Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling Design
2.2. Soil Microbial Biomass and Chemical Characteristics
2.3. Bacterial and Archaeal Diversity Characterization based on 16S Amplicon Sequencing
2.4. Statistical Analyses
3. Results
3.1. Micro-Environmental Variation Patterns
3.1.1. Soil Microbial Biomass
3.1.2. α-Diversity
3.1.3. β-Diversity
3.1.4. Changes in the Relative Abundance of Taxa
3.2. Processes Governing Microbial Community Assembly
3.3. Chemical Drivers of Micro-Environmental Variation
4. Discussion
4.1. How to Sample for Soil Microbial Biodiversity Studies?
4.2. Why Consider the Micro-Environmental Scale in the Development of Biodiversity-Based Indicators of Soil Health
4.3. Limitation of the Study and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huera-Lucero, T.; Labrador-Moreno, J.; Blanco-Salas, J.; Ruiz-Téllez, T. A Framework to Incorporate Biological Soil Quality Indicators into Assessing the Sustainability of Territories in the Ecuadorian Amazon. Sustainability 2020, 12, 3007. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A Review on Effective Soil Health Bio-Indicators for Ecosystem Restoration and Sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.S.; Kim, J.G.; Kim, S.O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Smith, P.; Keesstra, S.D.; Silver, W.L.; Adhya, T.K.; De Deyn, G.B.; Carvalheiro, L.G.; Giltrap, D.L.; Renforth, P.; Cheng, K.; Sarkar, B.; et al. Soil-Derived Nature’s Contributions to People and Their Contribution to the Un Sustainable Development Goals. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200185. [Google Scholar] [CrossRef]
- FAO; ITPS; GSBI; CBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Mocali, S. Soil Health, Soil Genetic Horizons and Biodiversity. J. Plant Nutr. Soil Sci. 2022, 185, 24–34. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- FAO. Keep Soil Alive, Protect Soil Biodiversity, 19–22 April 2021—Outcome Document; FAO: Rome, Italy, 2021. [Google Scholar]
- Guerra, C.A.; Delgado-Baquerizo, M.; Duarte, E.; Marigliano, O.; Görgen, C.; Maestre, F.T.; Eisenhauer, N. Global Projections of the Soil Microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 2021, 30, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Ranjard, L.; Dequiedt, S.; Chemidlin Prévost-Bouré, N.; Thioulouse, J.; Saby, N.P.A.; Lelievre, M.; Maron, P.A.; Morin, F.E.R.; Bispo, A.; Jolivet, C.; et al. Turnover of Soil Bacterial Diversity Driven by Wide-Scale Environmental Heterogeneity. Nat. Commun. 2013, 4, 1434. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal Variability in Soil Microbial Communities across Land-Use Types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Nunan, N.; Schmidt, H.; Raynaud, X. The Ecology of Heterogeneity: Soil Bacterial Communities and C Dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190249. [Google Scholar] [CrossRef]
- Fierer, N. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time. In Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back; ASM Press: Washington, DC, USA, 2014; pp. 95–115. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L.; De Deyn, G.B.; Eggleton, P.; Fierer, N.; Fraser, T.; et al. Global Soil Biodiversity Atlas European Commission; Publications Office of the European Union: Luxembourg, 2016; ISBN 9789279481697. [Google Scholar]
- Turbé, A.; De Toni, A.; Benito, P.; Lavelle, P.; Lavelle, P.; Ruiz, N.; Van der Putten, W.H.; Labouze, E.; Mudgal, S.; De Toni, A.; et al. Soil Biodiversity: Functions, Threaths and Tools for Policy Makers; European Commission: Luxembourg, 2010; ISBN 9789279206689.
- Labouyrie, M.; Ballabio, C.; Romero, F.; Panagos, P.; Jones, A.; Schmid, M.W.; Mikryukov, V.; Dulya, O.; Tedersoo, L.; Bahram, M.; et al. Patterns in Soil Microbial Diversity across Europe. Nat. Commun. 2023, 14, 3311. [Google Scholar] [CrossRef]
- El Mujtar, V.A.; Gregorutti, V.C.; Eclesia, R.P.; Wingeyer, A.; Lezana, L.; Canavelli, S.B.; Tittonell, P. Assessing Soil Microbial Biodiversity as Affected by Grazing and Woody Vegetation Cover in a Temperate Savannah. Ann. Appl. Biol. 2021, 179, 231–245. [Google Scholar] [CrossRef]
- Lupatini, M.; Korthals, G.W.; Roesch, L.F.W.; Kuramae, E.E. Long-Term Farming Systems Modulate Multi-Trophic Responses. Sci. Total Environ. 2019, 646, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Marsden, C.; Martin-Chave, A.; Cortet, J.; Hedde, M.; Capowiez, Y. How Agroforestry Systems Influence Soil Fauna and Their Functions—A Review. Plant Soil 2020, 453, 29–44. [Google Scholar] [CrossRef]
- Romdhane, S.; Spor, A.; Banerjee, S.; Breuil, M.C.; Bru, D.; Chabbi, A.; Hallin, S.; van der Heijden, M.G.A.; Saghai, A.; Philippot, L. Land-Use Intensification Differentially Affects Bacterial, Fungal and Protist Communities and Decreases Microbiome Network Complexity. Environ. Microbiomes 2022, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate Change Effects on Earthworms—A Review. Soil Org. 2019, 91, 114–138. [Google Scholar] [CrossRef]
- Yang, T.; Lupwayi, N.; Marc, S.A.; Siddique, K.H.M.; Bainard, L.D. Anthropogenic Drivers of Soil Microbial Communities and Impacts on Soil Biological Functions in Agroecosystems. Glob. Ecol. Conserv. 2021, 27, e01521. [Google Scholar] [CrossRef]
- Zulu, S.G.; Motsa, N.M.; Sithole, N.J.; Magwaza, L.S.; Ncama, K. Soil Macrofauna Abundance and Taxonomic Richness under Long-Term No-Till Conservation Agriculture in a Semi-Arid Environment of South Africa. Agronomy 2022, 12, 722. [Google Scholar] [CrossRef]
- Baldrian, P.; Merhautová, V.; Cajthaml, T.; Petránková, M.; Šnajdr, J. Small-Scale Distribution of Extracellular Enzymes, Fungal, and Bacterial Biomass in Quercus Petraea Forest Topsoil. Biol. Fertil. Soils 2010, 46, 717–726. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Osler, G.H.R.; Campbell, C.D.; Burslem, D.F.R.P.; van der Wal, R. Predictors of Fine-Scale Spatial Variation in Soil Mite and Microbe Community Composition Differ between Biotic Groups and Habitats. Pedobiologia 2012, 55, 83–91. [Google Scholar] [CrossRef]
- Štursová, M.; Bárta, J.; Šantrůčková, H.; Baldrian, P. Small-Scale Spatial Heterogeneity of Ecosystem Properties, Microbial Community Composition and Microbial Activities in a Temperate Mountain Forest Soil. FEMS Microbiol. Ecol. 2016, 92, fiw185. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Lucas-Borja, M.E.; Jing, X.; Feng, W. Divergent Vertical Distributions of Microbial Biomass with Soil Depth among Groups and Land Uses. J. Environ. Manag. 2021, 292, 112755. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Kohout, P.; Anslan, S.; Harend, H.; Abarenkov, K.; Tedersoo, L. Stochastic Distribution of Small Soil Eukaryotes Resulting from High Dispersal and Drift in a Local Environment. ISME J. 2016, 10, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Deng, Y.; Li, S.; Escalas, A.; Feng, K.; He, Q.; Wang, Z.; Wu, Y.; Wang, D.; Peng, X.; et al. Steeper Spatial Scaling Patterns of Subsoil Microbiota Are Shaped by Deterministic Assembly Process. Mol. Ecol. 2021, 30, 1072–1085. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Decaëns, T.; Lavelle, P.; Rossi, J.P. Dissecting the Multi-Scale Spatial Relationship of Earthworm Assemblages with Soil Environmental Variability. BMC Ecol. 2014, 14, 26. [Google Scholar] [CrossRef]
- Richter-Heitmann, T.; Hofner, B.; Krah, F.S.; Sikorski, J.; Wüst, P.K.; Bunk, B.; Huang, S.; Regan, K.M.; Berner, D.; Boeddinghaus, R.S.; et al. Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Front. Microbiol. 2020, 11, 01391. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Xiang, W.; Ouyang, S.; Zhang, T.; Zhang, X.; Zeng, Y.; Hu, Y.; Luo, G.; Kuzyakov, Y. Forest Conversion to Plantations: A Meta-Analysis of Consequences for Soil and Microbial Properties and Functions. Glob. Chang. Biol. 2021, 27, 5643–5656. [Google Scholar] [CrossRef]
- Muñoz-Arenas, L.C.; Fusaro, C.; Hernández-Guzmán, M.; Dendooven, L.; Estrada-Torres, A.; Navarro-Noya, Y.E. Soil Microbial Diversity Drops with Land-Use Change in a High Mountain Temperate Forest: A Metagenomics Survey. Environ. Microbiol. Rep. 2020, 12, 185–194. [Google Scholar] [CrossRef]
- Prack McCormick, B.; El Mujtar, V.A.; Cardozo, A.; Álvarez, V.E.; Rodríguez, H.A.; Tittonell, P.A. Nutrient Source, Management System and the Age of the Plantation Affect Soil Biodiversity and Chemical Properties in Raspberry Production. Eur. J. Soil Biol. 2022, 111, 103420. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W.; Chen, H.; Deng, Y.; Chen, C.; Zeng, H. Effects of Forest Transition on Litterfall, Standing Litter and Related Nutrient Returns: Implications for Forest Management in Tropical China. Geoderma 2019, 333, 123–134. [Google Scholar] [CrossRef]
- Liu, T.; Wu, X.; Li, H.; Alharbi, H.; Wang, J.; Dang, P.; Chen, X.; Kuzyakov, Y.; Yan, W. Soil Organic Matter, Nitrogen and PH Driven Change in Bacterial Community Following Forest Conversion. For. Ecol. Manag. 2020, 477, 118473. [Google Scholar] [CrossRef]
- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO & UNEP: Rome, Italy, 2020. [Google Scholar]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple Elements of Soil Biodiversity Drive Ecosystem Functions across Biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Lu, Y.; Wei, G. Soil Multitrophic Network Complexity Enhances the Link between Biodiversity and Multifunctionality in Agricultural Systems. Glob. Chang. Biol. 2022, 28, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Bender, S.F.; Widmer, F.; Van Der Heijden, M.G.A. Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, N.; Bender, S.F.; Calderón-Sanou, I.; de Vries, F.T.; Lembrechts, J.J.; Thuiller, W.; Wall, D.H.; Zeiss, R.; Bahram, M.; Beugnon, R.; et al. Frontiers in Soil Ecology—Insights from the World Biodiversity Forum 2022. J. Sustain. Agric. Environ. 2022, 1, 245–261. [Google Scholar] [CrossRef]
- El Mujtar, V.; Muñoz, N.; Prack Mc Cormick, B.; Pulleman, M.; Tittonell, P. Role and Management of Soil Biodiversity for Food Security and Nutrition; Where Do We Stand? Glob. Food Sec. 2019, 20, 132–144. [Google Scholar] [CrossRef]
- Panigatti, J.L. Argentina 200 Años, 200 Suelos; INTA: Buenos Aires, Argentina, 2010; ISBN 9789871623853. [Google Scholar]
- Basso, P. Characterization and N Flow Analysis of Farming Systems in the Andes Valleys of North Patagonia; Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- IICA (Ed.) Desarrollo Territorial Con Enfoque de Sistemas Agroalimentarios Localizados (AT-SIAL): La Comarca Andina Del Paralelo 42°, Argentina; IICA: Ciudad de México, Mexico, 2013; ISBN 9789292484880. [Google Scholar]
- Bragato, G.; Fornasier, F.; Brus, D.J. Characterization of Soil Fertility and Soil Biodiversity with DsDNA as a Covariate in a Regression Estimator for Mean Microbial Biomass C. Eur. J. Soil Sci. 2016, 67, 827–834. [Google Scholar] [CrossRef]
- Fornasier, F.; Ascher, J.; Ceccherini, M.T.; Tomat, E.; Pietramellara, G. A Simplified Rapid, Low-Cost and Versatile DNA-Based Assessment of Soil Microbial Biomass. Ecol. Indic. 2014, 45, 75–82. [Google Scholar] [CrossRef]
- Gangneux, C.; Akpa-Vinceslas, M.; Sauvage, H.; Desaire, S.; Houot, S.; Laval, K. Fungal, Bacterial and Plant DsDNA Contributions to Soil Total DNA Extracted from Silty Soils under Different Farming Practices: Relationships with Chloroform-Labile Carbon. Soil Biol. Biochem. 2011, 43, 431–437. [Google Scholar] [CrossRef]
- Gong, H.; Du, Q.; Xie, S.; Hu, W.; Akram, M.A.; Hou, Q.; Dong, L.; Sun, Y.; Manan, A.; Deng, Y.; et al. Soil Microbial DNA Concentration Is a Powerful Indicator for Estimating Soil Microbial Biomass C and N across Arid and Semi-Arid Regions in Northern China. Appl. Soil Ecol. 2021, 160, 103869. [Google Scholar] [CrossRef]
- Santoni, M.; Verdi, L.; Imran Pathan, S.; Napoli, M.; Dalla Marta, A.; Dani, F.R.; Pacini, G.C.; Ceccherini, M.T. Soil Microbiome Biomass, Activity, Composition and CO2 Emissions in a Long-Term Organic and Conventional Farming Systems. Soil Use Manag. 2023, 39, 588–605. [Google Scholar] [CrossRef]
- Semenov, M.; Blagodatskaya, E.; Stepanov, A.; Kuzyakov, Y. DNA-Based Determination of Soil Microbial Biomass in Alkaline and Carbonaceous Soils of Semi-Arid Climate. J. Arid Environ. 2018, 150, 54–61. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. (Eds.) Methods of Soil Analysis; SSSA Book Series; Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 1996; ISBN 9780891188667. [Google Scholar]
- Wydro, U. Soil Microbiome Study Based on DNA Extraction: A Review. Water 2022, 14, 3999. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fasttree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- RStudio-Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Mangiafico, S. Rcompanion: Functions to Support Extension Education Program Evaluation; The Comprehensive R Archive Network: Wien, Austria, 2022. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. (Eds.) Biometry, 3rd ed.; W.H. Freeman: New York, NY, USA, 1995. [Google Scholar]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Ogle, D.H.; Dolll, J.C.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis; The Comprehensive R Archive Network: Wien, Austria, 2022. [Google Scholar]
- Ribeiro, P.J.; Diggle, P.J. GeoR: A Package for Geostatistical Data Analysis Using the R Software. R News 2016, 1, 15–18. [Google Scholar]
- Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Kindt, G.L.; Roeland, S.F.; Blanchet, G.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; The Comprehensive R Archive Network: Wien, Austria, 2022. [Google Scholar]
- Martínez Arbizu, P. PairwiseAdonis: Pairwise Multilevel Comparison Using Adonis; CRAN: Wien, Austria, 2020. [Google Scholar]
- Jia, X.; Dini-Andreote, F.; Salles, J.F. Comparing the Influence of Assembly Processes Governing Bacterial Community Succession Based on DNA and RNA Data. Microorganisms 2020, 8, 798. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying Community Assembly Processes and Identifying Features That Impose Them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Dini-Andreote, F.; Stegen, J.C.; Van Elsas, J.D.; Salles, J.F. Disentangling Mechanisms That Mediate the Balance between Stochastic and Deterministic Processes in Microbial Succession. Proc. Natl. Acad. Sci. USA 2015, 112, E1326–E1332. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Konopka, A.E.; Fredrickson, J.K. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities. ISME J. 2012, 6, 1653–1664. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Stegen, J.C.; Kim, M.; Dong, K.; Adams, J.M.; Lee, Y.K. Soil PH Mediates the Balance between Stochastic and Deterministic Assembly of Bacteria. ISME J. 2018, 12, 1072–1083. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, L.; Chen, J.; Wei, T. Ggcor: Extended Tools for Correlation Analysis and Visualization; CRAN: Wien, Austria, 2019. [Google Scholar]
- Goss-Souza, D.; Mendes, L.W.; Borges, C.D.; Baretta, D.; Tsai, S.M.; Rodrigues, J.L.M. Soil Microbial Community Dynamics and Assembly under Long-Term Land Use Change. FEMS Microbiol. Ecol. 2017, 93, fix109. [Google Scholar] [CrossRef]
- Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Schmidt, T.M.; Coleman, D.C.; Whitman, W.B. Land-Use History Has a Stronger Impact on Soil Microbial Community Composition than Aboveground Vegetation and Soil Properties. Soil Biol. Biochem. 2011, 43, 2184–2193. [Google Scholar] [CrossRef]
- Thomson, B.C.; Tisserant, E.; Plassart, P.; Uroz, S.; Griffiths, R.I.; Hannula, S.E.; Buée, M.; Mougel, C.; Ranjard, L.; Van Veen, J.A.; et al. Soil Conditions and Land Use Intensification Effects on Soil Microbial Communities across a Range of European Field Sites. Soil Biol. Biochem. 2015, 88, 403–413. [Google Scholar] [CrossRef]
- Tittonell, P.; Hara, S.M.; Álvarez, V.E.; Aramayo, V.M.; Bruzzone, O.A.; Easdale, M.H.; Enriquez, A.S.; Laborda, L.; Trinco, F.D.; Villagra, S.E.; et al. Ecosystem Services and Disservices Associated with Pastoral Systems from Patagonia, Argentina—A Review. Cah. Agric. 2021, 30, 43. [Google Scholar]
- Van Leeuwen, J.P.; Djukic, I.; Bloem, J.; Lehtinen, T.; Hemerik, L. Effects of Land Use on Soil Microbial Biomass, Activity and Community Structure at Different Soil Depths in the Danube Floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Balota, E.L.; Filho, A.C.; Andrade, D.S.; Dick, R.P. Long-Term Tillage and Crop Rotation Effects on Microbial Biomass and C and N Mineralization in a Brazilian Oxisol. Soil Tillage Res. 2004, 77, 137–145. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation Agriculture Practices Increase Soil Microbial Biomass Carbon and Nitrogen in Agricultural Soils: A Global Meta-Analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Mgelwa, A.S.; Hu, Y.L.; Xu, W.B.; Ge, Z.Q.; Yu, T.W. Soil Carbon and Nitrogen Availability Are Key Determinants of Soil Microbial Biomass and Respiration in Forests along Urbanized Rivers of Southern China. Urban For. Urban Green. 2019, 43, 126351. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Bakker, E.; Van Eekeren, N.; Tittonell, P.A.; Groot, J.C.J.; Van Ittersum, M.K.; Lantinga, E.A. Do Grazing Systems and Species Composition A Ff Ect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards ? Sustainability 2020, 12, 1260. [Google Scholar] [CrossRef]
- Kintché, K.; Guibert, H.; Sogbedji, J.M. Carbon Losses and Primary Productivity Decline in Savannah Soils under Cotton-Cereal Rotations in Semiarid Togo. Plant Soil 2010, 336, 469–484. [Google Scholar] [CrossRef]
- Bach, L.H.; Frostegård, Å.; Ohlson, M. Variation in Soil Microbial Communities across a Boreal Spruce Forest Landscape. Can. J. For. Res. 2008, 38, 1504–1516. [Google Scholar] [CrossRef]
- Boeddinghaus, R.S.; Nunan, N.; Berner, D.; Marhan, S.; Kandeler, E. Do General Spatial Relationships for Microbial Biomass and Soil Enzyme Activities Exist in Temperate Grassland Soils? Soil Biol. Biochem. 2015, 88, 430–440. [Google Scholar] [CrossRef]
- Loureiro, D.C.; De-Polli, H.; Ceddia, M.B.; de Aquino, A.M. Spatial Variability of Microbial Biomass and Organic Matter Labile Pools in a Haplic Planosol Soil. Bragantia 2010, 69, 85–95. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Li, Y. Spatial Heterogeneity of Soil Moisture, Microbial Biomass Carbon and Soil Respiration at Stand Scale of an Arid Scrubland. Environ. Earth Sci. 2013, 70, 3217–3224. [Google Scholar] [CrossRef]
- Modernel, P.; Picasso, V.; Do Carmo, M.; Rossing, W.A.H.; Corbeels, M.; Soca, P.; Dogliotti, S.; Tittonell, P. Grazing Management for More Resilient Mixed Livestock Farming Systems on Native Grasslands of Southern South America. Grass Forage Sci. 2019, 74, 636–649. [Google Scholar] [CrossRef]
- Griffiths, R.I.; Thomson, B.C.; James, P.; Bell, T.; Bailey, M.; Whiteley, A.S. The Bacterial Biogeography of British Soils. Environ. Microbiol. 2011, 13, 1642–1654. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhu, Y.; Song, M.; Du, H.; Song, T.; Zeng, F.; Zhang, F.; Wang, K.; Luo, Y.; Lan, X.; et al. The Spatial Distribution and Drivers of Soil Microbial Richness and Diversity in a Karst Broadleaf Forest. For. Ecol. Manag. 2019, 449, 117241. [Google Scholar] [CrossRef]
- Plassart, P.; Prévost-Bouré, N.C.; Uroz, S.; Dequiedt, S.; Stone, D.; Creamer, R.; Griffiths, R.I.; Bailey, M.J.; Ranjard, L.; Lemanceau, P. Soil Parameters, Land Use, and Geographical Distance Drive Soil Bacterial Communities along a European Transect. Sci. Rep. 2019, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Ramette, A.; Tiedje, J.M. Multiscale Responses of Microbial Life to Spatial Distance and Environmental Heterogeneity in a Patchy Ecosystem. Proc. Natl. Acad. Sci. USA 2007, 104, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging Deeper to Find Unique Microbial Communities: The Strong Effect of Depth on the Structure of Bacterial and Archaeal Communities in Soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Hao, J.; Chai, Y.N.; Lopes, L.D.; Ordóñez, R.A.; Wright, E.E.; Archontoulis, S.; Schachtman, D.P. The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States). Appl. Environ. Microbiol. 2021, 87, e02673-20. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kuzyakov, Y.; Zheng, Y.; Li, P.; Li, G.; Liu, M.; Alharbi, H.A.; Li, Z. Depth Effects on Bacterial Community Assembly Processes in Paddy Soils. Soil Biol. Biochem. 2022, 165, 108517. [Google Scholar] [CrossRef]
- Srivastava, D.S.; Cadotte, M.W.; Macdonald, A.A.M.; Marushia, R.G.; Mirotchnick, N. Phylogenetic Diversity and the Functioning of Ecosystems. Ecol. Lett. 2012, 15, 637–648. [Google Scholar] [CrossRef]
- Mouquet, N.; Devictor, V.; Meynard, C.N.; Munoz, F.; Bersier, L.F.; Chave, J.; Couteron, P.; Dalecky, A.; Fontaine, C.; Gravel, D.; et al. Ecophylogenetics: Advances and Perspectives. Biol. Rev. 2012, 87, 769–785. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Peng, W.; Qu, X.; Zhang, Y.; Du, L.; Wu, N. Phylogenetic and Functional Diversity Could Be Better Indicators of Macroinvertebrate Community Stability. Ecol. Indic. 2021, 129, 107892. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar]
- Widmer, F.; Rasche, F.; Hartmann, M.; Fliessbach, A. Community Structures and Substrate Utilization of Bacteria in Soils from Organic and Conventional Farming Systems of the DOK Long-Term Field Experiment. Appl. Soil Ecol. 2006, 33, 294–307. [Google Scholar] [CrossRef]
- Dequiedt, S.; Saby, N.P.A.; Lelievre, M.; Jolivet, C.; Thioulouse, J.; Toutain, B.; Arrouays, D.; Bispo, A.; Lemanceau, P.; Ranjard, L. Biogeographical Patterns of Soil Molecular Microbial Biomass as Influenced by Soil Characteristics and Management. Glob. Ecol. Biogeogr. 2011, 20, 641–652. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Kölliker, R.; Widmer, F. Semi-Automated Genetic Analyses of Soil Microbial Communities: Comparison of T-RFLP and RISA Based on Descriptive and Discriminative Statistical Approaches. J. Microbiol. Methods 2005, 61, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Hofman, J.; Dušek, L. Biochemical Analysis of Soil Organic Matter and Microbial Biomass Composition—A Pilot Study. Eur. J. Soil Biol. 2003, 39, 217–224. [Google Scholar] [CrossRef]
- Marstorp, H.; Guan, X.; Gong, P. Relationship between DsDNA, Chloroform Labile C and Ergosterol in Soils of Different Organic Matter Contents and PH. Soil Biol. Biochem. 2000, 32, 879–882. [Google Scholar]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A Global Atlas of the Dominant Bacteria Found in Soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and Composition of Soil Acidobacteria and Proteobacteria Communities as a Bacterial Indicator of Past Land-Use Change from Forest to Farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dini-Andreote, F.; Falcão Salles, J. Community Assembly Processes of the Microbial Rare Biosphere. Trends Microbiol. 2018, 26, 738–747. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
Land Use | α-Diversity Index | Spatial Distance Classes * | |||
---|---|---|---|---|---|
A (0.1 m) | B (1 m) | C (10 m) | D (50 m) ** | ||
Forest | Richness (n° of ASVs) | 209.83 a | 281.92 ab | 308.73 ab | 323.08 b |
(47) | Shannon–Wiener | 5.05 a | 5.38 ab | 5.43 b | 5.54 b |
Inverse Simpson | 138.31 a | 186.35 ab | 209.38 ab | 221.32 b | |
Faith’s PD | 24.68 a | 28.77 ab | 29.68 b | 30.22 b | |
Grassland | Richness (n° of ASVs) | 238.82 a | 268.5 a | 303.73 a | 225.63 a |
(42) | Shannon–Wiener | 5.21 a | 5.25 a | 5.44 a | 5.14 a |
Inverse Simpson | 153.61 a | 174.53 a | 202.19 a | 145.01 a | |
Faith’s PD | 26.79 a | 27.34 a | 30.10 a | 25.26 a | |
Horticultural | Richness (n° of ASVs) | 271.33 a | 248.58 a | 174.5 ab | 121.71 b |
(41) | Shannon–Wiener | 5.30 a | 5.17 a | 4.71 ab | 4.47 b |
Inverse Simpson | 176.80 a | 157.60 a | 110.79 ab | 74.68 b | |
Faith’s PD | 36.03 a | 33.51 a | 25.37 ab | 20.14 b |
Land Use | Spatial Variable | Max. Distance (m) | Mantel Statistic r (Bray–Curtis) | Mantel Statistic r (Weighted UniFrac) |
---|---|---|---|---|
Forest | Punctual | 0.1 | 0.104 | 0.114 |
Micro | 1.4 | –0.197 | –0.112 | |
Meso | 14.1 | 0.022 | 0.029 | |
Macro | 70.7 | –0.091 | –0.077 | |
Grassland | Punctual | 0.1 | –0.115 | 0.063 |
Micro | 1.4 | 0.179 * | 0.096 | |
Meso | 14.1 | 0.319 * | 0.176 * | |
Macro | 65.0 | 0.228 * | 0.191 * | |
Horticulture | Punctual | 0.1 | –0.084 | –0.196 |
Micro | 1.4 | 0.086 | 0.078 | |
Meso | 14.1 | 0.458 * | 0.501 * | |
Macro | 45.2 | 0.548 * | 0.574 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, V.E.; El Mujtar, V.A.; Falcão Salles, J.; Jia, X.; Castán, E.; Cardozo, A.G.; Tittonell, P.A. Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments. Sustainability 2024, 16, 1236. https://doi.org/10.3390/su16031236
Álvarez VE, El Mujtar VA, Falcão Salles J, Jia X, Castán E, Cardozo AG, Tittonell PA. Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments. Sustainability. 2024; 16(3):1236. https://doi.org/10.3390/su16031236
Chicago/Turabian StyleÁlvarez, Valeria Esther, Verónica Andrea El Mujtar, Joana Falcão Salles, Xiu Jia, Elisa Castán, Andrea Gabriela Cardozo, and Pablo Adrián Tittonell. 2024. "Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments" Sustainability 16, no. 3: 1236. https://doi.org/10.3390/su16031236
APA StyleÁlvarez, V. E., El Mujtar, V. A., Falcão Salles, J., Jia, X., Castán, E., Cardozo, A. G., & Tittonell, P. A. (2024). Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments. Sustainability, 16(3), 1236. https://doi.org/10.3390/su16031236