Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis
Abstract
:1. Introduction
1.1. P2P Networks
1.2. Energy Network Decentralisation and P2P Energy Trading Emergence
1.3. The Physical and Market Structure of P2P Trading Networks
1.4. The Global Trend of P2P Energy Trading Development
2. PESTLE Analysis
2.1. Energy Studies Using PESTLE Analysis
2.2. PESTLE Analysis for P2P Energy Trading
2.2.1. Political
2.2.2. Economic
2.2.3. Social
2.2.4. Technological
2.2.5. Legal
2.2.6. Environmental
3. Smart Incentives as a Solution
3.1. Trust-Based Incentive Solution
3.2. Auction-Based Incentive Mechanisms
3.3. Game Theory-Based Incentive Mechanisms
3.4. Efficient Reputation System
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buragohain, C.; Agrawal, D.; Suri, S. A game theoretic framework for incentives in P2P systems. In Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P2003) 0121562, Linköping, Sweden, 1–3 September 2003; pp. 48–56. [Google Scholar] [CrossRef]
- Chapelle, G.; Servigne, P. Mutual Aid: The Other Law of the Jungle; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Raymond, E.S. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary; O’Reilly Media Inc: Sebastopol, CA, USA, 2001. [Google Scholar]
- Washbourne, L. A survey of P2P network security. arXiv 2015, arXiv:1504.01358. [Google Scholar]
- Howe, A. Napster and Gnutella: A Comparison of Two Popular Peer-to-Peer Protocols; Universidade de Victoria: Victoria, BC, Canada, 2000; Available online: http://members.tripod.com/ahowe_ca/pdf/napstergnutella.pdf (accessed on 19 November 2022).
- Strahilevitz, L.J. Charismatic code, social norms, and the emergence of cooperation on the file-swapping networks. Va. Law Rev. 2003, 89, 505–596. [Google Scholar] [CrossRef]
- Palomar, E.; Estevez-Tapiador, J.M.; Hernandez-Castro, J.C.; Ribagorda, A. Security in P2P networks: Survey and research directions. In Emerging Directions in Embedded and Ubiquitous Computing; LNCS; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4097, pp. 183–192. [Google Scholar] [CrossRef]
- Kellerer, W.; Kunzmann, G.; Schollmeier, R.; Zöls, S. Structured peer-to-peer systems for telecommunications and mobile environments. AEU-Int. J. Electron. Commun. 2006, 60, 25–29. [Google Scholar] [CrossRef]
- Abdella, J.; Shuaib, K. Peer to peer distributed energy trading in smart grids: A survey. Energies 2018, 11, 1560. [Google Scholar] [CrossRef]
- Moenninghoff, S.C.; Wieandt, A. The Future of Peer-to-Peer Finance. Schmalenbachs Z. Für Betriebswirtschaftliche Forsch. 2013, 65, 466–488. [Google Scholar] [CrossRef]
- Golle, P.; Leyton-Brown, K.; Mironov, I.; Lillibridge, M. Incentives for sharing in peer-to-peer networks. In Proceedings of the 3rd ACM Conference on Electronic Commerce, Tampa, FL, USA, 14–17 October 2001; Volume 2232, pp. 75–87. [Google Scholar] [CrossRef]
- Marshall, J.P.; Rimini, F. Paradoxes of Property: Piracy and Sharing in Information Capitalism The Incoherence of Property. In A Reader on International Media Piracy; Amsterdam University Press: Amsterdam, The Netherlands, 2015; pp. 1–27. [Google Scholar]
- Asvanund, A.; Clay, K.; Krishnan, R.; Smith, M.D. An empirical analysis of network externalities in peer-to-peer music-sharing networks. Inf. Syst. Res. 2004, 15, 155–174. [Google Scholar] [CrossRef]
- Perera, R. The PESTLE Analysis; Nerdynaut: Avissawella, Sri Lanka, 2017. [Google Scholar]
- Azad, A.K.; Khan, M.M.K.; Ahasan, T.; Ahmed, S.F. Energy Scenario: Production, Consumption and Prospect of Renewable Energy in Australia. J. Power Energy Eng. 2014, 2, 19–25. [Google Scholar] [CrossRef]
- Bilan, Y.; Rabe, M.; Widera, K. Distributed Energy Resources: Operational Benefits. Energies 2022, 15, 8864. [Google Scholar] [CrossRef]
- Schwartz, L.; Wei, M.; Morrow, W.; Deason, J.; Schiller, S.R.; Leventis, G.; Smith, S.; Leow, W.L.; Levin, T.; Plotkin, S.; et al. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2017; Volume 77.
- Muqeet, H.A.; Ahmad, A.; Sajjad, I.A.; Liaqat, R.; Raza, A.; Iqbal, M.M. Benefits of Distributed Energy and Storage System in Prosumer Based Electricity Market. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 3–8. [Google Scholar] [CrossRef]
- Qi, M.; Yang, H.; Wang, D.; Luo, Y.; Zhang, S.; Liao, S. Prosumers Peer-to-Peer Transaction Decision Considering Network Constraints. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 643–647. [Google Scholar] [CrossRef]
- AGL Energy Limited. annual report 2020. 2020. Available online: https://www.agl.com.au/content/dam/digital/agl/documents/about-agl/investors/2020/2097212_annualreport.pdf (accessed on 28 November 2022).
- ARENA. AGL Virtual Power Plant—Australian Renewable Energy Agency (ARENA). Available online: https://arena.gov.au/projects/agl-virtual-power-plant/ (accessed on 28 November 2022).
- Khalilpour, K.R.; Vassallo, A. Cooperative Community Energy Networks BT—Community Energy Networks with Storage: Modeling Frameworks for Distributed Generation; Khalilpour, K.R., Vassallo, A., Eds.; Springer: Singapore, 2016; pp. 151–182. [Google Scholar] [CrossRef]
- Tuch, D.; Weier, B.; John, S. Apparatus and Method for Trading Electric Energy. U.S. Patent 6115698A, 5 September 2000. Available online: https://patents.google.com/patent/US6115698A/en (accessed on 28 November 2022).
- Tushar, W.; Chai, B.; Yuen, C.; Smith, D.B.; Wood, K.L.; Yang, Z.; Poor, H.V. Three-Party Energy Management with Distributed Energy Resources in Smart Grid. IEEE Trans. Ind. Electron. 2015, 62, 2487–2498. [Google Scholar] [CrossRef]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-salas, W.D. Peer-to-peer energy trading: A review of the literature. Appl. Energy 2021, 283, 116268. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Song, G.; Long, C. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community. Appl. Energy 2020, 278, 115671. [Google Scholar] [CrossRef]
- Australian Renewable Energy Agency. Peer-to-Peer Distributed Ledger Technology Assessment. In Virtual Peer-to-Peer Energy Trading Using Distributed Ledger Technology: Comprehensive Project Assessment Report; Australian Renewable Energy Agency: Sydney, Australia, 2017. [Google Scholar]
- Klein, L.P.; Krivoglazova, A.; Matos, L.; Landeck, J.; De Azevedo, M. A novel peer-to-peer energy sharing business model for the Portuguese energy market. Energies 2019, 13, 125. [Google Scholar] [CrossRef]
- Azim, M.I.; Pourmousavi, S.A.; Tushar, W.; Saha, T.K. Feasibility Study of Financial P2P Energy Trading in a Grid-tied Power Network. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; Volume 2019, pp. 1157–1161. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Smith, D.; Poor, H.V. Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Trans. Smart Grid 2020, 11, 3185–3200. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Saha, T.K.; Morstyn, T.; Chapman, A.C.; Jan, E.; Alam, M.; Hanif, S.; Poor, H.V. Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges. Appl. Energy 2021, 282, 116131. [Google Scholar] [CrossRef]
- Wörner, A.; Ableitner, L.; Meeuw, A.; Wortmann, F.; Tiefenbeck, V. Peer-to-peer energy trading in the real world: Market design and evaluation of the user value proposition. In Proceedings of the 40th International Conference on Information Systems (ICIS 2019), Munich, Germany, 15–18 December 2019. [Google Scholar]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Muhsen, H.; Allahham, A.; Al-halhouli, A.; Al-mahmodi, M. Business Model of Peer-to-Peer Energy Trading: A Review of Literature. Sustainability 2022, 14, 1616. [Google Scholar] [CrossRef]
- Lee, J.T.; Henriquez-Auba, R.; Poolla, B.K.; Callaway, D.S. Pricing and Energy Trading in Peer-to-Peer Zero Marginal-Cost Microgrids. IEEE Trans. Smart Grid 2022, 13, 702–714. [Google Scholar] [CrossRef]
- Akter, M.N.; Mahmud, M.A.; Oo, A.M.T. A hierarchical transactive energy management system for energy sharing in residential microgrids. Energies 2017, 10, 2098. [Google Scholar] [CrossRef]
- Azim, M.I.; Tushar, W.; Saha, T.K. Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers. Appl. Energy 2020, 263, 114687. [Google Scholar] [CrossRef]
- Lovins, A.B. Saving Gigabucks with Negawatts. 1985. Available online: https://www.osti.gov/biblio/5787710 (accessed on 29 November 2022).
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L. Designing microgrid energy markets A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- The Australian Renewable Energy Agency. Latrobe Valley Microgrid Feasibility Assessment; Australian Renewable Energy Agency: Sydney, Australia, 2021.
- Sonnen. SonnenCommunity | Sonnen. Available online: https://sonnen.de/sonnencommunity/ (accessed on 28 November 2022).
- Vandebron. Available online: https://vandebron.nl/ (accessed on 28 November 2022).
- Piclo. Available online: https://www.piclo.energy/ (accessed on 28 November 2022).
- Elsevier. Scopus. Available online: https://www.scopus.com/ (accessed on 20 December 2022).
- Engerati. Centrica Trials Blockchain in Cornwall Local Energy Market. 2018. Available online: https://www.engerati.com/energy-retail/centrica-trials-blockchain-in-cornwall-local-energy-market/ (accessed on 28 November 2022).
- Gunarathna, C.L.; Yang, R.J.; Jayasuriya, S.; Wang, K. Reviewing global peer-to-peer distributed renewable energy trading projects. Energy Res. Soc. Sci. 2022, 89, 102655. [Google Scholar] [CrossRef]
- Park, C.; Yong, T. Comparative review and discussion on P2P electricity trading. Energy Proc. 2017, 128, 3–9. [Google Scholar] [CrossRef]
- Power Ledger. Available online: https://www.powerledger.io/ (accessed on 28 November 2022).
- Junlakarn, S.; Kokchang, P.; Audomvongseree, K. Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand. Energies 2022, 15, 1229. [Google Scholar] [CrossRef]
- Javed, H.; Irfan, M.; Shehzad, M.; Muqeet, H.A.; Akhter, J.; Dagar, V.; Guerrero, J.M. Recent Trends, Challenges, and Future Aspects of P2P Energy Trading Platforms in Electrical-Based Networks Considering Blockchain Technology: A Roadmap Toward Environmental Sustainability. Front. Energy Res. 2022, 10, 134. [Google Scholar] [CrossRef]
- Simões, E.N. Competitive Intelligence Algorithm for PESTLE Analysis: A Decision Support System Application Module. Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2019; p. 69. Available online: https://run.unl.pt/bitstream/10362/94985/1/TGI0290.pdf (accessed on 27 November 2022).
- Agyekum, E.B.; Amjad, F.; Mohsin, M.; Ansah, M.N.S. A bird’s eye view of Ghana’s renewable energy sector environment: A Multi-Criteria Decision-Making approach. Util. Policy 2021, 70, 101219. [Google Scholar] [CrossRef]
- Thomas, P.J.M.; Sandwell, P.; Williamson, S.J.; Harper, P.W. A PESTLE analysis of solar home systems in refugee camps in Rwanda. Renew. Sustain. Energy Rev. 2021, 143, 110872. [Google Scholar] [CrossRef]
- Zalengera, C.; Blanchard, R.E.; Eames, P.C.; Juma, A.M.; Chitawo, M.L.; Gondwe, K.T. Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy. Renew. Sustain. Energy Rev. 2014, 38, 335–347. [Google Scholar] [CrossRef]
- Baldwin, E.; Carley, S.; Nicholson-Crotty, S. Why do countries emulate each others’ policies? A global study of renewable energy policy diffusion. World Dev. 2019, 120, 29–45. [Google Scholar] [CrossRef]
- Renewable Energy Target. Available online: https://www.cleanenergycouncil.org.au/advocacy-initiatives/renewable-energy-target (accessed on 28 November 2021).
- Clean Power Plan. Available online: https://archive.epa.gov/epa/cleanpowerplan/clean-power-plan-final-rule-regulatory-impact-analysis.html (accessed on 28 November 2021).
- Zhou, Y.; Wu, J.; Long, C.; Ming, W. State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading. Engineering 2020, 6, 739–753. [Google Scholar] [CrossRef]
- Diestelmeier, L. Changing power: Shifting the role of electricity consumers with blockchain technology—Policy implications for EU electricity law. Energy Policy 2019, 128, 189–196. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Xia, J.; Zhang, W.; Zhang, K. Economic assessment of the peer-to-peer trading policy of distributed PV electricity: A case study in China. Sustainability 2020, 12, 5235. [Google Scholar] [CrossRef]
- Zhu, S.; Song, M.; Lim, M.K.; Wang, J.; Zhao, J. The development of energy blockchain and its implications for China’s energy sector. Resour. Policy 2020, 66, 101595. [Google Scholar] [CrossRef]
- Mohsenian-rad, H.; Saha, T.; Poor, H.V.; Wood, K.L. Networks via Peer-to-Peer. IEEE Signal Process. Mag. 2018, 35, 90–111. [Google Scholar]
- de Almeida, L.; Klausmann, N.; van Soest, H.; Cappelli, V. Peer-to-Peer Trading and Energy Community in the Electricity Market—Analysing the Literature on Law and Regulation and Looking Ahead to Future Challenges. Robert Schuman Centre for Advanced Studies Research Paper No. RSCAS, 35. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Heng, Y.B.; Ramachandaramurthy, V.K.; Verayiah, R.; Walker, S.L. Developing Peer-to-Peer (P2P) Energy Trading Model for Malaysia: A Review and Proposed Implementation. IEEE Access 2022, 10, 33183–33199. [Google Scholar] [CrossRef]
- Schneiders, A.; Fell, M.J.; Nolden, C. Peer-to-peer electricity trading and the sharing economy: Social, markets and regulatory perspectives. Energy Sources Part B Econ. Plan. Policy 2022, 17, 2050849. [Google Scholar] [CrossRef]
- Judge, M.A.; Khan, A.; Manzoor, A.; Khattak, H.A. Overview of smart grid implementation: Frameworks, impact, performance and challenges. J. Energy Storage 2022, 49, 104056. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Tanaka, K.; Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renew. Sustain. Energy Rev. 2019, 107, 200–211. [Google Scholar] [CrossRef]
- Elams, M. “Sun Tax”: Outcry over Plans to Charge Families for Feeding Their Excess Solar Power into the Grid. Australia. 2023. Available online: https://thenewdaily.com.au/finance/finance-news/2023/02/24/sun-tax-solar/ (accessed on 4 March 2023).
- Langdon, R.J.; Yousefi, P.D.; Relton, C.L.; Suderman, M.J. Empowering Local Electricity Markets: A survey study from Switzerland, Norway, Spain and Germany. Clin. Epigenetics 2017. [Google Scholar] [CrossRef]
- Ableitner, L.; Tiefenbeck, V.; Meeuw, A.; Wörner, A.; Fleisch, E.; Wortmann, F. User behavior in a real-world peer-to-peer electricity market. Appl. Energy 2020, 270, 115061. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef]
- Wu, W.; Quezada, G.; Schleiger, E.; Bratanova, A.; Graham, P.; Spak, B. The Future of Peer To Peer Trading of Distributed; CSIRO: Brisbane, Australia, 2019.
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef] [PubMed]
- IEA Coal 2022. 2022. Available online: https://www.iea.org/reports/coal-2022 (accessed on 7 January 2023).
- Mujeeb, A.; Hong, X.; Wang, P. Analysis of Peer-to-Peer (P2P) Electricity Market and Piclo’s Local Matching Trading Platform in UK. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 619–624. [Google Scholar] [CrossRef]
- Khan, I. Drivers, enablers, and barriers to prosumerism in Bangladesh: A sustainable solution to energy poverty? Energy Res. Soc. Sci. 2019, 55, 82–92. [Google Scholar] [CrossRef]
- Spiliopoulos, N.; Sarantakos, I.; Nikkhah, S.; Gkizas, G.; Giaouris, D.; Taylor, P.; Rajarathnam, U.; Wade, N. Peer-to-peer energy trading for improving economic and resilient operation of microgrids. Renew. Energy 2022, 199, 517–535. [Google Scholar] [CrossRef]
- Albayati, H.; Kim, S.K.; Rho, J.J. Accepting financial transactions using blockchain technology and cryptocurrency: A customer perspective approach. Technol. Soc. 2020, 62, 101320. [Google Scholar] [CrossRef]
- Borges, C.E.; Kapassa, E.; Touloupou, M.; Macón, J.L.; Casado-Mansilla, D. Blockchain application in P2P energy markets: Social and legal aspects. Conn. Sci. 2022, 34, 1066–1088. [Google Scholar] [CrossRef]
- Mey, F.; Diesendorf, M.; MacGill, I. Can local government play a greater role for community renewable energy? A case study from Australia. Energy Res. Soc. Sci. 2016, 21, 33–43. [Google Scholar] [CrossRef]
- Ecker, F.; Spada, H.; Hahnel, U.J.J. Independence without control: Autarky outperforms autonomy benefits in the adoption of private energy storage systems. Energy Policy 2018, 122, 214–228. [Google Scholar] [CrossRef]
- Feldman, M.; Lai, K.; Stoica, I.; Chuang, J. Robust incentive techniques for peer-to-peer networks. In Proceedings of the 5th ACM Conference on Electronic Commerce, New York, NY, USA, 17–20 May 2004; Volume 5, pp. 102–111. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Informatics 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Shneidman, J.; Parkes, D.C. Rationality and self-interest in peer to peer networks. In Proceedings of the Second International Workshop, IPTPS 2003, Berkeley, CA, USA, 21–22 February 2003; Volume 2735, pp. 139–148. [Google Scholar] [CrossRef]
- Ma, R.T.B.; Lee, S.C.M.; Lui, J.C.S.; Yau, D.K.Y. A game theoretic approach to provide incentive and service differentiation in P2P networks. Perform. Eval. Rev. 2004, 32, 189–198. [Google Scholar] [CrossRef]
- Trabish, H.K. NV Energy CEO: Solar Has Gotten a “Free Ride” on the Grid. 2013. Available online: https://www.greentechmedia.com/articles/read/a-conversation-with-edison-electric-institute-chair-michael-yackira (accessed on 17 January 2023).
- Vandebron to Charge Customers Fees for Surplus Solar Power. Dutch News, 2023. Available online: https://www.dutchnews.nl/2023/08/vandebron-to-charge-customers-fees-for-surplus-solar-power/ (accessed on 10 October 2023).
- Kla, A.B. Regulating the energy “free riders”. Bost. Univ. Law Rev. 2020, 100, 581–649. [Google Scholar]
- Greco, G.M.; Floridi, L. The tragedy of the digital commons. Ethics Inf. Technol. 2004, 6, 73–81. [Google Scholar] [CrossRef]
- Wang, G.; Chao, Y.; Cao, Y.; Jiang, T.; Han, W.; Chen, Z. A comprehensive review of research works based on evolutionary game theory for sustainable energy development. Energy Rep. 2022, 8, 114–136. [Google Scholar] [CrossRef]
- Lloyd, W.F. Two Lectures on the Checks to Population: Delivered Before the University of Oxford, in Michaelmas Term 1832; S. Collingewood: Collingwood, Australia, 1833; Available online: https://books.google.com.au/books?id=kQt9Kg-chXAC (accessed on 7 January 2023).
- PeerApp. PeerApp White Paper Comparing P2P Solutions. March 2007. Available online: https://www.tlm.unavarra.es/pluginfile.php/24844/mod_assign/intro/A03-Comparing%20P2P%20Solutions.pdf (accessed on 10 December 2022).
- Tang, Y.B.; Wang, H.M.; Dou, W. Trust based incentive in P2P network. In Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business, Beijing, China, 13–15 September 2004; pp. 302–305. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Hardin, G. Extensions of “the tragedy of the commons”. Science 1998, 280, 682–683. [Google Scholar] [CrossRef]
- Anderson, W.L. Boom Bust. Foundation for Economic Education. 1983. Available online: https://fee.org/articles/boom-bust/ (accessed on 7 January 2023).
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Zia, M.F.; Benbouzid, M.; Elbouchikhi, E.; Muyeen, S.M.; Techato, K.; Guerrero, J.M. Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access 2020, 8, 19410–19432. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352. [Google Scholar] [CrossRef]
- Kirli, D.; Couraud, B.; Robu, V.; Salgado-Bravo, M.; Norbu, S.; Andoni, M.; Antonopoulos, I.; Negrete-Pincetic, M.; Flynn, D.; Kiprakis, A. Smart contracts in energy systems: A systematic review of fundamental approaches and implementations. Renew. Sustain. Energy Rev. 2022, 158, 112013. [Google Scholar] [CrossRef]
- Inês, C.; Guilherme, P.L.; Esther, M.G.; Swantje, G.; Stephen, H.; Lars, H. Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Campodónico, H.; Carrera, C. Energy transition and renewable energies: Challenges for Peru. Energy Policy 2022, 171, 113261. [Google Scholar] [CrossRef]
- Schneiders, A.; Shipworth, D. Community energy groups: Can they shield consumers from the risks of using blockchain for peer-to-peer energy trading? Energies 2021, 14, 3569. [Google Scholar] [CrossRef]
- Chiarini, A.; Compagnucci, L. Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges. Sustainability 2022, 14, 16305. [Google Scholar] [CrossRef]
- Kitagawa, K.; Johnson-laird, A.; Loren, L.P.; Miller, J.S. Intellectual Property Law: Cases & Materials; Semaphore Press: Oregon City, OR, USA, 2012; Volume 1, pp. 1–10. [Google Scholar]
- Coutinho, K.; Wongthongtham, P.; Abu-Salih, B.; Saleh, M.A.A.; Khairwal, N.K. Carbon emission and cost of blockchain mining in a case of peer-to-peer energy trading. Front. Built Environ. 2022, 8, 945944. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Huda, N.; Behnia, M. Photovoltaic waste assessment: Forecasting and screening of emerging waste in Australia. Resour. Conserv. Recycl. 2019, 146, 192–205. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Q.; Zhou, B. TTEM: An effective trust-based topology evolution mechanism for P2P networks. J. Commun. 2008, 3, 3–10. [Google Scholar] [CrossRef]
- Kim, O.T.T.; Le, T.H.T.; Shin, M.J.; Nguyen, V.; Han, Z.; Hong, C.S. Distributed Auction-Based Incentive Mechanism for Energy Trading between Electric Vehicles and Mobile Charging Stations. IEEE Access 2022, 10, 56331–56347. [Google Scholar] [CrossRef]
- Chen, S.; Shen, Z.; Zhang, L.; Yan, Z.; Li, C.; Zhang, N.; Wu, J. A trusted energy trading framework by marrying blockchain and optimization. Adv. Appl. Energy 2021, 2, 100029. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Javaid, N.; Almogren, A.; Ahmed, A.; Gulfam, S.M.; Radwan, A. A Two-Stage Privacy Preservation and Secure Peer-to-Peer Energy Trading Model Using Blockchain and Cloud-Based Aggregator. IEEE Access 2021, 9, 143121–143137. [Google Scholar] [CrossRef]
- Ji, G.; Yao, Z.; Zhang, B.; Li, C. A Reverse Auction-Based Incentive Mechanism for Mobile Crowdsensing. IEEE Internet Things J. 2020, 7, 8238–8248. [Google Scholar] [CrossRef]
- Huang, J.; Han, Z.; Chiang, M.; Poor, H.V. Auction-based resource allocation for cooperative communications. IEEE J. Sel. Areas Commun. 2008, 26, 1226–1237. [Google Scholar] [CrossRef]
- Thakur, S.; Hayes, B.P.; Breslin, J.G. Distributed double auction for peer to peer energy trade using blockchains. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, J. Future generation communications with game strategies: A comprehensive survey. Comput. Commun. 2022, 192, 1–32. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Lieu, J. Design of the incentive mechanism in electricity auction market based on the signaling game theory. Energy 2010, 35, 1813–1819. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Chen, Q.; Wang, X.; Li, T.; Tan, C. Energy trading scheme based on consortium blockchain and game theory. Comput. Stand. Interfaces 2023, 84, 103699. [Google Scholar] [CrossRef]
- Long, C.; Zhou, Y.; Wu, J. A game theoretic approach for peer to peer energy trading. Energy Proc. 2019, 159, 454–459. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Li, Y.; Jiang, L.; Long, Y.; Deng, Y.; Zhou, Y.; Nakanishi, Y. Modelling and analysis of a two-level incentive mechanism based peer-to-peer energy sharing community. Int. J. Electr. Power Energy Syst. 2021, 133, 107202. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.; Qin, J.; Tang, W.; Rajagopal, R.; Xia, Q.; Kang, C. Incentive mechanism for sharing distributed energy resources. J. Mod. Power Syst. Clean Energy 2019, 7, 837–850. [Google Scholar] [CrossRef]
- Gandiglio, M.; Marocco, P.; Bianco, I.; Lovera, D.; Blengini, G.A.; Santarelli, M. Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community. Int. J. Hydrogen Energy 2022, 47, 32822–32834. [Google Scholar] [CrossRef]
Aspect | Challenge | Suggestions |
---|---|---|
Political | Climate change policies Renewable energy policies Shifts in the roles of actors Current energy system paradigm Data ownership and network security | Formulate experimental and provisional policies. Make sure that an energy regulatory sandbox is correctly built. |
Economic | Initial investment cost Fairness in cost and profit distribution Stable economy Market reliability Energy poverty | Form an energy-sharing pricing model Study energy poverty in P2P energy Build a stable economic environment and a user-friendly renewable energy subsidy policy |
Social | Demographics of the target society Trust, social acceptance and social barriers Introducing new concepts and technologies Existing disputes Co-existence of stakeholders Free-rider effect Tragedy of commons effect | Further research is required in suggested policies, governing laws, customer views, corporate interference and culture and organisation of electricity use. Design operation modes Manage trading platform Study stakeholder relationships Consultation with users and attempts to build local management. Increase awareness of ‘commoning’ practices. |
Technological | Investment and maintenance Network security System behaviour prediction Degree of decentralisation Determination of appropriate types Network capacity, stability and reliability Blockchain challenges (scalability and privacy) | Virtual layer: study related mechanisms. Physical layer: study controlling strategy and consider power losses consider the energy consumption Blockchain: consider the desired transparency, scalability, decentralisation, security, and lack of gaming the systems. |
Legal | Legislation uncertainty Legal framework Data privacy Systematic risk in smart contract | Promote legislative progress Regulations which allow smaller and local systems to work. |
Environmental | Fossil-fuel based distributed generation systems Material intensity | Raise public awareness Conduct LCA assessment Enforce recyclability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Tavakoli, S.; Khalilpour, K.; Voinov, A.; Marshall, J.P. Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis. Sustainability 2024, 16, 1517. https://doi.org/10.3390/su16041517
Sun Z, Tavakoli S, Khalilpour K, Voinov A, Marshall JP. Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis. Sustainability. 2024; 16(4):1517. https://doi.org/10.3390/su16041517
Chicago/Turabian StyleSun, Zheyuan, Sara Tavakoli, Kaveh Khalilpour, Alexey Voinov, and Jonathan Paul Marshall. 2024. "Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis" Sustainability 16, no. 4: 1517. https://doi.org/10.3390/su16041517
APA StyleSun, Z., Tavakoli, S., Khalilpour, K., Voinov, A., & Marshall, J. P. (2024). Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis. Sustainability, 16(4), 1517. https://doi.org/10.3390/su16041517