Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Processing
2.2. Sample Preparation
2.3. Characterization of Composites
2.3.1. Density
2.3.2. Water Absorption
2.3.3. Mechanical Properties
2.3.4. Microscopic Evaluation of Structure
3. Results and Discussion
3.1. Density Determination and Water Absorption Results
3.2. Mechanical Properties of the Composites
3.3. Microscopic Surface Morphology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, S.; Riahi, O.; Said, S.M.; Sabri, M.F.M.; Rozali, S. Biopolymers from Crop Plants. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- MacGregor, E.A. Biopolymers. In Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 207–245. [Google Scholar] [CrossRef]
- Christian, S.J. 5—Natural fibre-reinforced noncementitious composites (biocomposites). In Nonconventional and Vernacular Construction Materials; Woodhead Publishing: Sawston, UK, 2016; pp. 111–126. [Google Scholar] [CrossRef]
- Biological Recycling of Biodegradable Plastics. Available online: https://www.biocycle.net/biological-recycling-biodegradable-plastics/ (accessed on 29 August 2023).
- Ferrari, F.; Striani, R.; Fico, D.; Alam, M.M.; Greco, A.; Esposito Corcione, C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers 2022, 14, 5519. [Google Scholar] [CrossRef] [PubMed]
- Tanase-Opedal, M.; Espinosa, E.; Rodríguez, A.; Chinga-Carrasco, G. Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. Materials 2019, 12, 3006. [Google Scholar] [CrossRef] [PubMed]
- Bertini, F.; Canetti, M.; Cacciamani, A.; Elegir, G.; Orlandi, M.; Zoia, L. Effect of Ligno-Derivatives on Thermal Properties and Degradation Behavior of Poly(3-Hydroxybutyrate)-Based Biocomposites. Polym. Degrad. Stab. 2012, 97, 1979–1987. [Google Scholar] [CrossRef]
- Kompozyty.net. Biocomposites—An Overview. Available online: https://kompozyty.net/biokompozyty-przeglad/ (accessed on 14 December 2023).
- H Gołuch-Góreczna, R.; Urbaniak, M.; Błędzki, A.K. Biocomposites properties based on natural cork agglomerate manufactured by the vacuum bag method. Przetwórstwo Tworzyw 2017, 23, 527–534. [Google Scholar]
- Zahid Rayaz Khan, M.; Srivastava, S.K. Development, Characterization and Application Potential of Bio-Composites: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 404, 12028. [Google Scholar] [CrossRef]
- Sztorch, B.; Brząkalski, D.; Pakuła, D.; Frydrych, M.; Špitalský, Z.; Przekop, R.E. Natural and Synthetic Polymer Fillers for Applications in 3D Printing—FDM Technology Area. Solids 2022, 3, 508–548. [Google Scholar] [CrossRef]
- Kaczmar, J.W.; Pach, J.; Kozłowski, R. Application of natural fibers as the fillers for polymer composites. Polimery 2006, 51, 722–726. [Google Scholar] [CrossRef]
- Fejdyś, M.; Łandwijt, M. Technical fibres reinforcing the composite material. Tech. Wyr. Włókiennicze 2010, 18, 12–22. [Google Scholar]
- Włodarczyk-Fligier, A.; Polok-Rubiniec, M.; Chmielnicki, B. Polimers compoistes with natural filler. Przetwórstwo Tworzyw 2018, 24, 50–57. [Google Scholar]
- Zajchowski, S.; Ryszkowska, J. Wood-polymer composites—General characteristics and their preparation from waste materials. Polimery 2009, 54, 737–746. [Google Scholar] [CrossRef]
- Alam, M.A.; Sapuan, S.M.; Ya, H.H.; Hussain, P.B.; Azeem, M.; Ilyas, R.A. Application of biocomposites in automotive components: A review. In Biocomposite and Synthetic Composites for Automotive Applications; Woodhead Publishing: Sawston, UK, 2021; pp. 1–17. [Google Scholar]
- Spasowka, E. Sustainable biopolymer composites biocompatibility, self-healing, modeling, repair and recyclability. Polimery 2022, 67, 47–49. [Google Scholar]
- Bajwa, D.S.; Bhattacharjee, S. Current progress, trends and challenges in the application of biofiber composites by automotive industry. J. Nat. Fibers 2016, 13, 660–669. [Google Scholar]
- Akampumuza, O.; Wambua, P.M.; Ahmed, A.; Li, W.; Qin, X.H. Review of the applications of biocomposites in the automotive industry. Polym. Compos. 2017, 38, 2553–2569. [Google Scholar] [CrossRef]
- Njuguna, J.; Wambua, P.; Pielichowski, K.; Kayvantash, K. Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 661–700. [Google Scholar]
- Loureiro, N.C.; Esteves, J.L. Green composites in automotive interior parts: A solution using cellulosic fibers. In Green Composites for Automotive Applications; Woodhead Publishing: Sawston, UK, 2019; pp. 81–97. [Google Scholar]
- Kim, Y.K.; Chalivendra, V. Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres; Woodhead Publishing: Sawston, UK, 2020; pp. 469–498. [Google Scholar]
- WPC Wall Panels. Available online: https://www.hosungdeck.com/wpc-industry-trends/elevate-space-wpc-wall-panels/ (accessed on 16 December 2023).
- Andrzejewski, J.; Barczewski, M.; Czarnecka-Komorowska, D.; Rydzkowski, T.; Gawdzińska, K.; Thakur, V.K. Manufacturing and characterization of sustainable and recyclable wood-polypropylene biocomposites: Multiprocessing-properties-structure relationships. Ind. Crops Prod. 2024, 207, 117710. [Google Scholar] [CrossRef]
- Chmielnicki, B.; Jurczyk, S. WPC composites as an alternative to the products of wood. Przetwórstwo Tworzyw 2013, 19, 477–484. [Google Scholar]
- Venkataravanappa, R.Y.; Lakshmikanthan, A.; Kapilan, N.; Chandrashekarappa, M.P.G.; Der, O.; Ercetin, A. Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites. J. Compos. Sci. 2023, 7, 266. [Google Scholar] [CrossRef]
- Manu, T.; Nazmi, A.R.; Shahri, B.; Emerson, N.; Huber, T. Biocomposites: A review of materials and perception. Mater. Today Commun. 2022, 31, 103308. [Google Scholar] [CrossRef]
- Characteristics of Mater-Bi. Available online: https://www.novamont.com/eng/mater-bi (accessed on 14 December 2023).
- Knitter, M.; Czarnecka-Komorowska, D.; Czaja-Jagielska, N.; Szymanowska-Powałowska, D. Manufacturing and properties of biodegradable composites based on thermoplastic starch/polyethylene-vinyl alcohol and silver particles. In Advances in Manufacturing II: Volume 4—Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2019; pp. 610–624. [Google Scholar]
- Zdziobek, P.; Worek, J.; Jodłowski, G. The problem of dioxins formed during processes of uncontrolled waste incineration. In Współczesne Problemy Ochrony Środowiska i Energetyki; Katedra Technologii i Urządzeń Zagospodarowania Odpadów: Gliwice, Poland, 2019; pp. 81–92. [Google Scholar]
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/60/56046.html (accessed on 2 February 2024).
- ISO 1183-1:2013; Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/27790.html (accessed on 1 February 2024).
- ISO 62:2008; Plastics—Determination of Water Absorption. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/41672.html (accessed on 1 February 2024).
- ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/48/34804.html (accessed on 1 February 2024).
- ISO 179-2:2020; Plastics Determination of Charpy Impact Properties, Part 2: Instrumented Impact Test. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75825.html (accessed on 1 February 2024).
Symbol | Material Type |
---|---|
MB0 | Pure Mater-Bi |
MB1/5 | 95 wt.% Mater-Bi with 5 wt.% ash wood |
MB1/10 | 90 wt.% Mater-Bi with 10 wt.% ash wood |
MB1/20 | 80 wt.% Mater-Bi with 20 wt.% ash wood |
MB2/5 | 95 wt.% Mater-Bi with 5 wt.% oak |
MB2/10 | 90 wt.% Mater-Bi with 10 wt.% oak |
MB2/20 | 80 wt.% Mater-Bi with 20 wt.% oak |
MB3/5 | 95 wt.% Mater-Bi with 5 wt.% MDF |
MB3/10 | 90 wt.% Mater-Bi with 10 wt.% MDF |
MB3/20 | 80 wt.% Mater-Bi with 20 wt.% MDF |
Parameter | Value |
---|---|
Plasticization temperature | 180 °C |
Mold temperature | 25 °C |
Press time | 5 s |
Injection volume | 33 |
Injection pressure | 600 kPa |
Cooling time | 35 s |
Material Type | ] | Water Absorption [%] |
---|---|---|
MB0 | 1.258 ± 0.020 | 3.470 ± 0.416 |
MB1/5 | 1.264 ± 0.011 | 2.676 ± 0.297 |
MB1/10 | 1.268 ± 0.021 | 2.707 ± 0.043 |
MB1/20 | 1.293 ± 0.032 | 3.560 ± 0.564 |
MB2/5 | 1.262 ± 0.009 | 2.219 ± 0.107 |
MB2/10 | 1.265 ± 0.014 | 2.390 ± 0.092 |
MB2/20 | 1.294 ± 0.022 | 2.636 ± 0.182 |
MB3/5 | 1.270 ± 0.015 | 3.755 ± 0.262 |
MB3/10 | 1.128 ± 0.019 | 3.089 ± 0.198 |
MB3/20 | 1.288 ± 0.013 | 3.755 ± 1.248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnecka-Komorowska, D.; Wachowiak, D.; Gizelski, K.; Kanciak, W.; Ondrušová, D.; Pajtášová, M. Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties. Sustainability 2024, 16, 1370. https://doi.org/10.3390/su16041370
Czarnecka-Komorowska D, Wachowiak D, Gizelski K, Kanciak W, Ondrušová D, Pajtášová M. Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties. Sustainability. 2024; 16(4):1370. https://doi.org/10.3390/su16041370
Chicago/Turabian StyleCzarnecka-Komorowska, Dorota, Damian Wachowiak, Krzysztof Gizelski, Wiktoria Kanciak, Darina Ondrušová, and Mariana Pajtášová. 2024. "Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties" Sustainability 16, no. 4: 1370. https://doi.org/10.3390/su16041370
APA StyleCzarnecka-Komorowska, D., Wachowiak, D., Gizelski, K., Kanciak, W., Ondrušová, D., & Pajtášová, M. (2024). Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties. Sustainability, 16(4), 1370. https://doi.org/10.3390/su16041370