Temporal Occurrence, Abundance, and Biodiversity of Bees on Weed-Infested Turfgrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Identification
2.4. Statistical Analyses
3. Results
3.1. Sampling in 2021
3.2. Sampling in 2022
3.3. Sampling in 2023
3.4. Bees and Weed Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lander, T. Network modelling, citizen science and targeted interventions to predict, monitor and reverse bee decline. Plants People Planet 2019, 2, 111–120. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef]
- Wolfen, J.; Watkins, E.; Lane, I.; Portman, Z.M.; Spivak, M. Floral enhancement of turfgrass lawns benefits wild bees and honey bees (Apis mellifera). Urban Ecosyst. 2023, 26, 361–375. [Google Scholar] [CrossRef]
- US Census. 2020 Census Urban Areas Facts. United States Census Bureau. 2023. Available online: https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2020-ua-facts.html (accessed on 11 February 2024).
- Kane, S.P.; Wolfe, K.L. Economic Contribution of Turfgrass Production, Ornamental Horticulture, Landscape Services, and Related Industry in the Georgia Economy, 2010. University of Georgia Center for Agribusiness & Economic Development. 2012. Available online: https://esploro.libs.uga.edu/esploro/outputs/report/Economic-contribution-of-turfgrass-production-ornamental/9949316486902959?institution=01GALI_UGA (accessed on 11 February 2024).
- Chawla, S.L.; Agnihotri, R.; Patel, M.A.; Patil, S.; Shah, H.P. Turfgrass: A Billion Dollar Industry. National Conference on Floriculture for Rural and Urban Prosperity in the Scenerio of Climate Change-2018. Available online: https://www.researchgate.net/profile/Roshni-Agnihotri-2/publication/324483293_Turfgrass_A_Billion_Dollar_Industry/links/5acf88c5aca2723a33454f73/Turfgrass-A-Billion-Dollar-Industry.pdf (accessed on 11 February 2024).
- Brosnan, J.T.; Chandra, A.; Gaussoin, R.E.; Kowalewski, A.; Leinauer, B.; Rossi, F.S.; Soldat, D.J.; Stier, J.C.; Unruh, B.J. A justification for continued management of turfgrass during economic contraction. Agri. Environ. Lett. 2020, 5, e20033. [Google Scholar] [CrossRef]
- Tonietto, R.; Fant, J.; Ascher, J.; Ellis, K.; Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 2011, 103, 102–108. [Google Scholar] [CrossRef]
- Joseph, S.V.; Harris-Shultz, K.; Jespersen, D.; Vermeer, B.; Julian, C. Incidence of bees and wasps in centipedegrass lawns in Georgia. J. Entomol. Sci. 2020, 55, 547–559. [Google Scholar] [CrossRef]
- Jones, T. Why is the lawn buzzing? Biodivers. Data J. 2014, e1101. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.V.; Harris-Shultz, K.; Jespersen, D. Evidence of pollinators foraging on centipedegrass inflorescences. Insects 2020, 11, 795. [Google Scholar] [CrossRef]
- Joseph, S.V.; Hardin, C.B. Bees forage on bahiagrass spikelets. Fla. Entomol. 2022, 105, 95–98. [Google Scholar] [CrossRef]
- Potter, D.A.; Braman, S.K. Ecology and management of turfgrass insects. Annu. Rev. Entomol. 1991, 36, 383–406. [Google Scholar] [CrossRef]
- Larson, J.L.; Kesheimer, A.J.; Potter, D.A. Pollinator assemblages on dandelions and white clover in urban and suburban lawns. J. Insect Conserv. 2014, 18, 863–873. [Google Scholar] [CrossRef]
- Lerman, S.B.; Milam, J. Bee fauna and flora abundance within lawn-dominated suburban yards in Springfield, MA. Ann. Entomol. Soc. Am. 2016, 109, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Godara, N.; Williamson, R.C.; Koo, D.; Askew, S.D. Effect of herbicides on pollinator foraging behavior and flower morphology in white clover (Trifolium repens L.)—Infested turfgrass. Weed Technol. 2023, 37, 221–225. [Google Scholar] [CrossRef]
- Wilson, J.S.; Carril, O.M. Common Bees of Eastern North America (Princeton Field Guides); Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Colla, S.; Richardson, L.; Williams, P. Bumble Bees of the Eastern United States. FS-972. 2011. Available online: https://www.xerces.org/publications/identification-and-monitoring-guides/bumble-bees-of-eastern-united-states (accessed on 11 February 2024).
- Discover Life. Sam Houston State University, Texas. 2023. Available online: https://www.discoverlife.org/ (accessed on 11 February 2024).
- Murphy, T.R. Weeds of Southern Turfgrasses (Golf Courses, Lawns, Roadsides, Recreational Areas, Commercial Sod); University of Florida IFAS Extension: Gainesville, FL, USA, 2004. [Google Scholar]
- SAS Institute. Statistical Analysis System, Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Pleasants, J.M. Bumblebee response to variation in nectar availability. Ecology 1981, 62, 1648–1661. [Google Scholar] [CrossRef]
- Tew, N.E.; Memmott, J.; Vaughan, I.P.; Bird, S.; Stone, G.N.; Potts, S.G.; Baldock, C.R. Quantifying nectar production by flowering plants in urban and rural landscapes. J. Ecol. 2021, 109, 1747–1757. [Google Scholar] [CrossRef]
- Sincik, M.; Acikgoz, E. Effects of white clover inclusion on turf characteristics, nitrogen fixation, and nitrogen transfer from white clover to grass species in turf mixtures. Commun. Soil Sci. Plant Anal. 2007, 38, 1861–1877. [Google Scholar] [CrossRef]
- Cane, J.H. Landscaping pebbles attract nesting by the native ground-nesting bee Halictus rubicundus (Hymenoptera: Halictidae). Apidologie 2015, 46, 728–734. [Google Scholar] [CrossRef]
- Packer, L.; Sampson, B.J.; Lockerbie, C.; Jessome, V. Nest architecture and brood mortality in four species of sweat bee (Hymenoptera, Halictidae) from Cape Breton Island Nova Scotia, Canada. Can. J. Zool. 1989, 67, 2864–2870. [Google Scholar] [CrossRef]
- Soucy, S.L. Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Ann. Entomol. Soc. Am. 2002, 95, 57–65. [Google Scholar] [CrossRef]
- Brünnert, U.; Kelber, A.; Zeil, J. Ground-nesting bees determine the location of their nest relative to a landmark by other than angular size cues. J. Comp. Physiol. A 1994, 175, 363–369. [Google Scholar] [CrossRef]
- Deeksha, M.G.; Khan, M.S.; Kumar, G.; Udikeri, A. Pollination interaction with selected ‘weeds’ flora, Asteraceae, in the context of land use. Orient. Insects 2023, 57, 935–950. [Google Scholar] [CrossRef]
- Kleiman, B. Weeds enhance insect diversity and abundance and may improve soil conditions in mango cultivation of south Florida. Insects 2023, 14, 65–83. [Google Scholar] [CrossRef]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Impacts of a neonicotinoid, neonicotinoid-pyrethroid premix, and anthranilic diamide insecticide on four species of turf-inhabiting beneficial insects. Ecotoxicology 2014, 23, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Gels, J.A.; Held, D.W.; Potter, D.A. Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J. Econ. Entomol. 2002, 95, 722–728. [Google Scholar] [CrossRef]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 2013, 8, e66375. [Google Scholar] [CrossRef]
- NTEP. Mean Turfgrass Quality and Other Ratings of Cool-Season Cultivars in the 2015 National Low Input Cool-Season Test at Columbia, MO. National Turfgrass Evaluation Program. 2019. Available online: https://ntep.org/data/cs15l/cs15l_20-8/cs15lmo119t.txt (accessed on 11 February 2024).
- Potter, D.A.; Redmond, C.T.; McNamara, T.D.; Munshaw, G.C. Dwarf white clover supports pollinators, augments nitrogen in clover–turfgrass lawns, and suppresses root-feeding grubs in monoculture but not in mixed swards. Sustainability 2021, 13, 11801. [Google Scholar] [CrossRef]
- Roulston, T.A.H.; Cane, J.H.; Buchmann, S.L. What governs protein content of pollen Pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol. Monogr. 2000, 70, 617–643. [Google Scholar] [CrossRef]
- Inouye, D.W. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 1980, 45, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; Stone, G.N.; et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B 2015, 282, 20142849. [Google Scholar] [CrossRef]
Year | Plot (Replication) | GPS Coordinates |
---|---|---|
2021/2022 | 1 | 33.263109, −84.281487 |
2021/2022 | 2 | 33.263454, −84.281894 |
2021/2022 | 3 | 33.261307, −84.292106 |
2021/2022 | 4 | 33.262864, −84.283794 |
2023 | 1 | 33.264607, −84.284575 |
2023 | 2 | 33.265807, −84.285111 |
2023 | 3 | 33.263947, −84.288722 |
2023 | 4 | 33.264306, −84.292841 |
Family | Species | Sample Years | ||
---|---|---|---|---|
2021 | 2022 | 2023 | ||
Andrenidae | ||||
Calliopsini | Calliopsis andreniformis | 2 | 4 | 14 |
Panurginus | Panurginus polytrichus | 0 | 0 | 2 |
Apidae | ||||
Apini | Apis mellifera | 39 | 0 | 57 |
Bombini | Bombus bimaculatus | 7 | 1 | 1 |
Bombus griseocollis | 20 | 4 | 11 | |
Bombus impatiens | 34 | 28 | 24 | |
Bombus pensylvanicus | 1 | 0 | 0 | |
Ceratinini | Ceratina strenua | 0 | 1 | 0 |
Epeolini | Epeolus zonatus | 1 | 0 | 0 |
Eucerini | Melissodes comotodes | 0 | 1 | 0 |
Melissodes comptoides | 0 | 0 | 1 | |
Melissodes denticulatus | 2 | 1 | 0 | |
Melissodes trinodis | 0 | 6 | 1 | |
Svastra obliqua | 0 | 1 | 0 | |
Emphorini | Ptilothrixbombiformis | 0 | 1 | 0 |
Xylocopini | Xylocopa virginica | 0 | 1 | 0 |
Halictidae | ||||
Augochlorini | Augochlora pura | 0 | 1 | 0 |
Augochlorella aurata | 0 | 1 | 0 | |
Halictini | Agapostemon virenscens | 6 | 2 | 5 |
Halictus confusus | 0 | 0 | 1 | |
Halictus ligatus or Halictus poeyi * | 10 | 9 | 7 | |
Halictus rubicundus | 4 | 2 | 3 | |
Lasioglossum spp. | 1 | 144 | 74 | |
Megachilidae | ||||
Osmiini | Osmia caerulescens | 0 | 0 | 1 |
Osmia lignaria | 0 | 0 | 1 | |
Osmia obliqua | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaiswal, A.; Joseph, S.V. Temporal Occurrence, Abundance, and Biodiversity of Bees on Weed-Infested Turfgrass. Sustainability 2024, 16, 1598. https://doi.org/10.3390/su16041598
Jaiswal A, Joseph SV. Temporal Occurrence, Abundance, and Biodiversity of Bees on Weed-Infested Turfgrass. Sustainability. 2024; 16(4):1598. https://doi.org/10.3390/su16041598
Chicago/Turabian StyleJaiswal, Aastha, and Shimat V. Joseph. 2024. "Temporal Occurrence, Abundance, and Biodiversity of Bees on Weed-Infested Turfgrass" Sustainability 16, no. 4: 1598. https://doi.org/10.3390/su16041598
APA StyleJaiswal, A., & Joseph, S. V. (2024). Temporal Occurrence, Abundance, and Biodiversity of Bees on Weed-Infested Turfgrass. Sustainability, 16(4), 1598. https://doi.org/10.3390/su16041598