Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis
Abstract
:1. Introduction
2. Overview of the Study Area
2.1. Geographic Feature
2.2. Hydrology and Meteorology
2.3. Hydrogeological Condition
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. The Partition Method of Cumulative Frequency Curve
4. Results
4.1. Hydrogeochemical Distribution of Samples
4.2. Spatial Distribution of Arsenic
4.3. Cumulative Frequency Curves and Distribution Characteristics of Ion Ratios
4.3.1. (HCO3− + CO32−)/SO42−
4.3.2. Ca2+/(HCO3− + CO32−)
4.3.3. Ca2+/Mg2+
4.3.4. Na+/Ca2+
5. Discussion
5.1. Relationship between Different Ion Ratios and Spatial Distribution of Arsenic
5.2. Hydrogeochemical Processes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niazi, N.K.; Bibi, I.; Fatimah, A.; Shahid, M.; Javed, M.T.; Wang, H.; Ok, Y.S.; Bashir, S.; Murtaza, B.; Saqib, Z.A. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. Int. J. Phytoremediat. 2017, 19, 670–678. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.D.; Wang, H.; Shaheen, S.M.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef]
- Chen, Y.; Ahsan, H. Cancer burden from arsenic in drinking water in Bangladesh. Am. J. Public Health 2004, 94, 741–744. [Google Scholar] [CrossRef]
- Wu, R.H.; Xu, L.Q.; Polya, D.A. Groundwater Arsenic-Attributable Cardiovascular Disease (CVD) Mortality Risks in India. Water 2021, 13, 2232. [Google Scholar] [CrossRef]
- Sheng, D.; Wen, X.; Wu, J.; Wu, M.; Yu, H.J.; Zhang, C.Q. Comprehensive Probabilistic Health Risk Assessment for Exposure to Arsenic and Cadmium in Groundwater. Environ. Manag. 2021, 67, 779–792. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Benner, S.G.; Fendorf, S. Arsenic in South Asia Groundwater. Geogr. Compass 2010, 4, 1532–1552. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S. Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Fryar, A.E.; Eastridge, E.M.; Nally, R.S.; Chakraborty, M.; Scanlon, B.R. Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Sci. Total Environ. 2018, 645, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, D.; Singh, S.K.; Rahman, M.M.; Dutta, R.N.; Mukherjee, S.C.; Pati, S.; Kar, P.B. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger. Int. J. Environ. Res. Public Health 2018, 15, 180. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.E.; Fahad, S.; Shao, Z.F.; Sarven, M.S.; Khan, I.A.; Alam, M.; Saeed, M.; Ullah, H.; Adnan, M.; Saud, S.; et al. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. J. Environ. Manag. 2020, 262, 110318. [Google Scholar] [CrossRef] [PubMed]
- Tareq, S.M.; Safiullah, S.; Anawar, H.M.; Rahman, M.M.; Ishizuka, T. Arsenic pollution in groundwater: A self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. Sci. Total Environ. 2003, 313, 213–226. [Google Scholar] [CrossRef]
- Neidhardt, H.; Rudischer, S.; Eiche, E.; Schneider, M.; Stopelli, E.; Duyen, V.T.; Trang PT, K.; Viet, P.H.; Neumann, T.; Berg, M. Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. J. Hazard. Mater. 2021, 411, 125128. [Google Scholar] [CrossRef]
- Stopelli, E.; Duyen, V.T.; Mai, T.T.; Trang PT, K.; Viet, P.H.; Lightfoot, A.; Kipfer, R.; Schneider, M.; Eiche, E.; Kontny, A.; et al. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Sci. Total Environ. 2020, 717, 137143. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Cao, W.; Li, Z.Y.; Pan, D.; Wang, S. Identification of arsenic spatial distribution by hydrogeochemical processes represented by different ion ratios in the Hohhot Basin, China. Environ. Sci. Pollut. Res. 2023, 30, 2607–2621. [Google Scholar] [CrossRef]
- Cao, W.G.; Guo, H.M.; Zhang, Y.L.; Ma, R.; Li, Y.S.; Dong, Q.Y.; Li, Y.J.; Zhao, R.K. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China. Sci. Total Environ. 2018, 613, 958–968. [Google Scholar] [CrossRef]
- Ke, T.T.; Zhang, D.; Guo, H.M.; Xiu, W.; Zhao, Y. Geogenic arsenic and arsenotrophic microbiome in groundwater from the Hetao Basin. Sci. Total Environ. 2022, 852, 158549. [Google Scholar] [CrossRef]
- Guo, H.M.; Wen, D.G.; Liu, Z.Y.; Jia, Y.F.; Guo, Q. A review of high arsenic groundwater in mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Appl. Geochem. 2014, 41, 196–217. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Rosas-Castor, J.M.; Portugal, L.; Ferrer, L.; Guzman-Mar, J.L.; Hernandez-Ramirez, A.; Cerda, V.; Hinojosa-Reyes, L. Arsenic fractionation in agricultural soil using an automated threestep sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry. Anal. Chim. Acta 2015, 874, 1–10. [Google Scholar] [CrossRef]
- He, X.D.; Li, P.Y.; Ji, Y.J.; Wang, Y.H.; Su, Z.; Vetrimurugan, E. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, J.X.; Ma, T.; Xie, X.J.; Gan, Y.Q. Genesis of geogenic contaminated groundwater: As, F and I. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2895–2933. [Google Scholar] [CrossRef]
- GB/T 5750.1-2006; Standard Examination Methods for Drinking Water—General Principles. Chinese Standard: Beijing, China, 2006.
- WHO (World Health Organization). Guidelines for Drinking—Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Rodríguez-Lado, L.; Sun, G.F.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Xu, J.M.; Gomez, M.A.; Shi, Z.L.; Li, S.F.; Zang, S.Y. Arsenic concentration, speciation, and risk assessment in sediments of the Xijiang River basin, China. Environ. Monit. Assess. 2020, 191, 56. [Google Scholar] [CrossRef] [PubMed]
- Tennant, C.B.; White, M.L. Study of the distribution of some geochemical data. Econ. Geol. 1959, 54, 1281–1290. [Google Scholar] [CrossRef]
- Sinclair, A.J. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Guo, H.M.; Yang, S.Z.; Tang, X.H.; Li, Y.; Shen, Z.L. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci. Total Environ. 2008, 393, 131–144. [Google Scholar] [CrossRef]
- Gao, Z.J.; Han, C.; Xu, Y.; Zhao, Z.H.; Luo, Z.J.; Liu, J.T. Assessment of the water quality of groundwater in Bohai Rim and the controlling factors—A case study of northern Shandong Peninsula, north China. Environ. Pollut. 2021, 285, 117482. [Google Scholar] [CrossRef]
- Asare, A.; Appiah-Adjei, E.K.; Ali, B.; Owusu-Nimo, F. Assessment of seawater intrusion using ionic ratios: The case of coastal communities along the central region of Ghana. Environ. Earth Sci. 2021, 80, 307. [Google Scholar] [CrossRef]
- Li, C.C.; Gao, X.B.; Li, S.Q.; Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environ. Sci. Pollut. Res. 2020, 27, 41157–41174. [Google Scholar] [CrossRef] [PubMed]
- Jessen, S.; Postma, D.; Larsen, F.; Nhan, P.Q.; Hoa, L.Q.; Pham, T.T.K.; Long, T.V.; Viet, P.H.; Jakobsen, R. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam. Geochim. Cosmochim. Acta 2012, 98, 186–201. [Google Scholar] [CrossRef]
- Sánchez-Martos, F.; Pulido-Bosch, A.; Molina-Sánchez, L.; Vallejos-Izquierdo, A. Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southest Spain). Sci. Total Environ. 2002, 297, 43–58. [Google Scholar] [CrossRef]
- Montety, V.D.; Radakovitch, O.; Vallet-Coulomb, C.; Blavoux, B.; Hermitte, D.; Valles, V. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (southern France). Appl. Geochem. 2008, 23, 2337–2349. [Google Scholar] [CrossRef]
Units | Min. | Max. | Ave. | Md | S.E. | S.D. | |
---|---|---|---|---|---|---|---|
pH | -- | 7.05 | 8.88 | 8.15 | 8.24 | 0.03 | 0.39 |
Ca2+ | mg/L | 16.5 | 944 | 183 | 100 | 14.3 | 200 |
Mg2+ | mg/L | 4.90 | 1062 | 131 | 67.1 | 11.5 | 162 |
Na+ | mg/L | 17.4 | 8337 | 666 | 197 | 97.4 | 1364 |
K+ | mg/L | 0.98 | 114 | 16.4 | 7.05 | 1.50 | 21.0 |
Cl− | mg/L | 18.9 | 11,504 | 918 | 266 | 139 | 1948 |
SO42− | mg/L | 40.6 | 8363 | 910 | 382 | 87.3 | 1222 |
HCO3− | mg/L | 21.4 | 757 | 219 | 186 | 9.56 | 134 |
CO32− | mg/L | 0 | 72.0 | 14.5 | 12.0 | 0.67 | 9.39 |
TDS | mg/L | 200 | 27,024 | 2916 | 1234 | 333 | 4668 |
As | μg/L | 0.05 | 210 | 8.70 | 2.05 | 1.53 | 21.5 |
Ion Ratio | Distribution Range | Implication | Arsenic Concentration (μg/L) | Proportion of High Arsenic | |
---|---|---|---|---|---|
Md | Ave | ||||
(HCO3− + CO32−)/SO42− | <2 (n = 188) | Weak reduction environment | 2.2 | 8.96 | 97.37% |
>2 (n = 8) | Medium reduction environment | 0.65 | 2.64 | 2.63% | |
Ca2+/(HCO3− + CO32−) | <0.7 (n = 127) | Medium lateral/surface water recharge intensity | 1.9 | 9.49 | 57.89% |
>0.7 (n = 69) | Strong lateral/surface water recharge intensity | 2.24 | 7.25 | 42.11% | |
Ca2+/Mg2+ | <1.1 (n = 54) | Weak cation exchange | 0.85 | 2.59 | 2.63% |
1.1~13 (n = 133) | Medium cation exchange | 3.3 | 11.4 | 94.74% | |
>13 (n = 9) | Strong cation exchange | 19 | 22.3 | 2.63% | |
Na+/Ca2+ | <0.4 (n = 1) | Weak lateral recharge intensity | 4.35 | 4.35 | 0.00% |
0.4~1.4 (n = 83) | Medium lateral recharge intensity | 3.3 | 12.2 | 50.00% | |
>1.4 (n = 112) | Strong lateral recharge intensity | 1.74 | 6.16 | 50.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, F.; Wang, W.; Lu, Q.; Che, K.; Zhu, B. Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis. Sustainability 2024, 16, 1697. https://doi.org/10.3390/su16041697
Shao F, Wang W, Lu Q, Che K, Zhu B. Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis. Sustainability. 2024; 16(4):1697. https://doi.org/10.3390/su16041697
Chicago/Turabian StyleShao, Fengjun, Wenfeng Wang, Qingfeng Lu, Kexin Che, and Bo Zhu. 2024. "Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis" Sustainability 16, no. 4: 1697. https://doi.org/10.3390/su16041697
APA StyleShao, F., Wang, W., Lu, Q., Che, K., & Zhu, B. (2024). Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis. Sustainability, 16(4), 1697. https://doi.org/10.3390/su16041697