Sublethal Effects of Insecticides on the Parasitism of Acerophagus flavidulus (Hymenoptera: Encyrtidae) Parasitoid of the Obscure Mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Material
2.2. Application of Insecticides
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borel, B. When the pesticides run out. Nature 2017, 543, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Shields, M.W.; Johnson, A.C.; Pandey, S.; Cullen, R.; González-Chang, M.; Wratten, S.D.; Gurr, G.M. History, current situation and challenges for conservation biological control. Biol. Control 2019, 131, 25–35. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Adhikari, R.; Bhatta, D.; Poudel, A.; Subedi, S.; Shrestha, S.; Shrestha, J. Initiatives for biodiversity conservation and utilization in crop protection: A strategy for sustainable crop production. Biodivers. Conserv. 2023, 32, 4573–4595. [Google Scholar] [CrossRef]
- Shankarganesh, K.; Ricupero, M.; Sabtharishi, S. Field evolved insecticide resistance in the cotton mealybug Phenacoccus solenopsis and its direct and indirect impacts on the endoparasitoid Aenasius arizonensis. Sci. Rep. 2022, 12, 16764. [Google Scholar] [CrossRef]
- Butler, D. EU pesticide review could lead to ban. Nature 2018, 555, 150–151. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Potts, S.G.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Vanbergen, A. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; IPBES, Ed.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2016; 556p. [Google Scholar]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngierg, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Jacquet, F.; Jeuffroy, M.-H.; Jouan, J.; Le Cadre, E.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-free agriculture as a new paradigm for research. Sustain. Dev. 2022, 42, 8. [Google Scholar] [CrossRef]
- Deguine, J.P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated Pest Management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Kogan, M. Integrated Pest Management: Historical Perspectives and Contemporary Developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.K. The New Integrated Pest Management Paradigm for the Modern Age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef]
- Roubos, C.R.; Rodríguez-Saona, C.; Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 2014, 75, 28–38. [Google Scholar] [CrossRef]
- Hill, M.P.; Macfadyen, S.; Nash, M.A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 2017, 5, e4179. [Google Scholar] [CrossRef]
- Daane, K.M.; Almeida, R.P.P.; Bell, V.A.; Walker, J.T.S.; Botton, M.; Fallahzadeh, M.; Mani, M.; Miano, J.L.; Sforza, R.; Walton, V.M.; et al. Biology and Management of Mealybugs in Vineyards. In Arthropod Management in Vineyards, Pests, Approaches, and Future Directions, 1st ed.; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 271–308. [Google Scholar]
- Correa, M.C.G.; Lombaert, E.; Malausa, T.; Crochard, D.; Alvear, A.; Zaviezo, T.; Palero, F. Mealybug species from Chilean agricultural landscapes and main factors influencing the genetic structure of Pseudococcus viburni. Sci. Rep. 2015, 5, 16483. [Google Scholar] [CrossRef]
- González, R.H. Pseudocóccidos de Importancia Frutícola en Chile (Hemiptera: Pseudococcidae), 1st ed.; Universidad de Chile, Facultad de Ciencias Agronómicas: Santiago, Chile, 2011; p. 186. [Google Scholar]
- Dapoto, G.L.; Olave, A.; Bondoni, M.; Giganti, H. Obscure Mealybug (Pseudococcus viburni) in Pear Trees in the Alto Valle of Rio Negro and Neuquén, Argentina. Acta Hortic. 2011, 909, 497–504. [Google Scholar] [CrossRef]
- Wakgari, W.M.; Giliomee, J.H. Description of adult and immature female instars of Pseudococcus viburni (Hemiptera: Pseudococcidae) found on apple in South Africa. Afr. Entomol. 2004, 12, 29–38. [Google Scholar]
- Radrigán-Navarro, C.; Beers, E.H.; Alvear, A.; Fuentes-Contreras, E. Acute toxicity of lethal and sublethal concentrations of neonicotinoid, insect growth regulator and diamide insecticides on natural enemies of the woolly apple aphid and the obscure mealybug. Chil. J. Agric. Res. 2021, 81, 398–407. [Google Scholar] [CrossRef]
- Karamaouna, F.; Copland, M.J.W. Host suitability, quality and host size preference of Leptomastix epona and Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni, and host size effect on parasitoid sex ratio and clutch size. Entomol. Exp. Appl. 2000, 96, 149–158. [Google Scholar] [CrossRef]
- Sandayanaka, W.R.M.; Charles, J.G.; Allan, D.J. Aspects of the reproductive biology of Pseudaphycus maculipennis (Hym: Encyrtidae), a parasitoid of obscure mealybug, Pseudococcus viburni (Hem: Pseudococcidae). Biol. Control 2009, 48, 30–35. [Google Scholar] [CrossRef]
- Luppichini, P.; Ripa, R. Control Biológico del Chanchito Blanco de la vid con Parasitoides y Depredadores (Pseudococcus viburni); Boletín INIA Instituto de Investigaciones Agropecuarias: Chillán, Chile, 2010; Volume 204, pp. 25–31. [Google Scholar]
- Ripa, R.; Rojas, P. Chanchitos blancos en parronales; ¿Problema o Manejo? Investig. Prog. Agropecu. Platina 1990, 61, 18–26. [Google Scholar]
- Charles, J.G. Using parasitoids to infer a native range for the obscure mealybug, Pseudococcus viburni, in South America. BioControl 2011, 56, 155–161. [Google Scholar] [CrossRef]
- Jones, V.P.; Unruh, T.R.; Horton, D.R.; Mills, N.J.; Brunner, J.F.; Beers, E.H.; Shearer, P.W. Tree Fruit IPM programs in the western United States: The challenge of enhancing biological control through intensive management. Pest Manag. Sci. 2009, 65, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Weddle, P.W.; Welter, S.C.; Thomson, D. History of IPM in California pears—50 years of pesticide use and the transition to biologically intensive IPM. Pest Manag. Sci. 2009, 65, 1287–1292. [Google Scholar] [CrossRef]
- Walker, J.T.S.; Suckling, D.M.; Wearing, C.H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annu. Rev. Entomol. 2017, 62, 231–248. [Google Scholar] [CrossRef]
- Stark, J.D.; Vargas, R.; Banks, J.E. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J. Econ. Entomol. 2007, 100, 1027–1032. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A.d.F. Conservation biological control using selective insecticides—A valuable tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial artrhopods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Rothwangl, K.B.; Cloyd, R.A.; Wiedenmann, R.N. Effects of insect growth regulators on citrus mealybug parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae). J. Econ. Entomol. 2004, 97, 1239–1244. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Dickinson, A. Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). J. Econ. Entomol. 2006, 99, 1596–1604. [Google Scholar] [CrossRef]
- Mgocheki, N.; Addison, P. Effect of Contact Pesticides on Vine Mealybug Parasitoids, Anagyrus sp. near pseudococci (Girault) and Coccidoxenoides perminutus (Timberlake) (Hymenoptera: Encyrtidae). S. Afr. J. Enol. Vitic. 2009, 30, 110–116. [Google Scholar] [CrossRef]
- Suma, P.; Zappalà, L.; Mazzeo, G.; Siscaro, G. Lethal and sub-lethal effects of insecticides on natural enemies of citrus scale pests. BioControl 2009, 54, 651–661. [Google Scholar] [CrossRef]
- Karmakar, P.; Shera, P.S. Lethal and sublethal effects of insecticides used in cotton crop on the mealybug endoparasitoid Aenasius arizonensis. Int. J. Pest Manag. 2018, 66, 13–22. [Google Scholar] [CrossRef]
- Beers, E.H.; Martinez-Rocha, L.; Talley, R.R.; Dunley, J.E. Lethal, sublethal, and behavioral effects of sulfur-containing products in bioassays of three species of orchard mites. J. Econ. Entomol. 2009, 102, 324–335. [Google Scholar] [CrossRef]
- Desneux, N.; Denoyelle, R.; Kaiser, L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 2006, 65, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Desneux, N.; Siscaro, G.; Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 2012, 87, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Karamaouna, F.; Copland, M.J. Fitness and life history parameters of Leptomastix epona and Pseudaphycus flavidulus, two parasitoids of the obscure mealybug Pseudococcus viburni. Biocontrol 2009, 54, 65–76. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 3 January 2021).
- Wang, Q.L.; Liu, T.-X. Effects of Three Insect Growth Regulators on Encarsia formosa (Hymenoptera: Aphelinidae), an Endoparasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2016, 109, 2290–2297. [Google Scholar] [CrossRef]
- Stapel, J.O.; Cortesero, A.M.; Lewis, W.J. Disruptive sublethal effects of insecticides on biological control: Altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol. Control 2000, 17, 243–249. [Google Scholar] [CrossRef]
- Paine, T.D.; Hanlon, C.C.; Byrne, F.J. Potential risks of systemic imidacloprid to parasitoid natural enemies of a cerambycid attacking Eucalyptus. Biol. Control 2011, 56, 175–178. [Google Scholar] [CrossRef]
- González, R. Límites máximos de residuos de plaguicidas y fijación de carencias en el proceso exportador chileno. Red Agrícola 2009, 3, 15–31. [Google Scholar]
- Galietta, G.; Egaña, E.; Gemelli, F.; Maeso, D.; Casco, N.; Conde, P.; Nuñez, S. Pesticide dissipation curves in peach, pear and tomato crops in Uruguay. J. Environ. Sci. Health—Part B 2011, 46, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lazić, S.; Sunjka, D.; Vuković, S.; Petrović, S. Dissipation studies of acetamiprid in apples under field conditions. Acta Hortic. 2019, 1242, 171–175. [Google Scholar] [CrossRef]
- Shearer, P.W.; Amarasekare, K.G.; Castagnoli, S.P.; Beers, E.H.; Jones, V.P.; Mills, N.J. Large-plot field studies to assess impacts of newer insecticides on non-target arthropods in Western U.S. orchards. Biol. Control 2016, 102, 26–34. [Google Scholar] [CrossRef]
- Beers, E.H.; Mills, N.J.; Shearer, P.W.; Horton, D.R.; Milickzy, E.R.; Amarasekare, K.G.; Gontijo, L.M. Nontarget effects of orchard pesticides on natural enemies: Lessons from the field and laboratory. Biol. Control 2016, 102, 44–52. [Google Scholar] [CrossRef]
- Teder, T.; Knapp, M. Sublethal effects enhance detrimental impact of insecticides on non-target organisms: A quantitative synthesis in parasitoids. Chemosphere 2019, 214, 371–378. [Google Scholar] [CrossRef] [PubMed]
- De França, S.M.; Breda, M.O.; Barbosa, D.R.S.; Araujo, A.M.N.; Guedes, C.A. The Sublethal Effects of Insecticides in Insects. In Biological Control of Pest and Vector Insects, 1st ed.; Shields, V.D.C., Ed.; Intechopen: Towson, MD, USA, 2017. [Google Scholar] [CrossRef]
- Karaca, M.; Ince, A.G. Revisiting sustainable systems and methods in agriculture. In Sustainable Agriculture and the Environment, 1st ed.; Farooq, M., Gogoi, N., Pisante, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 195–246. [Google Scholar] [CrossRef]
Insecticide | Mealybug Density | Parasitism Rate | Emergence Rate | Clutch Size | |||
---|---|---|---|---|---|---|---|
Na | Mean ± SE | Nb | Mean ± SE | Nc | Mean ± SE | ||
Control | two | 54/66 | 0.82 ± 0.006 | 6/54 | 0.11 ± 0.002 | 26/6 | 4.33 ± 0.57 |
Buprofezin | 41/58 | 0.71 ± 0.008 | 10/41 | 0.18 ± 0.004 | 43/10 | 4.30 ± 0.26 | |
Pyriproxyfen | 43/56 | 0.77 ± 0.008 | 8/43 | 0.19 ± 0.004 | 38/8 | 4.75 ± 0.42 | |
Acetamiprid | 52/84 | 0.62 ± 0.006 | 10/52 | 0.19 ± 0.004 | 26/10 | 2.60 ± 0.20 | |
Control | four | 111/164 | 0.68 ± 0.003 | 14/111 | 0.13 ± 0.001 | 45/14 | 3.21 ± 0.16 |
Buprofezin | 134/216 | 0.62 ± 0.002 | 17/134 | 0.23 ± 0.002 | 74/17 | 4.35 ± 0.11 | |
Pyriproxyfen | 116/200 | 0.58 ± 0.002 | 17/116 | 0.15 ± 0.001 | 53/17 | 3.12 ± 0.10 | |
Acetamiprid | 89/152 | 0.59 ± 0.003 | 15/89 | 0.17 ± 0.002 | 34/15 | 2.27 ± 0.10 | |
Control | six | 116/162 | 0.72 ± 0.003 a | 20/116 | 0.17 ± 0.001 | 68/20 | 3.40 ± 0.12 |
Buprofezin | 148/216 | 0.69 ± 0.002 ab | 9/148 | 0.15 ± 0.001 | 50/9 | 5.56 ± 0.35 | |
Pyriproxyfen | 95/180 | 0.53 ± 0.003 bc | 2/95 | 0.02 ± 0.0002 | 9/2 | 4.50 ± 1.77 | |
Acetamiprid | 83/186 | 0.45 ± 0.003 c | 16/83 | 0.19 ± 0.002 | 56/16 | 3.50 ± 0.14 |
Insecticide | Mealybug Density | Development Time (days) | Longevity (days) | Sex Ratio (Males/Total) | ||
---|---|---|---|---|---|---|
Na | Mean ± SE | Mean ± SE | Nb | Mean ± SE | ||
Control | two | 26 | 20.83 ± 0.27 | 3.72 ± 0.54 | 24 | 0.16 ± 0.04 |
Buprofezin | 43 | 18.70 ± 0.09 | 4.13 ± 0.14 | 9 | 0.13 ± 0.03 | |
Pyriproxyfen | 38 | 19.72 ± 0.12 | 3.75 ± 0.22 | 25 | 0.34 ± 0.05 | |
Acetamiprid | 26 | 20.69 ± 0.17 | 3.71 ± 0.14 | 23 | 0.29 ± 0.04 | |
Control | four | 45 | 19.52 ± 0.09 | 4.64 ± 0.14 | 31 | 0.16 ± 0.01 |
Buprofezin | 74 | 20.06 ± 0.10 | 4.55 ± 0.10 | 46 | 0.45 ± 0.03 | |
Pyriproxyfen | 53 | 20.00 ± 0.12 | 4.10 ± 0.10 | 19 | 0.26 ± 0.02 | |
Acetamiprid | 34 | 20.30 ± 0.14 | 6.06 ± 0.25 | 22 | 0.24 ± 0.03 | |
Control | six | 68 | 21.60 ± 0.13 | 4.15 ± 0.09 | 53 | 0.26 ± 0.02 |
Buprofezin | 50 | 19.67 ± 0.24 | 4.90 ± 0.20 | 48 | 0.07 ± 0.01 | |
Pyriproxyfen | 9 | 20.00 ± 0.00 | 3.79 ± 0.86 | 8 | 0.00 ± 0.00 | |
Acetamiprid | 56 | 20.94 ± 0.13 | 5.16 ± 0.26 | 49 | 0.18 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radrigán-Navarro, C.; Fuentes-Contreras, E. Sublethal Effects of Insecticides on the Parasitism of Acerophagus flavidulus (Hymenoptera: Encyrtidae) Parasitoid of the Obscure Mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae). Sustainability 2024, 16, 1478. https://doi.org/10.3390/su16041478
Radrigán-Navarro C, Fuentes-Contreras E. Sublethal Effects of Insecticides on the Parasitism of Acerophagus flavidulus (Hymenoptera: Encyrtidae) Parasitoid of the Obscure Mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae). Sustainability. 2024; 16(4):1478. https://doi.org/10.3390/su16041478
Chicago/Turabian StyleRadrigán-Navarro, Catalina, and Eduardo Fuentes-Contreras. 2024. "Sublethal Effects of Insecticides on the Parasitism of Acerophagus flavidulus (Hymenoptera: Encyrtidae) Parasitoid of the Obscure Mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae)" Sustainability 16, no. 4: 1478. https://doi.org/10.3390/su16041478
APA StyleRadrigán-Navarro, C., & Fuentes-Contreras, E. (2024). Sublethal Effects of Insecticides on the Parasitism of Acerophagus flavidulus (Hymenoptera: Encyrtidae) Parasitoid of the Obscure Mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae). Sustainability, 16(4), 1478. https://doi.org/10.3390/su16041478