Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems
Abstract
:1. Introduction
- (1)
- This study focuses on presenting a novel model to predict PV power using NSNP systems. By improving the accuracy of PV power prediction, the utilization of power resources can be optimized and energy waste reduced, thus promoting sustainable energy utilization.
- (2)
- The proposed method comprehensively extracts the nonlinear characteristics of the PV sequence through an NSNP system. This system is inspired by biological neurons and is applied to PV power prediction to improve the technical efficiency, inject new perspectives into sustainability research, and deepen the understanding of the sustainable development of clean energy. This fusion of technological innovation and ecological thinking opens up a new pathway to improving the accuracy of short-term PV power generation prediction, while leading a new paradigm in sustainability research.
- (3)
- To comprehensively prove the versatility and effectiveness of the proposed model, three different datasets and five performance metrics are used to evaluate the model. The outcomes indicate that the proposed model substantially enhances the accuracy of short-term PV power predictions.
2. Overall Research Framework of the Proposed Scheme
- (1)
- First, preprocess the three sets of downloaded raw PV data, including removing outliers and filling missing values caused by machine failures. The data imputation method adopted in this study is linear interpolation. After preliminary data processing, format the data to meet the requirements of the proposed model. The data type is set to float32 in this study. To expedite the convergence speed and enhance the generalization capability of the prediction model, ensuring that the model learns on the same scale, this research normalizes all three sets of data to the range (0,1) through the min-max scaling method.
- (2)
- After completing all the data preprocessing, we input the processed data into the proposed PV prediction model for learning and training. In this study, the proposed model is trained using the Ridge Regression algorithm. The combination of the nonlinear spiking mechanism of NSNP systems with Ridge Regression forms an effective learning framework.
- (3)
- To fully demonstrate the benefits of the proposed model in short-term PV power forecasting, a comprehensive evaluation and comparison of the model is conducted using three different datasets and five evaluation metrics (RMSE, MAE, MAPE, MBE, ).
2.1. Detailed Description of the Proposed Prediction Model
2.1.1. Nsnp Systems
- (1)
- represents a composed alphabet (a is referred to as the spike);
- (2)
- refers is the ith spiking neuron in this tuple. Subscript i can be , where
- (a)
- represents the original state of neuron ;
- (b)
- represents a nonlinear spiking rule: , where and represent two nonlinear functions and ;
- (3)
- ; for any , ; (synapse);
- (4)
- x represents the external input of Π.
2.1.2. Proposed Model
2.1.3. Model Learning
3. Case Study
3.1. Case Study 1
3.1.1. Dataset
3.1.2. Performance Metrics
3.1.3. Experimental Results
3.2. Case Study 2
3.2.1. Dataset
3.2.2. Performance Metrics
3.2.3. Experimental Results
3.3. Case Study 3
3.3.1. Dataset
3.3.2. Performance Metrics
3.3.3. Experimental Results
4. Conclusions
- (1)
- Validation on the first dataset confirmed that the proposed model exhibits a high prediction accuracy across three different resolutions (5 min, 10 min, 15 min).
- (2)
- Validation on the second dataset demonstrated that the proposed model exhibits a superior predictive performance across various time series lengths (0.5 Y–4 Y).
- (3)
- Validation on the third dataset revealed that, across four distinct seasons (spring, summer, autumn, and winter), the proposed model demonstrates a superior performance in both the forecasting accuracy and stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- Stein, G.; Letcher, T.M. Integration of PV generated electricity into national grids. In A Comprehensive Guide to Solar Energy Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 321–332. [Google Scholar]
- Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle-Monache, L. Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. Renew. Energy 2017, 108, 274–286. [Google Scholar] [CrossRef]
- Van-der-Meer, D.W.; Shepero, M.; Svensson, A.; Widén, J.; Munkhammar, J. Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes. Appl. Energy 2018, 213, 195–207. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of Photovoltaic Power Forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence-based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- De Marcos, R.A.; Bello, A.; Reneses, J. Electricity price forecasting in the short-term hybridising fundamental and econometric modelling. Electr. Power Syst. Res. 2019, 2167, 240–251. [Google Scholar] [CrossRef]
- Ben-Taieb, S.; Bontempi, G.; Atiya, A.F.; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067–7083. [Google Scholar] [CrossRef]
- Hodge, B.M.; Brancucci-Martinez-Anido, C.; Wang, Q.; Chartan, E.; Florita, A.; Kiviluoma, J. The combined value of wind and solar power forecasting improvements and electricity storage. Appl. Energy 2018, 214, 1–15. [Google Scholar] [CrossRef]
- Yagli, G.M.; Yang, D.; Srinivasan, D. Automatic hourly solar forecasting using machine learning models. Renew. Sustain. Energy Rev. 2019, 105, 487–498. [Google Scholar] [CrossRef]
- Chen, S.; Yu, J.; Wang, S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. J. Process. Control 2020, 87, 54–67. [Google Scholar] [CrossRef]
- Yao, G.; Lei, T.; Zhong, J. A review of convolutional-neural-network-based action recognition. Pattern Recognit. Lett. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- Xie, C.; Lv, J.; Li, Y.; Sang, Y. Cross-correlation conditional restricted Boltzmann machines for modeling motion style. Knowl. Based Syst. 2018, 159, 259–269. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, C.; Li, S. EMG signals based human action recognition via deep belief networks. IFAC Pap. Online 2019, 52, 271–276. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, F.; Zhu, H.; Liu, Y. Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting. Appl. Energy 2022, 323, 119682. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Jiang, H.; Chen, Y.; Zhang, J. Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks. Energy 2024, 286, 129580. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, Q.; Meng, Y. Ultra-short-term photovoltaic power prediction based on multi-head probSparse self-attention and long short-term memory. J. Phys. Conf. Ser. 2023, 2558, 012007. [Google Scholar] [CrossRef]
- Ilias, L.; Sarmas, E.; Marinakis, V.; Askounis, D.; Doukas, H. Unsupervised domain adaptation methods for photovoltaic power forecasting. Appl. Soft Comput. 2023, 149, 110979. [Google Scholar] [CrossRef]
- Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note; Technical Report; German National Research Center for Information Technology GMD: Bonn, Germany, 2001; Volume 148, p. 13. [Google Scholar]
- Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.; Lukoševičius, M.; Popovici, D.; Siewert, U. Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 2007, 20, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Lukoševicius, M.; Popovici, D.; Jaeger, H.; Siewert, U.; Park, R. Time Warping Invariant Echo State Networks; Technical Report; Planet GmbH: Berlin, Germany, 2006. [Google Scholar]
- Sun, X.; Li, T.; Li, Q.; Huang, Y.; Li, Y. Deep belief echo-state network and its application to time series prediction. Knowl. Based Syst. 2017, 130, 17–29. [Google Scholar] [CrossRef]
- Xinhui, D.; Shuai, W.; Juan, Z. Research on marine photovoltaic power forecasting based on wavelet transform and echo state network. Pol. Marit. Res. 2017, 24, 53–59. [Google Scholar] [CrossRef]
- Jayawardene, I.; Venayagamoorthy, G. Comparison of adaptive neuro-fuzzy inference systems and echo state networks for PV power prediction. Procedia Comput. Sci. 2015, 53, 92–102. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Zhang, F.; Jiao, T.; Wang, S.; Liu, X.; Wu, X. Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model. Energy 2023, 277, 127557. [Google Scholar] [CrossRef]
- Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Inform. 2006, 71, 279–308. [Google Scholar]
- Peng, H.; Lv, Z.; Li, B.; Li, B.; Luo, X.; Wang, J.; Song, X. Nonlinear spiking neural P systems. Int. J. Neural Syst. 2020, 30, 2050008. [Google Scholar] [CrossRef]
- Liu, Q.; Long, L.; Peng, H.; Wang, J.; Yang, Q.; Song, X. Gated spiking neural P systems for time series forecasting. IEEE Trans. Neural Networks Learn. Syst. 2023, 34, 6227–6236. [Google Scholar] [CrossRef]
- Long, L.; Lugu, R.; Xiong, X.; Liu, Q.; Peng, H.; Wang, J.; Pérez-Jiménez, M.J. Echo spiking neural P systems. Knowl. Based Syst. 2022, 253, 109568. [Google Scholar] [CrossRef]
- Desert Knowledge Australia Centre. Available online: http://dkasolarcentre.com.au/historical-data/download (accessed on 3 January 2024).
- Oh, S.L.; Ng, E.Y.K.; Tan, R.S.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287. [Google Scholar] [CrossRef]
Resolution (min) | n | |||||
---|---|---|---|---|---|---|
15 | 0.31 | 0.545 | 51 | 0.98 | 9.5% | 1.0 × 10−6 |
10 | 0.70 | 0.450 | 51 | 0.98 | 45% | 1.0 × 10−6 |
5 | 0.75 | 0.400 | 51 | 0.98 | 9.5% | 1.0 × 10−6 |
Model | Resolution (min) | MAE | RMSE | |
---|---|---|---|---|
CNN | 15 | 0.254 | 0.529 | 0.96 |
CNN_LSTM | 15 | 0.268 | 0.547 | 0.96 |
QK_CNN(FC) | 15 | 0.236 | 0.529 | 0.96 |
QK_CNN | 15 | 0.230 | 0.519 | 0.96 |
The proposed model | 15 | 0.064 | 0.492 | 0.96 |
CNN | 10 | 0.197 | 0.449 | 0.97 |
CNN_LSTM | 10 | 0.200 | 0.453 | 0.97 |
QK_CNN(FC) | 10 | 0.181 | 0.453 | 0.97 |
QK_CNN | 10 | 0.178 | 0.448 | 0.97 |
The proposed model | 10 | 0.058 | 0.452 | 0.97 |
CNN | 5 | 0.133 | 0.353 | 0.98 |
CNN_LSTM | 5 | 0.130 | 0.352 | 0.98 |
QK_CNN(FC) | 5 | 0.138 | 0.370 | 0.98 |
QK_CNN | 5 | 0.124 | 0.351 | 0.98 |
The proposed model | 5 | 0.039 | 0.348 | 0.98 |
Model Input Sequence | n | |||||
---|---|---|---|---|---|---|
0.5 Y | 0.20 | 0.98 | 15 | 0.98 | 40% | 1.0 × 10−6 |
1 Y | 0.70 | 0.60 | 51 | 0.98 | 10% | 1.0 × 10−6 |
1.5 Y | 0.50 | 0.10 | 51 | 0.98 | 10% | 1.0 × 10−6 |
2 Y | 0.09 | 0.50 | 51 | 0.98 | 9% | 1.0 × 10−6 |
2.5 Y | 0.09 | 0.60 | 51 | 0.98 | 50% | 1.0 × 10−6 |
3 Y | 0.05 | 0.40 | 51 | 0.98 | 35% | 1.0 × 10−6 |
3.5 Y | 0.90 | 0.40 | 51 | 0.98 | 35% | 1.0 × 10−6 |
4 Y | 0.90 | 0.50 | 51 | 0.98 | 35% | 1.0 × 10−6 |
Model | LSTM | CNN | CLSTM | The Proposed Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Input Sequence | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE |
0.5 Y | 1.244 | 0.654 | 0.131 | 1.128 | 0.566 | 0.114 | 1.161 | 0.559 | 0.112 | 0.084 | 0.018 | 0.301 |
1 Y | 1.393 | 0.616 | 0.103 | 1.563 | 0.640 | 0.111 | 1.434 | 0.628 | 0.105 | 0.132 | 0.025 | 0.474 |
1.5 Y | 1.533 | 0.599 | 0.101 | 1.411 | 0.567 | 0.095 | 1.248 | 0.529 | 0.095 | 0.111 | 0.016 | 0.355 |
2 Y | 1.320 | 0.457 | 0.068 | 0.983 | 0.452 | 0.059 | 0.941 | 0.397 | 0.052 | 0.132 | 0.020 | 0.662 |
2.5 Y | 0.945 | 0.389 | 0.051 | 0.447 | 0.231 | 0.041 | 0.426 | 0.198 | 0.035 | 0.132 | 0.027 | 0.493 |
3 Y | 0.398 | 0.181 | 0.032 | 0.367 | 0.140 | 0.025 | 0.343 | 0.126 | 0.022 | 0.131 | 0.016 | 0.519 |
3.5 Y | 1.150 | 0.455 | 0.083 | 1.136 | 0.412 | 0.077 | 0.991 | 0.384 | 0.070 | 0.083 | 0.013 | 0.461 |
4 Y | 1.465 | 0.565 | 0.089 | 0.971 | 0.478 | 0.083 | 0.886 | 0.405 | 0.080 | 0.079 | 0.010 | 0.707 |
Season | n | |||||
---|---|---|---|---|---|---|
Winter | 0.01 | 0.4 | 51 | 0.98 | 9% | 1.0 × 10−6 |
Spring | 0.01 | 0.4 | 51 | 0.98 | 9% | 1.0 × 10−6 |
Summer | 0.01 | 0.4 | 51 | 0.98 | 9% | 1.0 × 10−6 |
Autumn | 0.01 | 0.4 | 51 | 0.98 | 9% | 1.0 × 10−6 |
Season | Error | WPD-LSTM | LSTM | GRU | RNN | MLP | The Proposed Model |
---|---|---|---|---|---|---|---|
MBE | 0.0396 | 0.0600 | 0.0451 | ||||
Winter | MAPE | 1.8681 | 5.0221 | 5.6791 | 6.4869 | 8.4689 | 0.2816 |
RMSE | 0.1526 | 0.8556 | 0.8471 | 0.8810 | 0.9161 | 0.0600 | |
MBE | 0.0809 | 0.0982 | 0.3629 | ||||
Spring | MAPE | 2.2660 | 5.1596 | 6.1575 | 6.1352 | 9.3335 | 0.2304 |
RMSE | 0.2454 | 0.9071 | 0.9170 | 0.9340 | 1.0698 | 0.0636 | |
MBE | 0.2067 | 0.3535 | |||||
Summer | MAPE | 2.8885 | 11.1108 | 12.3369 | 12.1321 | 12.4742 | 0.5025 |
RMSE | 0.2705 | 1.2504 | 1.2388 | 1.2569 | 1.2630 | 0.0819 | |
MBE | 0.1201 | 0.0586 | |||||
Autumn | MAPE | 2.6219 | 5.6311 | 5.460 | 7.7458 | 10.5393 | 0.4524 |
RMSE | 0.2221 | 1.0710 | 1.0748 | 1.1022 | 1.0612 | 0.0711 | |
MBE | 0.0067 | 0.1206 | 0.1995 | ||||
Average | MAPE | 2.4002 | 7.5978 | 8.5169 | 8.7263 | 10.1575 | 0.3667 |
RMSE | 0.2357 | 1.0382 | 1.0351 | 1.0581 | 1.0861 | 0.0692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Wang, J.; Guo, L.; Peng, H. Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems. Sustainability 2024, 16, 1709. https://doi.org/10.3390/su16041709
Gao Y, Wang J, Guo L, Peng H. Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems. Sustainability. 2024; 16(4):1709. https://doi.org/10.3390/su16041709
Chicago/Turabian StyleGao, Yunzhu, Jun Wang, Lin Guo, and Hong Peng. 2024. "Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems" Sustainability 16, no. 4: 1709. https://doi.org/10.3390/su16041709
APA StyleGao, Y., Wang, J., Guo, L., & Peng, H. (2024). Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems. Sustainability, 16(4), 1709. https://doi.org/10.3390/su16041709