Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Advantages of Digital Transformation
2.2. Optimization of Resource Allocation
3. Methodology
3.1. Model Setup
3.2. Variables Selection
3.2.1. Dependent Variables
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.3. Data Collection
4. Empirical Findings
4.1. Foundational Regression
4.2. Robustness Assessment
4.2.1. Alteration in Variables
4.2.2. Refinement of Sample Selection
4.2.3. Modified Regression Model
4.3. Evaluation of Endogeneity
4.3.1. Heckman Two-Step Approach
4.3.2. Application of Instrumental Variable
5. Mechanism Exploration
6. Heterogeneity Analysis
6.1. Divergence in Ownership Types
6.2. Variation in Industrial Pollution
6.3. Disparity in Regional Features
6.4. Difference in Corporate Lifecycle
7. Conclusions and Recommendations
7.1. Conclusions
7.2. Recommendations
7.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Mahmood, H.; Furqan, M.; Hassan, M.S.; Rej, S. The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review. Sustainability 2023, 15, 6110. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation:Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, J.; Luo, S. The impact of fintech innovation on green growth in China: Mediating effect of green finance. Ecolog. Econ. 2022, 193, 107308. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The Environment and Directed Technical Change. Amer. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef]
- Wang, Q.; Qu, J.; Wang, B.; Wang, P.; Yang, T. Green technology innovation development in China in 1990–2015. Sci. Total Environ. 2019, 696, 134008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, X.; Chen, F. Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China. Technol. Forecast. Soc. Chang. 2021, 168, 120744. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Tripe, D. Green credit policy and corporate access to bank loans in China: The role of environmental disclosure and green innovation. Int. Rev. Finan. Anal. 2021, 77, 101838. [Google Scholar] [CrossRef]
- Huang, J.-W.; Li, Y.-H. Green Innovation and Performance: The View of Organizational Capability and Social Reciprocity. J. Bus. Ethics 2015, 145, 309–324. [Google Scholar] [CrossRef]
- Yuan, B.; Cao, X. Do corporate social responsibility practices contribute to green innovation? The mediating role of green dynamic capability. Technol. Soc. 2022, 68, 101868. [Google Scholar] [CrossRef]
- Ran, Q.; Yang, X.; Yan, H.; Xu, Y.; Cao, J. Natural resource consumption and industrial green transformation: Does the digital economy matter? Resour. Pol. 2023, 81, 103396. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Yin, Z.; Gong, X.; Guo, P.; Wu, T. What Drives Entrepreneurship in Digital Economy? Evidence from China. Econ. Model. 2019, 82, 66–73. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef]
- Su, J.; Su, K.; Wang, S. Does the Digital Economy Promote Industrial Structural Upgrading?—A Test of Mediating Effects Based on Heterogeneous Technological Innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Qi Dong, J.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How digital industries affect China’s carbon emissions? Analysis of the direct and indirect structural effects. Technol. Soc. 2022, 68, 101911. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Lin, W.; Wei, W. How does digital technology promote carbon emission reduction? Empirical evidence based on e-commerce pilot city policy in China. J. Environ. Manag. 2023, 325, 116524. [Google Scholar] [CrossRef] [PubMed]
- Roschke, M.; Wirtz, J. Corporate digital responsibility. J. Bus. Res. 2021, 122, 875–888. [Google Scholar] [CrossRef]
- Chen, P.; Hao, Y. Digital transformation and corporate environmental performance: The moderating role of board characteristics. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1757–1767. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model. Technol. Forecast. Soc. Chang. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Fang, L.H.; Lerner, J.; Wu, C. Intellectual Property Rights Protection, Ownership, and Innovation: Evidence from China. Rev. Financ. Stud. 2017, 30, 2446–2477. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Li, G. Environmental decentralization, digital finance and green technology innovation. Struct. Change Econ. Dynam. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Yang, Z.; Wang, Y. Critical success factors of green innovation: Technology, organization and environment readiness. J. Clean. Prod. 2020, 264, 121701. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, Z. Can government subsidies promote the green technology innovation transformation? Evidence from Chinese listed companies. Econ. Anal. Pol. 2022, 74, 716–727. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Li, Y. The effect of digital transformation on real economy enterprises’ total factor productivity. Int. Rev. Econ. Financ. 2023, 85, 488–501. [Google Scholar] [CrossRef]
- Zhuo, C.; Chen, J. Can digital transformation overcome the enterprise innovation dilemma: Effect, mechanism and effective boundary. Technol. Forecast. Soc. Chang. 2023, 190, 122378. [Google Scholar] [CrossRef]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Bus. Strategy Environ. 2022, 32, 1847–1871. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Ullah, K.; Gao, S. Enhancing Digital Innovation for the Sustainable Transformation of Manufacturing Industry: A Pressure-State-Response System Framework to Perceptions of Digital Green Innovation and Its Performance for Green and Intelligent Manufacturing. Systems 2022, 10, 72. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Q.; Zhang, X.; Li, C. Can Digital Transformation Promote Green Technology Innovation? Sustainability 2022, 14, 7497. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F.; Ren, X. Firms’ digitalization in manufacturing and the structure and direction of green innovation. J. Environ. Manag. 2023, 335, 117525. [Google Scholar] [CrossRef]
- Hu, D.; Jiao, J.; Tang, Y.; Xu, Y.; Zha, J. How global value chain participation affects green technology innovation processes: A moderated mediation model. Technol. Soc. 2022, 68, 101916. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; Ahmad, P.; Jermsittiparsert, K. Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach. Sustain. Dev. 2020, 29, 176–193. [Google Scholar] [CrossRef]
- Habiba, U.; Xinbang, C.; Anwar, A. Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions? Renew. Energ. 2022, 193, 1082–1093. [Google Scholar] [CrossRef]
- Lin, S.; Sun, J.; Marinova, D.; Zhao, D. Evaluation of the green technology innovation efficiency of China’s manufacturing industries: DEA window analysis with ideal window width. Technol. Anal. Strateg. Manag. 2018, 30, 1166–1181. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Murshed, M.; Ibrahim Shah, M.; Mahmood, H.; Abbas, S. How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Res. 2022, 112, 105–115. [Google Scholar] [CrossRef]
- Deng, Y.; You, D.; Wang, J. Optimal strategy for enterprises’ green technology innovation from the perspective of political competition. J. Clean. Prod. 2019, 235, 930–942. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Zeng, Z.; Zou, Y. How does heterogeneous green technology innovation affect air quality and economic development in Chinese cities? Spatial and nonlinear perspective analysis. J. Innov. Knowl. 2023, 8, 100419. [Google Scholar] [CrossRef]
- Fang, Z. Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renew. Energ. 2023, 205, 772–782. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecolog. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Tian, G.; Li, B.; Cheng, Y. Does digital transformation matter for corporate risk-taking? Financ. Res. Lett. 2022, 49, 103107. [Google Scholar] [CrossRef]
- Lin, B.; Xie, Y. Impacts of digital transformation on corporate green technology innovation: Do board characteristics play a role? Corp. Soc. Responsib. Environ. Manag. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Wen, H.; Zhong, Q.; Lee, C.-C. Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. Int. Rev. Finan. Anal. 2022, 82, 102166. [Google Scholar] [CrossRef]
- Banalieva, E.R.; Dhanaraj, C. Internalization theory for the digital economy. J. Int. Bus. Stud. 2019, 50, 1372–1387. [Google Scholar] [CrossRef]
- Yami, S.; M’Chirgui, Z.; Spano, C.; Gontier Barykina, O. Reinventing science and technology entrepreneurship education: The role of human and social capitals. Technol. Forecast. Soc. Chang. 2021, 164, 120044. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Luo, K.; Liu, Y.; Chen, P.-F.; Zeng, M. Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt. Energy Econ. 2022, 112, 106127. [Google Scholar] [CrossRef]
- Zhao, X.; Qian, Y. Does Digital Technology Promote Green Innovation Performance? J. Knowl. Econ. 2023, 5, 1–20. [Google Scholar] [CrossRef]
- Aben, T.A.E.; van der Valk, W.; Roehrich, J.K.; Selviaridis, K. Managing information asymmetry in public–private relationships undergoing a digital transformation: The role of contractual and relational governance. Int. J. Oper. Prod. Manag. 2021, 41, 1145–1191. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Wu, H. The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work? Bus. Strategy Environ. 2021, 31, 403–424. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Ren, X. Assessing the impact of digital financial inclusion on PM2.5 concentration: Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 22547–22554. [Google Scholar] [CrossRef]
- Tian, J.; Shao, B. Financing Constraints and Information Asymmetry of SMEs—The Development of Digital Finance and Financial Risks of Enterprises. J. Knowl. Econ. 2023, 7, 1–21. [Google Scholar] [CrossRef]
- Kong, T.; Sun, R.; Sun, G.; Song, Y. Effects of Digital Finance on Green Innovation considering Information Asymmetry: An Empirical Study Based on Chinese Listed Firms. Emerg. Mark. Financ. Trade 2022, 58, 4399–4411. [Google Scholar] [CrossRef]
- Li, G.; Xue, Q.; Qin, J. Environmental information disclosure and green technology innovation: Empirical evidence from China. Technol. Forecast. Soc. Chang. 2022, 176, 121453. [Google Scholar] [CrossRef]
- Yuan, S.; Musibau, H.O.; Genç, S.Y.; Shaheen, R.; Ameen, A.; Tan, Z. Digitalization of economy is the key factor behind fourth industrial revolution: How G7 countries are overcoming with the financing issues? Technol. Forecast. Soc. Chang. 2021, 165, 120533. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Li, G. Research on Digital Transformation and Green Technology Innovation—Evidence from China’s Listed Manufacturing Enterprises. Sustainability 2023, 15, 6425. [Google Scholar] [CrossRef]
- Li, R.; Rao, J.; Wan, L. The digital economy, enterprise digital transformation, and enterprise innovation. Manag. Dec. Econ. 2022, 43, 2875–2886. [Google Scholar] [CrossRef]
- Schot, J.; Steinmueller, W.E. Three frames for innovation policy: R&D, systems of innovation and transformative change. Res. Pol. 2018, 47, 1554–1567. [Google Scholar] [CrossRef]
- Amore, M.D.; Bennedsen, M. Corporate governance and green innovation. J. Environ. Econ. Manag. 2016, 75, 54–72. [Google Scholar] [CrossRef]
- Rao, S.; Pan, Y.; He, J.; Shangguan, X. Digital finance and corporate green innovation: Quantity or quality? Environ. Sci. Pollut. Res. 2022, 29, 56772–56791. [Google Scholar] [CrossRef]
- Wang, H.; Qi, S.; Zhou, C.; Zhou, J.; Huang, X. Green credit policy, government behavior and green innovation quality of enterprises. J. Clean. Prod. 2022, 331, 129834. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, M.; Chan, K.C. Does digital transformation enhance a firm’s performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the digital transformation of enterprises affect stock price crash risk? Financ. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, H.; Yin, T. Resource Bundling: How Does Enterprise Digital Transformation Affect Enterprise ESG Development? Sustainability 2023, 15, 1319. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, X.; Choi, B.; Huan, X. Green Finance, International Technology Spillover and Green Technology Innovation: A New Perspective of Regional Innovation Capability. Sustainability 2023, 15, 1112. [Google Scholar] [CrossRef]
- Miao, C.-L.; Duan, M.-M.; Zuo, Y.; Wu, X.-Y. Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China’s provinces. Energy Policy 2021, 156, 112370. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Z. Institutional investors’ corporate site visits and dividend payouts. Int. Rev. Econ. Financ. 2022, 80, 697–716. [Google Scholar] [CrossRef]
- Guo, X.; Li, M.; Wang, Y.; Mardani, A. Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. J. Bus. Res. 2023, 163, 113868. [Google Scholar] [CrossRef]
- Xia, G.; Yu, Z.; Peng, X. How Does Enterprise Digital Transformation Affect Total Factor Productivity? Based on the Information Intermediary Role of Analysts’ Attention. Sustainability 2023, 15, 8601. [Google Scholar] [CrossRef]
- Liu, G.; Liu, B. How digital technology improves the high-quality development of enterprises and capital markets: A liquidity perspective. Financ. Res. Lett. 2023, 53, 103683. [Google Scholar] [CrossRef]
- Neubaum, D.O.; Zahra, S.A. Institutional Ownership and Corporate Social Performance: The Moderating Effects of Investment Horizon, Activism, and Coordination. J. Manag. 2016, 32, 108–131. [Google Scholar] [CrossRef]
- DeAngelo, H.; DeAngelo, L.; Stulz, R.M. Seasoned equity offerings, market timing, and the corporate lifecycle. J. Finan. Econ. 2010, 95, 275–295. [Google Scholar] [CrossRef]
- Dickinson, V. Cash Flow Patterns as a Proxy for Firm Life Cycle. Account. Rev. 2011, 86, 1969–1994. [Google Scholar] [CrossRef]
Variable | Observations | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
GTIN | 16,865 | 0.273 | 0.627 | 0 | 6.324 |
GTIQ | 16,865 | 0.315 | 0.786 | 0 | 6.625 |
DIG | 16,865 | 1.127 | 1.248 | 0 | 4.832 |
Scale | 16,865 | 7.135 | 2.436 | 4.765 | 11.259 |
Age | 16,865 | 18.423 | 6.512 | 0 | 32 |
Growth | 16,865 | 0.211 | 0.461 | −0.587 | 3.213 |
Profit | 16,865 | 0.102 | 0.173 | −0.624 | 0.663 |
Debt | 16,865 | 0.232 | 0.421 | 0.042 | 0.865 |
Roa | 16,865 | 0.043 | 0.058 | −0.263 | 0.205 |
Fixed | 16,865 | 0.197 | 0.157 | 0.003 | 0.684 |
Share | 16,865 | 0.112 | 0.206 | 0 | 0.652 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.065 *** (0.010) | 0.094 *** (0.012) | 0.051 *** (0.008) | 0.082 *** (0.009) |
Scale | 0.155 *** (0.098) | 0.142 *** (0.092) | ||
Age | −0.143 *** (0.096) | −0.164 ** (0.105) | ||
Growth | −0.061 ** (0.028) | −0.057 * (0.027) | ||
Profit | 0.051 ** (0.025) | 0.048 ** (0.023) | ||
Debt | 0.062 *** (0.031) | 0.066 *** (0.035) | ||
Roa | 0.085 ** (0.045) | 0.081 ** (0.044) | ||
Fixed | 0.054 * (0.030) | 0.052 ** (0.031) | ||
Share | 0.092 ** (0.053) | 0.081 *** (0.065) | ||
Constant | −1.017 *** (0.152) | −1.025 *** (0.157) | −1.033 *** (0.162) | −1.068 *** (0.169) |
Year FE | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes |
Observations | 16,865 | 16,865 | 16,865 | 16,865 |
R2 | 0.157 | 0.195 | 0.243 | 0.280 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.053 *** (0.007) | 0.067 *** (0.005) | 0.039 *** (0.004) | 0.075 *** (0.009) | 0.065 *** (0.006) | 0.094 *** (0.007) | 0.079 *** (0.005) | 0.117 *** (0.006) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 16,865 | 16,865 | 16,865 | 16,865 | 7564 | 7564 | 16,865 | 16,865 |
R2 | 0.112 | 0.154 | 0.162 | 0.161 | 0.287 | 0.352 | 0.223 | 0.302 |
Variable | (1) | (2) | (3) | (5) | (6) |
---|---|---|---|---|---|
GTIN | GTIQ | First Stage | Second Stage | ||
DIG | GTIN | GTIQ | |||
DIG | 0.049 *** (0.006) | 0.077 *** (0.008) | 0.172 *** (0.013) | 0.264 *** (0.026) | |
IV | 0.069 *** (0.010) | ||||
Kleibergen–Paap rk LM | 853.179 *** | ||||
Cragg–Donald Wald F | 1076.505 | ||||
Kleibergen–Paap rk Wald F | 1471.364 | ||||
Controls | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes |
Observations | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 |
R2 | 0.235 | 0.286 | 0.323 | 0.263 | 0.342 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
HRS | GTIN | GTIQ | INS | GTIN | GTIQ | REI | GTIN | GTIQ | |
DIG | 0.029 *** (0.003) | 0.046 *** (0.007) | 0.068 *** (0.008) | 0.015 *** (0.002) | 0.035 *** (0.006) | 0.064 *** (0.008) | 0.048 *** (0.005) | 0.041 *** (0.007) | 0.072 *** (0.008) |
HRS | 0.437 *** (0.056) | 0.842 *** (0.079) | |||||||
INS | 0.153 *** (0.014) | 0.216 *** (0.036) | |||||||
REI | 0.416 *** (0.049) | 0.656 *** (0.072) | |||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 | 16,865 |
R2 | 0.145 | 0.265 | 0.310 | 0.112 | 0.276 | 0.328 | 0.169 | 0.287 | 0.317 |
Variable | State-Owned | Non-State-Owned | Full Sample | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.092 *** (0.011) | 0.128 *** (0.015) | 0.034 *** (0.005) | 0.057 *** (0.008) | 0.035 *** (0.006) | 0.061 *** (0.007) |
DIG×State | 0.023 *** (0.005) | 0.047 *** (0.006) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 6235 | 6235 | 10,630 | 10,630 | 16,865 | 16,865 |
R2 | 0.289 | 0.332 | 0.232 | 0.295 | 0.257 | 0.304 |
Variable | Heavily Polluting | Non-Heavily Polluting | Full Sample | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.008 (0.005) | 0.016 (0.006) | 0.068 *** (0.007) | 0.085 *** (0.010) | 0.054 *** (0.006) | 0.079 *** (0.008) |
DIG×Polluting | −0.024 *** (0.006) | −0.056 *** (0.007) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 4740 | 4740 | 12,125 | 12,125 | 16,865 | 16,865 |
R2 | 0.159 | 0.235 | 0.245 | 0.316 | 0.237 | 0.298 |
Variable | Low Carbon | Non-Low Carbon | Full Sample | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.066 *** (0.009) | 0.102 *** (0.012) | 0.007 (0.008) | 0.013 (0.009) | 0.037 *** (0.007) | 0.065 *** (0.008) |
DIG×Low | 0.018 *** (0.005) | 0.036 *** (0.007) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 5105 | 5105 | 11,760 | 11,760 | 16,865 | 16,865 |
R2 | 0.276 | 0.302 | 0.212 | 0.259 | 0.286 | 0.301 |
Variable | Growth Stage | Maturity Stage | Decline Stage | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTIN | GTIQ | GTIN | GTIQ | GTIN | GTIQ | |
DIG | 0.065 *** (0.011) | 0.113 *** (0.015) | 0.050 *** (0.007) | 0.081 *** (0.009) | 0.039 *** (0.006) | 0.057 *** (0.008) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 7353 | 7353 | 8749 | 8749 | 763 | 763 |
R2 | 0.289 | 0.314 | 0.267 | 0.286 | 0.254 | 0.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, X.; Wu, Z. Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation. Sustainability 2024, 16, 1318. https://doi.org/10.3390/su16031318
Liu K, Liu X, Wu Z. Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation. Sustainability. 2024; 16(3):1318. https://doi.org/10.3390/su16031318
Chicago/Turabian StyleLiu, Kun, Xuemin Liu, and Zihao Wu. 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation" Sustainability 16, no. 3: 1318. https://doi.org/10.3390/su16031318