288. [Google Scholar] [CrossRef]
- Hagos, D.A.; Ahlgren, E.O. Well-to-Wheel Assessment of Natural Gas Vehicles and Their Fuel Supply Infrastructures—Perspectives on Gas in Transport in Denmark. Transp. Res. D Transp. Environ. 2018, 65, 14–35. [Google Scholar] [CrossRef]
- Eurostat. Share of Renewables in Transport Decreased in 2021. 2023. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230123-2 (accessed on 8 November 2023).
- Italian National Decree n. 240 of 15 September 2022. Development of Biomethane, According to Criteria to Promote the Circular Economy—Biomethane Production. DECRETO 15 Settembre 2022 Attuazione Degli Articoli 11, Comma 1 e 14, Comma 1, Lettera b), del Decreto Legislativo 8 Novembre 2021, n. 199, al Fine di Sostenere la Produzione di Biometano Immesso Nella Rete del Gas Naturale, in Coerenza con la Missione 2, Componente 2, Investimento 1.4, del PNRR. (22A06066). 2022. Available online: https://www.gazzettaufficiale.it/eli/id/2022/10/26/22A06066/sg (accessed on 8 November 2023).
- ISCC International Sustainability and Carbon Certification. Available online: https://www.iscc-system.org/ (accessed on 8 November 2023).
- CBE JU. Circular Bio-Based Europe Joint Undertaking. Available online: https://european-union.europa.eu/institutions-law-budget/institutions-and-bodies/search-all-eu-institutions-and-bodies/circular-bio-based-europe-joint-undertaking-cbe-ju_en (accessed on 8 November 2023).
- Biomethane Industrial Partnership. The Biomethane Industrial Partnership: Teaming up to Achieve 35 Bcm of Sustainable Biomethane by 2030. Available online: https://bip-europe.eu/ (accessed on 8 November 2023).
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Zábranská, J.; Pokorna, D. Research Review Paper Bioconversion of Carbon Dioxide to Methane Using Hydrogen and Hydrogenotrophic Methanogens. Biotechnol. Adv. 2018, 36, 707–720. [Google Scholar] [CrossRef]
- SEMPREBIO: Making Biomethane Production Efficient. Available online: https://sempre-bio.com/ (accessed on 7 November 2023).
- LIFE INFUSION: Intensive Treatment of Waste Effluents and Conversion into Useful Sustainable Outputs: Biogas, Nutrients and Water. Available online: https://lifeinfusion.eu/ (accessed on 7 November 2023).
- Wang, Y.; Yuan, Z.; Tang, Y. Enhancing Food Security and Environmental Sustainability: A Critical Review of Food Loss and Waste Management. Resour. Environ. Sustain. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Autoridad Independiente de Responsabilidad Fiscal (AIReF) Estudio Gestión de Los Residuos Municipales; Autoridad Independiente de Responsabilidad Fiscal (AIReF): Madrid, Spain, 2023.
- Alvarez, M.D.; Sans, R.; Garrido, N.; Torres, A. Factors That Affect the Quality of the Bio-Waste Fraction of Selectively Collected Solid Waste in Catalonia. Waste Manag. 2008, 28, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Saldivia-Gonzatti, L.I.; Jannes, G.; Barreal, J. Factors Influencing the Rate of Sorted Solid Waste Collection: An Empirical Analysis towards Local Management in Catalonia (NE Spain). Cities 2022, 131, 104038. [Google Scholar] [CrossRef]
- Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy. Sustainability 2020, 12, 3260. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. White Paper: Availability of Cellulosic Residues and Wastes in the EU; International Council on Clean Transportation (ICCT): Beijing, China; Berlin, Germany; Brussels, Belgium; San Francisco, CA, USA; Washington, DC, USA, 2013. [Google Scholar]
- Fernández-González, J.M.; Martín-Pascual, J.; Zamorano, M. Biomethane Injection into Natural Gas Network vs Composting and Biogas Production for Electricity in Spain: An Analysis of Key Decision Factors. Sustain. Cities Soc. 2020, 60, 102242. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Malico, I.; Rodríguez-Galán, M.; Serrano, A.; Fermoso, F.G.; Navarrete, B. The Importance of Governmental Incentives for Small Biomethane Plants in South Spain. Energy 2020, 206, 118158. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2018/1147 of 10 August 2018 Establishing Best Available Techniques (BAT) Conclusions for Waste Treatment, under Directive 2010/75/EU of the European Parliament and of the Council (Notified under Document C (2018) 5070). Off. J. Eur. Union 2018, L 208, 38–90.
- Rajendran, K.; O’Gallachoir, B.; Murphy, J.D. The Combined Role of Policy and Incentives in Promoting Cost Efficient Decarbonisation of Energy: A Case Study for Biomethane. J. Clean. Prod. 2019, 219, 278–290. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ribichini, M.; Tsagarakis, K.P. Biomethane as an Energy Resource for Achieving Sustainable Production: Economic Assessments and Policy Implications. Sustain. Prod. Consum. 2023, 35, 13–27. [Google Scholar] [CrossRef]
- Adamo, I.D.; Falcone, P.M.; Gastaldi, M.; Morone, P. RES-T Trajectories and an Integrated SWOT-AHP Analysis for Biomethane. Policy Implications to Support a Green Revolution in European Transport. Energy Policy 2020, 138, 111220. [Google Scholar] [CrossRef]
- Uusitalo, V.; Havukainen, J.; Soukka, R.; Väisänen, S.; Havukainen, M.; Luoranen, M. Systematic Approach for Recognizing Limiting Factors for Growth of Biomethane Use in Transportation Sector—A Case Study in Finland. Renew. Energy 2015, 80, 479–488. [Google Scholar] [CrossRef]
- Gustafsson, M.; Svensson, N.; Eklund, M.; Dahl Öberg, J.; Vehabovic, A. Well-to-Wheel Greenhouse Gas Emissions of Heavy-Duty Transports: Influence of Electricity Carbon Intensity. Transp. Res. D Transp. Environ. 2021, 93, 102757. [Google Scholar] [CrossRef]
- Fraccascia, L.; Spagnoli, M.; Riccini, L.; Nastasi, A. Designing the Biomethane Production Chain from Urban Wastes at the Regional Level: An Application to the Rome Metropolitan Area. J. Environ. Manag. 2021, 297, 113328. [Google Scholar] [CrossRef]
- Barisa, A.; Kirsanovs, V.; Safronova, A. Future Transport Policy Designs for Biomethane Promotion: A System Dynamics Model. J. Environ. Manag. 2020, 269, 110842. [Google Scholar] [CrossRef] [PubMed]
- D’Adamo, I.; Falcone, P.M.; Huisingh, D.; Morone, P. A Circular Economy Model Based on Biomethane: What Are the Opportunities for the Municipality of Rome and Beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
- Prussi, M.; Julea, A.; Lonza, L.; Thiel, C. Biomethane as Alternative Fuel for the EU Road Sector: Analysis of Existing and Planned Infrastructure. Energy Strategy Rev. 2021, 33, 100612. [Google Scholar] [CrossRef]
- EU ETS. EU Emissions Trading System. Available online: https://www.epa.ie/our-services/licensing/climate-change/eu-emissions-trading-system-/ (accessed on 7 November 2023).
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Korres, N.; O’Kiely, P.; Benzie, J.A.H.; West, J.S. Bioenergy Production by Anaerobic Digestion. Using Agricultural Biomass and Organic Wastes; Routledge: London, UK, 2013. [Google Scholar]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- IEA Outlook for Biogas and Biomethane. Prospects for Organic Growth; World Energy Outlook Special Report; IEA: Paris, France, 2020.
- Ardolino, F.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-Biomethane Upgrading: A Comparative Review and Assessment in a Life Cycle Perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Madhusudhanan, A.K.; Na, X.; Boies, A.; Cebon, D. Modelling and Evaluation of a Biomethane Truck for Transport Performance and Cost. Transp. Res. D Transp. Environ. 2020, 87, 102530. [Google Scholar] [CrossRef]
- Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0850 (accessed on 22 January 2024).
- Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. 2018, pp. 1–32. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0851 (accessed on 21 January 2024).
- Royal Decree 646/2020 of 7 July Regulating the Disposal of Waste by Landfill. 2020. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2020-7438 (accessed on 21 January 2024).
- Legislative Decree 1/2009, of 21 July 2009, Approving the Consolidated Text of the Law Regulating Waste. Decreto Legislativo 1/2009, de 21 de Julio, por el que se Aprueba el Texto Refundido de la Ley Reguladora de los Residuos. Available online: https://www.boe.es/eli/es-ct/dlg/2009/07/21/1/con (accessed on 21 January 2024).
- Law 5/2020 of 29 April on Fiscal, Financial, Administrative and Public Sector Measures and Creation of a Tax on Installations That Have an Impact on the Environment. 2020. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2020-5569 (accessed on 22 January 2024).
- PREMET25 Metropolitan Programme for the Prevention and Management of Resources and Municipal Waste 2019–2025; Programa Metropolità de Prevenció i Gestió de Recursos i Residus Municipals 2019–2025. 2019. Available online: https://www.premet25.cat/ (accessed on 22 January 2024).
- Royal Decree 376/2022 of 17 May, which Regulates the Criteria for Sustainability and Reduction of Greenhouse Gas Emissions from Biofuels, Bioliquids and Biomass Fuels, as Well as the System of Guarantees of Origin of Renewable Gases. 2022. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2022-8121 (accessed on 22 January 2024).
- PEMAR National Waste Management Framework Plan 2016–2022; PEMAR. Plan Estatal Marco de Gestión de Residuos 2016–2022. Ministerio de Agricultura, Alimentación y Medio Ambiente. 2015. Available online: https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/planes-y-estrategias/pemaraprobado6noviembrecondae_tcm30-170428.pdf (accessed on 22 January 2024).
- Royal Decree 413/2014, of 6 June, Which Regulates the Electricity Production from Renewable Energy Sources, Cogeneration and Waste. 2014. Available online: https://www.boe.es/eli/es/rd/2014/06/06/413/con (accessed on 22 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meisterl, K.; Sastre, S.; Puig-Ventosa, I.; Chifari, R.; Martínez Sánchez, L.; Chochois, L.; Fiorentino, G.; Zucaro, A. Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management. Sustainability 2024, 16, 1208. https://doi.org/10.3390/su16031208
Meisterl K, Sastre S, Puig-Ventosa I, Chifari R, Martínez Sánchez L, Chochois L, Fiorentino G, Zucaro A. Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management. Sustainability. 2024; 16(3):1208. https://doi.org/10.3390/su16031208
Chicago/Turabian StyleMeisterl, Karin, Sergio Sastre, Ignasi Puig-Ventosa, Rosaria Chifari, Laura Martínez Sánchez, Laurène Chochois, Gabriella Fiorentino, and Amalia Zucaro. 2024. "Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management" Sustainability 16, no. 3: 1208. https://doi.org/10.3390/su16031208
APA StyleMeisterl, K., Sastre, S., Puig-Ventosa, I., Chifari, R., Martínez Sánchez, L., Chochois, L., Fiorentino, G., & Zucaro, A. (2024). Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management. Sustainability, 16(3), 1208. https://doi.org/10.3390/su16031208