Impact of Artificial Intelligence on Manufacturing Industry Global Value Chain Position
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Basis
3.1. Artificial Intelligence
3.2. GVC
4. Mechanistic Analysis
4.1. Improve Production Efficiency
4.2. Improve Technological Innovation Capability
4.3. Reduce Trade Costs
5. Empirical Analysis
5.1. Econometric Model Construction
5.2. Variable Description
5.3. Data Sources
5.4. Empirical Results and Discussions
5.4.1. Benchmark Regression Results
5.4.2. Robustness Test
5.4.3. Endogenous Test
5.4.4. Heterogeneity Test
5.4.5. Mechanism Test
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Lee, K.; Malerba, F.; Primi, A. The fourth industrial revolution, changing global value chains and industrial upgrading in emerging economies. J. Econ. Policy Reform 2020, 23, 359–370. [Google Scholar] [CrossRef]
- Dilyard, J.; Zhao, S.; You, J.J. Digital innovation and Industry 4.0 for global value chain resilience: Lessons learned and ways forward. Thunderbird Int. Bus. Rev. 2021, 63, 577–584. [Google Scholar] [CrossRef]
- Durand, C.; Milberg, W. Intellectual monopoly in global value chains. Rev. Int. Political Econ. 2020, 27, 404–429. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Song, M. Global value chains, technological progress, and environmental pollution: Inequality towards developing countries. J. Environ. Manag. 2021, 277, 110999. [Google Scholar] [CrossRef]
- Pananond, P.; Gereffi, G.; Pedersen, T. An integrative typology of global strategy and global value chains: The management and organization of cross-border activities. Glob. Strategy J. 2020, 10, 421–443. [Google Scholar] [CrossRef]
- Adarov, A.; Stehrer, R. Implications of foreign direct investment, capital formation and its structure for global value chains. World Econ. 2021, 44, 3246–3299. [Google Scholar] [CrossRef]
- Yang, B.; Liu, B.; Peng, J.; Liu, X. The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing. Technol. Soc. 2022, 71, 102065. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Kee, H.L.; Winkler, D. Determinants of global value chain participation: Cross-country evidence. World Bank Econ. Rev. 2022, 36, 329–360. [Google Scholar] [CrossRef]
- Yao, X.; Shah, W.U.H.; Yasmeen, R.; Zhang, Y.; Kamal, M.A.; Khan, A. The impact of trade on energy efficiency in the global value chain: A simultaneous equation approach. Sci. Total Environ. 2021, 765, 142759. [Google Scholar] [CrossRef]
- Carril-Caccia, F.; Pavlova, E. Mergers and acquisitions & trade: A global value chain analysis. World Econ. 2020, 43, 586–614. [Google Scholar]
- Karishma, B. Digital Technologies and “Value” Capture in Global Value Chains: Empirical Evidence from Indian Manufacturing Firms; Wider Working Paper; The United Nations University World Institute for Development Economics Research (UNU-WIDER): Helsinki, Finland, 2019. [Google Scholar]
- Oliveira, L.; Fleury, A.; Fleury, M.T. Digital power: Value chain upgrading in an age of digitization. Int. Bus. Rev. 2021, 30, 101850. [Google Scholar] [CrossRef]
- Cieślik, E. Towards the industry 4.0: Have ICT services improved the position of Central and Eastern Europe in global production linkages? Manuf. Lett. 2021, 28, 11–16. [Google Scholar] [CrossRef]
- Eder, A.; Koller, W.; Mahlberg, B. The contribution of industrial robots to labor productivity growth and economic convergence: A production frontier approach. J. Product. Anal. 2023, 1–25. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Rcck, D.; Syverson, C. Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. NBER Working Paper. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2017. [Google Scholar]
- Liu, J.; Chang, H.; Forrest, J.Y.L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. Chang. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Wright, P.K.; Bourne, D.A. Manufacturing Intelligence; Addison-Wesley Longman Publishing Co., Inc.: Reading, MA, USA, 1988. [Google Scholar]
- Kusiak, A. Intelligent Manufacturing; System; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart manufacturing and intelligent manufacturing: A comparative review. Engineering 2021, 7, 738–757. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Prentice, C.; Dominique Lopes, S.; Wang, X. The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. J. Hosp. Mark.Manag. 2020, 29, 739–756. [Google Scholar] [CrossRef]
- Lin, R. Analysis on the Application of Artificial Intelligence in the Global Value Chain Upgrade of Manufacturing Enterprises. In Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, Manchester, UK, 23–25 October 2021; pp. 1400–1404. [Google Scholar]
- Vlačić, E.; Dabić, M.; Daim, T.; Vlajčić, D. Exploring the impact of the level of absorptive capacity in technology development firms. Technol. Forecast. Soc. Chang. 2019, 138, 166–177. [Google Scholar] [CrossRef]
- Lyu, H.; Li, D.; Fang, H.; Huang, X.; Chen, H.; Huang, H. Impact of Artificial Intelligence on Global Value Chain Networks: An Evaluation Based on Fixed Effect Regression Models. In Proceedings of the 2nd International Conference on Mathematical Statistics and Economic Analysis, MSEA 2023, Nanjing, China, 26–28 May 2023. [Google Scholar]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technol. Forecast. Soc. Chang. 2021, 165, 120557. [Google Scholar] [CrossRef]
- Yang, T.; Yi, X.; Lu, S.; Cheng, S. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 2021, 7, 1224–1230. [Google Scholar] [CrossRef]
- Zhang, S. Impact of industrial robot applications on global value chain participation of China manufacturing industry: Mediation effect based on product upgrading. PLoS ONE 2023, 18, e0293399. [Google Scholar] [CrossRef]
- Szymczak, S.; Parteka, A.; Wolszczak-Derlacz, J. Position in global value chains and wages in Central and Eastern European countries. Eur. J. Ind. Relat. 2022, 28, 211–230. [Google Scholar] [CrossRef]
- Dai, F.; Liu, R.; Guo, H.; Du, X. How does intermediate consumption affect GVC positions?-A comparison between China and US. China Econ. Rev. 2020, 63, 101531. [Google Scholar] [CrossRef]
- Abraham, K.G.; Mallatt, J. Measuring human capital. J. Econ. Perspect. 2022, 36, 103–130. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach; Nelson Education: Toronto, ON, Cananda, 2016. [Google Scholar]
- Cui, J.; Tam, O.K.; Wang, B.; Zhang, Y. The environmental effect of trade liberalization: Evidence from China’s manufacturing firms. World Econ. 2020, 43, 3357–3383. [Google Scholar] [CrossRef]
- Mancini, M.; Montalbano, P.; Nenci, S.; Vurchio, D. Positioning in Global Value Chains: World Map and Indicators. A New Dataset Available for GVC Analyses; DiSSE Working Paper 03/23; Sapienza, Univ. of Rome: Rome, Italy, 2023. [Google Scholar]
- Pahl, S.; Timmer, M.P. Do global value chains enhance economic upgrading? A long view. J. Dev. Stud. 2020, 56, 1683–1705. [Google Scholar] [CrossRef]
- Collalti, A.; Ibrom, A.; Stockmarr, A.; Cescatti, A.; Alkama, R.; Fernández-Martínez, M.; Matteucci, G.; Sitch, S.; Friedlingstein, P.; Ciais, P.; et al. Forest production efficiency increases with growth temperature. Nat. Commun. 2020, 11, 5322. [Google Scholar] [CrossRef] [PubMed]
- Stornelli, A.; Ozcan, S.; Simms, C. Advanced manufacturing technology adoption and innovation: A systematic literature review on barriers, enablers, and innovation types. Res. Policy 2021, 50, 104229. [Google Scholar] [CrossRef]
- Graetz, G.; Michaels, G. Robots at work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef]
- Wu, K.; Tang, Z.; Zhang, L. Population Aging, Industrial Intelligence and Export Technology Complexity. Sustainability 2022, 14, 13600. [Google Scholar] [CrossRef]
- Jia, S. Capital account opening and economic growth—An empirical test based on systematic GMM. In Proceedings of the E3S Web of Conferences, Strasbourg, France, 5–7 May 2021; EDP Sciences: Lejulis, France, 2021; Volume 235, p. 01019. [Google Scholar]
- Antràs, P.; Chor, D. Global value chains. Handb. Int. Econ. 2022, 5, 297–376. [Google Scholar]
- Kano, L.; Tsang, E.W.K.; Yeung, H.W. Global value chains: A review of the multi-disciplinary literature. J. Int. Bus. Stud. 2020, 51, 577–622. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lngvc | 1220 | 10.228 | 0.200 | 9.518 | 10.856 |
lnindrob | 935 | 6.913 | 2.994 | 0 | 13.348 |
lnhc | 1200 | 1.081 | 0.188 | 0.437 | 1.471 |
lnfix | 1219 | −1.494 | 0.216 | −2.246 | −0.624 |
lnopen | 1219 | −0.228 | 0.594 | −1.632 | 1.488 |
lnstr | 1217 | −1.350 | 0.286 | −2.772 | −0.723 |
lngov | 1219 | −1.805 | 0.302 | −2.907 | −1.275 |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
lnindrob | 0.0572 *** | 0.0106 *** | 0.0371 *** | 0.0107 *** |
(0.0028) | (0.0026) | (0.0040) | (0.0027) | |
lnhc | 0.5293 *** | 0.0563 | ||
(0.1546) | (0.0950) | |||
lnfix | 0.1061 *** | 0.0285 * | ||
(0.0382) | (0.0169) | |||
lnopen | 0.1526 *** | 0.0310 * | ||
(0.0301) | (0.0182) | |||
lnstr | −0.2202 *** | 0.0618 * | ||
(0.0738) | (0.0339) | |||
lngov | 0.0680 | 0.0440 | ||
(0.0602) | (0.0335) | |||
_cons | 9.9118 *** | 9.9720 *** | 9.5822 *** | 10.1444 *** |
(0.0291) | (0.0166) | (0.2322) | (0.1138) | |
individual effects | NO | YES | NO | YES |
time effects | NO | YES | NO | YES |
N | 935 | 935 | 917 | 917 |
R2 | 0.5547 | 0.9456 | 0.7147 | 0.9490 |
(1) | (2) | (3) | |
---|---|---|---|
Substituting Core Independent Variables | Winsorizing | System-GMM | |
lnindrob | 0.0108 *** | 0.0084 *** | |
(0.0026) | (0.0025) | ||
lnindrob2 | 0.0053 * | ||
(0.0027) | |||
lngvc | 0.5862 *** | ||
(0.0905) | |||
control | YES | YES | YES |
country FE | YES | YES | YES |
year FE | YES | YES | YES |
_cons | 10.1436 *** | 10.0826 *** | 4.4654 *** |
(0.1352) | (0.1099) | (0.9533) | |
N | 748 | 895 | 907 |
R2 | 0.9578 | 0.9525 | |
AR(2) | 0.7518 | ||
Sargan Test | 0.7543 |
(1) | (2) | (3) | (4) | ||
---|---|---|---|---|---|
First | 2SLS | First | 2SLS | ||
lnindrob | 0.0106 *** | 0.0176 *** | |||
(0.0020) | (0.0035) | ||||
IV | −3.6574 *** | −3.1569 *** | |||
(0.5827) | (0.5758) | ||||
Control | NO | NO | YES | YES | |
Country FE | YES | YES | YES | YES | |
Year FE | YES | YES | YES | YES | |
N | 935 | 935 | 917 | 917 | |
Unrecognizable test | |||||
Kleibergen-Paap rk LM value | 26.392 *** | 27.133 *** | |||
Weak instrumental variable test | |||||
Kleibergen-Paap rk Wald F value | 39.396 | 30.065 *** | |||
Cragg-Donald Wald F value | 74.470 *** | 52.405 *** | |||
[16.38] | [16.38] | ||||
Weak identification robust test | |||||
Anderson-Rubin Wald value | 31.06 *** | 32.82 *** | |||
R2 | 0.9789 | 0.9796 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
lngvc | Low-Tech | Medium-Tech | High-Tech | |
lnindrob | 0.0153 *** | 0.0102 *** | 0.0070 *** | 0.0066 ** |
(0.0030) | (0.0030) | (0.0020) | (0.0033) | |
developed × lnindrob | −0.0135 *** | |||
(0.0036) | ||||
control | YES | YES | YES | YES |
country FE | YES | YES | YES | YES |
year FE | YES | YES | YES | YES |
_cons | 10.0748 *** | 9.5881 *** | 9.9267 *** | 10.0272 *** |
(0.1138) | (0.0942) | (0.1354) | (0.0796) | |
N | 917 | 917 | 917 | 917 |
R2 | 0.9534 | 0.9499 | 0.9630 | 0.9569 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
lnindrob | 0.0107 *** | 0.0273 ** | 0.0099 *** | 0.0964 ** | 0.0111 *** | 0.0610 *** | 0.0054 * | −0.0470 ** | 0.0093 *** |
(0.0027) | (0.0111) | (0.0027) | (0.0414) | (0.0027) | (0.0081) | (0.0031) | (0.0228) | (0.0027) | |
lnlp | 0.0237 | ||||||||
(0.0236) | |||||||||
lninno | 0.0006 | ||||||||
(0.0054) | |||||||||
lngdp | 0.0861 ** | ||||||||
(0.0364) | |||||||||
lntax | −0.0257 *** | ||||||||
(0.0080) | |||||||||
Control | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES | YES |
_cons | 10.1059 *** | 17.4831 | 9.7020 *** | 8.9042 *** | 10.0940 *** | 26.5130 *** | 7.8240 *** | −2.5907 | 10.0564 *** |
(0.1157) | (0.5570) | (0.4294) | (1.8011) | (0.1199) | (0.3593) | (0.9755) | (2.2046) | (0.1066) | |
Bootstrap test | Z = 7.99, p = 0.000 | Z = −5.28, p = 0.000 | Z = −3.65, p = 0.000 | Z = 3.06, p = 0.002 | |||||
N | 917 | 890 | 890 | 889 | 889 | 917 | 917 | 861 | 861 |
R2 | 0.9487 | 0.7129 | 0.9494 | 0.1380 | 0.9502 | 0.8322 | 0.9513 | 0.2688 | 0.9516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Jiang, X.; Shi, M.; Yang, Y. Impact of Artificial Intelligence on Manufacturing Industry Global Value Chain Position. Sustainability 2024, 16, 1341. https://doi.org/10.3390/su16031341
Liu J, Jiang X, Shi M, Yang Y. Impact of Artificial Intelligence on Manufacturing Industry Global Value Chain Position. Sustainability. 2024; 16(3):1341. https://doi.org/10.3390/su16031341
Chicago/Turabian StyleLiu, Jun, Xin Jiang, Mengxue Shi, and Yuning Yang. 2024. "Impact of Artificial Intelligence on Manufacturing Industry Global Value Chain Position" Sustainability 16, no. 3: 1341. https://doi.org/10.3390/su16031341
APA StyleLiu, J., Jiang, X., Shi, M., & Yang, Y. (2024). Impact of Artificial Intelligence on Manufacturing Industry Global Value Chain Position. Sustainability, 16(3), 1341. https://doi.org/10.3390/su16031341