The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Meaning and Key Features
2.1.1. Agricultural Market Integration
2.1.2. Regional Economic Development
2.2. Positive Effects of Agricultural Market Integration on Regional Economic Development
2.2.1. Facilitating Price Discovery
2.2.2. Reducing Transaction Costs
2.2.3. Increasing Farmers’ Income
2.2.4. Improving Food Supply
2.3. Theoretical Analysis
2.3.1. Allocation Efficiency Theory
2.3.2. Specialization and Comparative Advantage Theory
2.3.3. Economies of Scale Theory
2.3.4. Risk Theory
3. Hypothesis
3.1. Hypothesis 1
3.2. Hypothesis 2
3.3. Hypothesis 3
4. Materials and Methods
4.1. Data Source
4.2. Variables
4.2.1. The Dependent Variable
4.2.2. Explanatory Variable
- a.
- Calculate the absolute value of relative prices
- b.
- Eliminate the mean
- c.
- Market segmentation index
4.2.3. Control Variables
4.2.4. Instrumental Variables
4.2.5. Moderating Variables
4.3. Trend of Agricultural Market Integration
4.4. Spatial Econometric Models
4.5. Spatial Weight Matrix
4.6. Global Moran’s Index
5. Results
5.1. Spatial Correlation
5.2. Model Testing
5.3. Regression Analysis
5.3.1. Testing Hypothesis 1
5.3.2. Spatial Spillover Effects of Agricultural Market Integration
5.3.3. Spatiotemporal Effects of Regional Economic Development
5.4. Robustness Test
5.4.1. Weight Transformation
5.4.2. Model Transformation
5.4.3. Variable Transformation
5.5. Endogeneity Test
6. Extensibility Analysis: Substitution Relationships and Regional Heterogeneity
6.1. Substitution Relationships: Testing Hypothesis 2
6.2. Heterogeneity Analysis: Testing Hypothesis 3
7. Discussions
7.1. Analysis of Positive Effects Based on Different Theories
7.2. Analysis of Substitution Effects Based on Different Theories
7.3. Analysis of Heterogeneity Based on Different Theories
8. Conclusions
8.1. Key Findings
8.2. Policy Recommendations
8.3. Limitations of this Research
8.4. Future Research Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cariappa, A.A.; Acharya, K.K.; Adhav, C.A.; Sendhil, R.; Ramasundaram, P. Impact of COVID-19 on the Indian agricultural system: A 10-point strategy for post-pandemic recovery. Outlook Agric. 2021, 50, 26–33. [Google Scholar] [CrossRef]
- Barman, A.; Das, R.; De, P.K. Impact of COVID-19 in food supply chain: Disruptions and recovery strategy. Current Res. Behav. Sci. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Thilmany, D.; Canales, E.; Low, S.A.; Boys, K. Local food supply chain dynamics and resilience during COVID-19. Appl. Econ. Perspect. Policy 2021, 43, 86–104. [Google Scholar] [CrossRef]
- Yang, B.; Asche, F.; Li, T. Consumer behavior and food prices during the COVID-19 pandemic: Evidence from Chinese cities. Econ. Inq. 2022, 60, 1437–1460. [Google Scholar] [CrossRef]
- Ali, J.; Khan, W. Impact of COVID-19 pandemic on agricultural wholesale prices in India: A comparative analysis across the phases of the lockdown. J. Public. Aff. 2020, 20, e2402. [Google Scholar] [CrossRef]
- Gruère, G.; Brooks, J. Characterising early agricultural and food policy responses to the outbreak of COVID-19. Food Policy 2021, 100, 102017. [Google Scholar] [CrossRef] [PubMed]
- Zant, W. How is the liberalization of food markets progressing? Market integration and transaction costs in subsistence economies. World Bank. Econ. Rev. 2013, 27, 28–54. [Google Scholar] [CrossRef]
- Baffes, J.; Kabundi, A. Commodity price shocks: Order within chaos? Resour. Policy 2023, 83, 103640. [Google Scholar] [CrossRef]
- Akter, S.; Basher, S.A. The impacts of food price and income shocks on household food security and economic well-being: Evidence from rural Bangladesh. Global Environ. Chang. 2014, 25, 150–162. [Google Scholar] [CrossRef]
- Dawe, D.; Timmer, C.P. Why stable food prices are a good thing: Lessons from stabilizing rice prices in Asia. Glob. Food Secur. 2012, 1, 127–133. [Google Scholar] [CrossRef]
- Martin, W. Economic growth, convergence, and agricultural economics. Agric. Econ. 2019, 50, 7–27. [Google Scholar] [CrossRef]
- Beghin, J.C.; Schweizer, H. Agricultural trade costs. Appl. Econ. Perspect. Policy 2021, 43, 500–530. [Google Scholar] [CrossRef]
- Banerjee, A.; Duflo, E.; Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef]
- Moser, C.; Barrett, C.; Minten, B. Spatial integration at multiple scales: Rice markets in Madagascar. Agric. Econ. 2009, 40, 281–294. [Google Scholar] [CrossRef]
- Fan, X.; Song, D.; Zhao, X. Does Infrastructure Construction Break up Domestic Market Segmentation? Econ. Res. J. 2017, 52, 20–34. [Google Scholar]
- Robinson, A.L. Internal Borders: Ethnic-based market segmentation in Malawi. World Dev. 2016, 87, 371–384. [Google Scholar] [CrossRef]
- Luckmann, J.; Ihle, R.; Kleinwechter, U.; Grethe, H. World market integration of Vietnamese rice markets during the 2008 food price crisis. Food Sec. 2015, 7, 143–157. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y. Local Government Behavioral Patterns and Industrial Structure Evolution in the Process of Marketization. Econ. Manag. J. 2014, 36, 12–23. [Google Scholar] [CrossRef]
- Hang, L.; Ullah, I.; Kim, D.H. A secure fish farm platform based on blockchain for agriculture data integrity. Comput. Electron. Agric. 2020, 170, 105251. [Google Scholar] [CrossRef]
- Oladele, O.I. Effect of information communication technology on agricultural information access among researchers, extension agents, and farmers in southwestern Nigeria. J. Agric. Food Inf. 2011, 12, 167–176. [Google Scholar] [CrossRef]
- Engotoit, B.; Kituyi, G.M.; Moya, M.B. Influence of performance expectancy on commercial farmers’ intention to use mobile-based communication technologies for agricultural market information dissemination in Uganda. J. Syst. Inform. Tech. 2016, 18, 346–363. [Google Scholar] [CrossRef]
- Escobal, J.A.; Cavero, D. Transaction costs, institutional arrangements and inequality outcomes: Potato marketing by small producers in rural Peru. World Dev. 2012, 40, 329–341. [Google Scholar] [CrossRef]
- Cirera, X.; Arndt, C. Measuring the impact of road rehabilitation on spatial market efficiency in maize markets in Mozambique. Agric. Econ. 2008, 39, 17–28. [Google Scholar] [CrossRef]
- Zakari, S.; Ying, L.; Song, B. Market integration and spatial price transmission in Niger grain markets. Afr. Dev. Rev. 2014, 26, 264–273. [Google Scholar] [CrossRef]
- Zhao, X.; Calvin, K.V.; Wise, M.A.; Iyer, G. The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model. Econ. Anal. Policy 2021, 72, 1–17. [Google Scholar] [CrossRef]
- Gluschenko, K. Market integration in Russia during the transformation years. Econ. Transit. 2003, 11, 411–434. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Xu, X.; Yang, D.; Lv, H. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ. 2020, 68, 171–176. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Shafiullah, G.M.; Kumar, N.M.; Arif, M.T.; Jamal, T.; Chopra, S.S.; Dyduch, J. Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment. Environ. Sci. Pollut. Res. 2022, 29, 33957–33987. [Google Scholar] [CrossRef]
- Khedhiri, S. The impact of COVID-19 on agricultural market integration in Eastern Canada. Reg. Sci. Policy Pract. 2023, 15, 371–386. [Google Scholar] [CrossRef]
- Zhao, Y.; Ni, J. The border effects of domestic trade in transitional China: Local Governments’ preference and protectionism. Chin. Econ. 2018, 51, 413–431. [Google Scholar] [CrossRef]
- Halder, P.; Pati, S. A need for paradigm shift to improve supply chain management of fruits & vegetables in India. Asian J. Agric. Rural Dev. 2011, 1, 1–20. [Google Scholar] [CrossRef]
- Olper, A.; Raimondi, V. Agricultural market integration in the OECD: A gravity-border effect approach. Food Policy 2008, 33, 165–175. [Google Scholar] [CrossRef]
- Barrett, C.B. Measuring integration and efficiency in international agricultural markets. Appl. Econ. Perspect. Policy 2021, 23, 19–32. [Google Scholar] [CrossRef]
- Takeshima, H.; Nagarajan, L. Minor millets in Tamil Nadu, India: Local market participation, on-farm diversity and farmer welfare. Environ. Dev. Econ. 2012, 17, 603–632. [Google Scholar] [CrossRef]
- Gluschenko, K. Analysing changes in market integration through a cross-sectional test for the law of one price. Int. J. Financ. Econ. 2004, 9, 135–149. [Google Scholar] [CrossRef]
- Cecchetti, S.G.; Mark, N.C.; Sonora, R.J. Price index convergence among United States cities. Int. Econ. Rev. 2002, 43, 1081–1099. [Google Scholar] [CrossRef]
- Fan, S.; Wei, X. The law of one price: Evidence from the transitional economy of China. Rev. Econ. Stat. 2006, 88, 682–697. [Google Scholar] [CrossRef]
- Lan, Y.; Sylwester, K. Does the law of one price hold in China? Testing price convergence using disaggregated data. China Econ. Rev. 2010, 21, 224–236. [Google Scholar] [CrossRef]
- Young, A. The Razor’s edge: Distortions and incremental reform in the People’s Re-public of China. Q. J. Econ. 2000, 115, 1091–1135. [Google Scholar] [CrossRef]
- Bai, C.; Du, Y.; Tao, Z.; Tong, Y. Local protectionism and industrial concentration in China: Overall trend and important factors. Econ. Res. J. 2004, 4, 29–40. (In Chinese) [Google Scholar]
- Calderón, C.; Servén, L. Infrastructure and economic development in Sub-Saharan Africa. J. Afr. Econ. 2010, 19, i13–i87. [Google Scholar] [CrossRef]
- Mohsin, M.; Yongtong, M.; Hussain, K.; Mahmood, A.; Zhaoqun, S.; Nazir, K.; Wei, W. Contribution of fish production and trade to the economy of Pakistan. Int. J. Mar. Sci. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Islam, S.M.; Clarke, M. The relationship between economic development and social welfare: A new adjusted GDP measure of welfare. Soc. Indic. Res. 2002, 57, 201–229. [Google Scholar] [CrossRef]
- Lin, S. Resource allocation and economic growth in China. Econ. Inquiry 2000, 38, 515–526. [Google Scholar] [CrossRef]
- Luo, W.; Timothy, D.J. An assessment of farmers’ satisfaction with land consolidation performance in China. Land Use Policy 2017, 61, 501–510. [Google Scholar] [CrossRef]
- Saleem, H.; Khan, M.B.; Mahdavian, S.M. The role of green growth, green financing, and eco-friendly technology in achieving environmental quality: Evidence from selected Asian economies. Environ. Sci. Pollut. Res. 2022, 29, 57720–57739. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land use change, urban agglomeration, and urban sprawl: A sustainable development perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Magesa, M.M.; Michael, K.; Ko, J. Access and use of agricultural market information by smallholder farmers: Measuring informational capabilities. Electron. J. Inf. Syst. Dev. Ctries. 2020, 86, e12134. [Google Scholar] [CrossRef]
- Kofi, O.M.; Biekpe, N. Agricultural commodity supply response in Ghana. J. Econ. Stud. 2008, 35, 224–235. [Google Scholar] [CrossRef]
- Ahlers, C.; Broll, U.; Eckwert, B. Information and output in agricultural markets: The role of market transparency. Agric. Econ. 2013, 1, 15. [Google Scholar] [CrossRef]
- Schipmann, C.; Qaim, M. Supply chain differentiation, contract agriculture, and farmers’ marketing preferences: The case of sweet pepper in Thailand. Food Policy 2011, 36, 667–677. [Google Scholar] [CrossRef]
- Gardas, B.B.; Raut, R.D.; Narkhede, B. Modeling causal factors of post-harvesting losses in vegetable and fruit supply chain: An Indian perspective. Renew. Sust. Energ. Rev. 2017, 80, 1355–1371. [Google Scholar] [CrossRef]
- Staal, S.; Delgado, C.; Nicholson, C. Smallholder dairying under transactions costs in East Africa. World Dev. 1997, 25, 779–794. [Google Scholar] [CrossRef]
- Birthal, P.S.; Joshi, P.K.; Gulati, A. Vertical Coordination in High-Value Commodities: Implications for Smallholders; (No. 596-2016-40047); AgEcon Search: St. Paul, MN, USA, 2005. [Google Scholar] [CrossRef]
- Ruben, R.; Boselie, D.; Lu, H. Vegetables procurement by Asian supermarkets: A transaction cost approach. Supply Chain Manag. Int. J. 2007, 12, 60–68. [Google Scholar] [CrossRef]
- Ao, G.; Liu, Q.; Qin, L.; Chen, M.; Liu, S.; Wu, W. Organization model, vertical integration, and farmers’ income growth: Empirical evidence from large-scale farmers in Lin’an, China. PLoS ONE 2021, 16, e0252482. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, Q.; Zheng, S. The Identification and Applicability of Regional Brand-Driving Modes for Agricultural Products. Agriculture 2022, 12, 1127. [Google Scholar] [CrossRef]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 15. [Google Scholar] [CrossRef]
- Acosta, I.C.G.; Cano, L.A.F.; Peña, O.D.L.; Rivera, C.L.; Bravo, B.J.J. Design of an inventory management system in an agricultural supply chain considering the deterioration of the product: The case of small citrus producers in a developing country. J. Appl. Eng. Sci. 2018, 16, 523–537. [Google Scholar] [CrossRef]
- Alabi, M.O.; Ngwenyama, O. Food security and disruptions of the global food supply chains during COVID-19: Building smarter food supply chains for post COVID-19 era. Brit. Food J. 2023, 125, 167–185. [Google Scholar] [CrossRef]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef]
- Li, M.; Zhao, L.; Zhang, C.; Liu, Y.; Fu, Q. Optimization of agricultural resources in water-energy-food nexus in complex environment: A perspective on multienergy coordination. Energy Convers. Manag. 2022, 258, 115537. [Google Scholar] [CrossRef]
- Komilova, N.K.; Haydarova, S.A.; Xalmirzaev, A.A.; Kurbanov, S.B.; Rajabov, F.T. Territorial structure of agriculture development in Uzbekistan in terms of economical geography. J. Adv. Res. Law Econ. 2019, 10, 2364. [Google Scholar]
- Jambor, A. Comparative advantages and specialisation of the Visegrad countries agri-food trade. Acta Oecon. Inform. 2013, 16, 22–34. [Google Scholar] [CrossRef]
- Ma, M.; Steinbach, S.; Wu, J. A study on regional specialization of China’s agricultural production: Recent trends and drivers. Asian J. Agric. Rural Dev. 2014, 4, 113–127. [Google Scholar] [CrossRef]
- Self, S.; Grabowski, R. Economic development and the role of agricultural technology. Agric. Econ. 2007, 36, 395–404. [Google Scholar] [CrossRef]
- Hadley, D.; Irz, X. Productivity and farm profit–A microeconomic analysis of the cereal sector in England and Wales. Appl. Econ. 2008, 40, 613–624. [Google Scholar] [CrossRef]
- Key, N. Farm size and productivity growth in the United States Corn Belt. Food Policy 2019, 84, 186–195. [Google Scholar] [CrossRef]
- Asche, F.; Cojocaru, A.L.; Roth, B. The development of large scale aquaculture production: A comparison of the supply chains for chicken and salmon. Aquaculture 2018, 493, 446–455. [Google Scholar] [CrossRef]
- De Roest, K.; Ferrari, P.; Knickel, K. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. J. Rural Stud. 2018, 59, 222–231. [Google Scholar] [CrossRef]
- Valencia, V.; Wittman, H.; Blesh, J. Structuring Markets for Resilient Farming Systems. Agron. Sustain. Dev. 2019, 39, 25. [Google Scholar] [CrossRef]
- Gaupp, F.; Pflug, G.; Hochrainer-Stigler, S.; Hall, J.; Dadson, S. Dependency of crop production between global breadbaskets: A copula approach for the assessment of global and regional risk pools. Risk Anal. 2017, 37, 2212–2228. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Goh, C.C. Density, distance and division: The case of Chongqing municipality, China. Camb. J. Reg. Econ. Soc. 2011, 4, 189–204. [Google Scholar] [CrossRef]
- Poncet, S. Measuring Chinese domestic and international integration. China Econ. Rev. 2003, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D. Market discrimination, regional boundary effect and economic growth. China Ind. Econ. 2008, 12, 27–37. (In Chinese) [Google Scholar] [CrossRef]
- Pan, W. Regional linkage and the spatial spillover effects on regional economic growth in China. Econ. Res. J. 2012, 47, 54–65. (In Chinese) [Google Scholar]
- Yang, J.; Luo, L. Industrial policy, regional competition and distortion of resources spatial allocation. China Ind. Econ. 2018, 12, 5–22. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Kong, L. From segmentation to integration: The resistance and countermeasures to promote the construction of a unified domestic market. China Ind. Econ. 2021, 8, 20–36. [Google Scholar] [CrossRef]
- Huang, S. The evolution of China’s rural development strategy and its theoretical basis over the past 40 years of reform and opening-up. Econ. Res. J. 2018, 53, 4–19. (In Chinese) [Google Scholar]
- Lin, Y. Main issues and prospects of rural reform in China in the 1990s. Manag. World 1994, 3, 139–144. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Y.; Gu, Y.; Yang, K. Agricultural products brands, market integration and agricultural income growth. J. Cap. Univ. Econ. Bus. 2021, 1, 70–80. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.; Hu, A. Transport infrastructure and economic growth: Perspective from China’s regional disparities. China Ind. Econ. 2010, 4, 14–23. (In Chinese) [Google Scholar] [CrossRef]
- Du, Y. The impact of agricultural vertical integrating and farmer’s organizational innovation to the farmer’s income. China Rural Survey 2005, 3, 9–18+80. (In Chinese) [Google Scholar]
- Lu, M.; Chen, Z. Fragmented growth: Why economic opening may worsen domestic market segmentation? Econ. Res. J. 2009, 44, 42–52. (In Chinese) [Google Scholar]
- Zheng, F.; Cheng, Y. From agricultural industrialization to agricultural industrial clusters: Feasibility analysis of the development of competitive agricultural industrialization. Manag. World 2005, 7, 64–73+93. (In Chinese) [Google Scholar] [CrossRef]
- Liu, L.; Zhou, L. Comparative advantage, FDI and international competitiveness of China’s agricultural products industry. J. Int. Trade 2011, 12, 39–54. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Li, H. The probable impacts of appreciation of RMB on Chinese agriculture: A case of soybean. Probl. Agric. Econ. 2005, 1, 31–36+79. (In Chinese) [Google Scholar]
- Qiang, W.; Niu, S.; Wang, X.; Zhang, C.; Liu, A.; Cheng, S. Evolution of the Global Agricultural Trade Network and Policy Implications for China. Sustainability 2020, 12, 192. [Google Scholar] [CrossRef]
- Moon, W. Are there dynamic productivity gains from agricultural trade? China Agric. Econ. Rev. 2022, 14, 32–46. [Google Scholar] [CrossRef]
- Cai, Z. The formation path of regional economic layout with high-quality development: Based on the perspective of regional complementary advantages. Reform 2020, 8, 132–146. (In Chinese) [Google Scholar]
- Li, X.; Zhang, Y.; Sun, B. Does regional integration promote economic growth efficiency? An empirical analysis based on the Yangtze River Economic Belt. China Popul. Resour. Environ. 2017, 27, 10–19. (In Chinese) [Google Scholar]
- Banik, N.; Das, K.C. The location substitution effect: Does it apply for China? Global Bus. Rev. 2014, 15, 59–75. [Google Scholar] [CrossRef]
- Erokhin, V.; Ivolga, A.; Heijman, W.J.M. Trade liberalization and state support of agriculture: Effects for developing countries. Agric. Econ. 2014, 60, 524–537. [Google Scholar] [CrossRef]
- Kastner, T.; Erb, K.H.; Nonhebel, S. International wood trade and forest change: A global analysis. Global Environ. Chang. 2011, 21, 947–956. [Google Scholar] [CrossRef]
- Kumar, A. Exports of livestock products from India: Performance, competitiveness and determinants. Agric. Econ. Res. Rev. 2010, 23, 57–68. [Google Scholar] [CrossRef]
- MacLaren, D. Agricultural trade policy analysis and international trade theory: A review of recent developments. J. Agric. Econ. 1991, 42, 250–297. [Google Scholar] [CrossRef]
- Song, Y. An analysis of the relationship between administrative divisions and the types of administrative region and regional administration in modern China. Peking. Univ. J. Philos. Soc. Sci. 1999, 4, 55–62. (In Chinese) [Google Scholar]
- Miao, X.; Han, J.; Wang, S.; Li, X. Spatial effects of market integration on the industrial agglomeration of agricultural products: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 84949–84971. [Google Scholar] [CrossRef]
- Lou, W. Measurement and comparison of regional economic integration in the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta regions. Stat. Decis. 2014, 2, 90–92. (In Chinese) [Google Scholar] [CrossRef]
- Ma, Y. Agricultural product trade, agricultural technological progress and interregional income gap among farmers in China. J. Int. Trade 2018, 6, 41–53. (In Chinese) [Google Scholar] [CrossRef]
- Démurger, S. Infrastructure development and economic growth: An explanation for regional disparities in China? J. Comp. Econ. 2001, 29, 95–117. [Google Scholar] [CrossRef]
- Wang, D.; Abula, B.; Lu, Q.; Liu, Y.; Zhou, Y. Regional business environment, agricultural opening-up and high-quality development: Dynamic empirical analysis from China’s agriculture. Agronomy 2022, 12, 974. [Google Scholar] [CrossRef]
- Sheng, B.; Mao, Q. Trade openness, domestic market integration, and inter-provincial economic growth in China: 1985–2008. J. World Econ. 2011, 11, 44–66. (In Chinese) [Google Scholar] [CrossRef]
- Yang, S.; Gou, L.; Mao, Y. Market segmentation, openness to the outside world, and economic growth of urban agglomerations: A case study of the Guangdong-Hong Kong-Macao Greater Bay area. Econ. Issues Explor. 2019, 11, 125–133. (In Chinese) [Google Scholar]
- Gui, Q.; Chen, M.; Lu, M.; Chen, Z. Is the domestic goods market in China tending toward segmentation or integration: An analysis based on the relative price method. J. World Econ. 2006, 2, 20–30. (In Chinese) [Google Scholar]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, G.; Wang, X. Labor market segmentation, factor allocation efficiency and agricultural product circulation industry growth- An investigation of the moderated mediation effects. J. Agrotech. Econ. 2021, 3, 4–19. (In Chinese) [Google Scholar] [CrossRef]
- Zou, B.; Cao, Y.; Xiao, Y. Effect of market integration on farmers’ increasing income from the perspective of common prosperity. Res. Financ. Econ. Issues 2023, 11, 115–129. (In Chinese) [Google Scholar] [CrossRef]
- Song, D.; Gao, X.; Fan, X. Is supply-side structural reform in agriculture conducive to inclusive growth? J. East. China Norm. Univ. 2020, 52, 146–161+199–200. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, X. Digital economy, urban-rural integration and agricultural economic resilience. Stat. Decis. 2023, 39, 22–27. (In Chinese) [Google Scholar] [CrossRef]
- Shao, S.; Zhang, K.; Dou, J. Effects of economic agglomeration on energy saving and emission reduction: Theory and empirical evidence from China. Manag. World 2019, 35, 36–60+226. (In Chinese) [Google Scholar] [CrossRef]
- Bian, Y.; Wu, L.; Bai, J. Market segmentation and high-quality economic development: Evidence from the perspective of green growth. J. Environ. Eco. 2019, 4, 96–114. (In Chinese) [Google Scholar] [CrossRef]
- Huang, J. Domestic trade, spatial spillovers and provincial business cvcle svnchronization: 1987-2011. Finance Trade Res. 2014, 25, 18–27. (In Chinese) [Google Scholar] [CrossRef]
- Cui, J.; Shi, L.; Xie, B. Can the convergence of technology and industry drive the development of regional economy—A dynamic spatial Durbin model based study. J. Harbin Univ. Commer. 2022, 2, 15–25. (In Chinese) [Google Scholar]
- Nie, Y.; Yao, Q.; Zhou, Z. Industrial collaborative agglomeration and high-quality economic development in the Yangtze River Delta. East. China Econ. Manag. 2022, 10, 16–30. (In Chinese) [Google Scholar] [CrossRef]
- Podoba, Z.S.; Moldovan, A.A.; Faizova, A.A. The import substitution of agricultural products in Russia. Probl. Econ. Transit. 2020, 62, 707–720. [Google Scholar] [CrossRef]
- Fu, S.; Zhan, Y.; Ouyang, J.; Ding, Y.; Tan, K.; Fu, L. Power, supply chain integration and quality performance of agricultural products: Evidence from contract farming in China. Prod. Plan. Control 2021, 32, 1119–1135. [Google Scholar] [CrossRef]
- Zhou, J.; Fei, H.; Kai, L.; Yu, W. Vegetable production under COVID-19 pandemic in China: An analysis based on the data of 526 households. J. Integr. Agric. 2020, 19, 2854–2865. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, X.; Peng, N. What catalyzes the proactive recovery of peasants from the COVID-19 pandemic? A livelihood perspective in Ningqiang County, China. Int. J. Disaster Risk Reduct. 2022, 73, 102920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W. Meta-analysis of the effect of the COVID-19 epidemic on China’s food supply chain. Open J. Bus. Manag. 2022, 11, 303–312. [Google Scholar] [CrossRef]
- Zeng, G.; Ding, Y. Does agglomeration externalities promote the growth of county-level industries? Based on the empirical evidence of the agricultural and sideline food processing industry in Hubei Province. World Agric. 2021, 3, 120–130. [Google Scholar] [CrossRef]
- Liu, J.; Bailey, D. Examining economies of scale for farmer cooperatives in China’s Shanxi Province. J. Rural. Coop. 2013, 41, 147–175. [Google Scholar] [CrossRef]
- Pan, D.; Tang, J.; Zhang, L.; He, M.; Kung, C. The impact of farm scale and technology characteristics on the adoption of sustainable manure management technologies: Evidence from hog production in China. J. Clean. Prod. 2021, 280, 124340. [Google Scholar] [CrossRef]
- Tan, Y.; Hai, F.; Popp, J.; Oláh, J. Minimizing waste in the food supply chain: Role of information system, supply chain strategy, and network design. Sustainability 2022, 14, 11515. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Y.; Long, H.; Xing, H. Agricultural production structure optimization: A case study of major grain producing areas, China. J. Integr. Agric. 2013, 12, 184–197. [Google Scholar] [CrossRef]
- Cao, L.; Li, T.; Wang, R.; Zhu, J. Impact of COVID-19 on China’s agricultural trade. China Agric. Econ. Rev. 2021, 13, 1–21. [Google Scholar] [CrossRef]
- Francois, J.F.; Wignaraja, G. Economic implications of Asian integration. Glob. Econ. J. 2008, 8, 850139. [Google Scholar] [CrossRef]
- Coluccia, B.; Agnusdei, G.P.; Miglietta, P.P.; De Leo, F. Effects of COVID-19 on the Italian agri-food supply and value chains. Food Control 2021, 123, 107839. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wang, C. Impacts of the COVID-19 pandemic on vegetable production and countermeasures from an agricultural insurance perspective. J. Int. Agric. 2020, 19, 2866–2876. [Google Scholar] [CrossRef]
Variables | Variables Interpretation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Per capita GDP | 10.75 | 0.463 | 9.482 | 12.01 | |
Relative price index method | 32.72 | 6.176 | 16.51 | 45.97 | |
Government budget expenditure/GDP (%) | 27.93 | 20.83 | 10.58 | 137.9 | |
Primary industry value added/GDP (%) | 9.459 | 4.957 | 0.281 | 25.28 | |
Urban population/total population (%) | 56.09 | 13.39 | 22.67 | 89.60 | |
Labor supply in the agricultural category (persons) | 791.6 | 594.1 | 23.61 | 2559 | |
Social fixed asset investment in agriculture (CNY) | 3.407 | 2.548 | 0.00520 | 15.16 | |
Year-end resident population/administrative district land area (persons/square kilometers) | 517.7 | 690.5 | 3.376 | 3913 | |
Total mileage of roads, railroads and inland waterways/land area of administrative region (ten thousand kilometers/square kilometers) | 1.298 | 0.875 | 0.0695 | 5.344 | |
annual sunshine hours (hours) | 1996 | 577.0 | 257.1 | 3163 |
Adjacent Distance Spatial Weight Matrix | Geographical Distance Spatial Weight Matrix | Economic Distance Spatial Weight Matrix | Nested Economic Geospatial Weight Matrix | |||||
---|---|---|---|---|---|---|---|---|
Year | Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value |
2010 | 0.4440 *** | 4.0080 | 0.1600 *** | 5.5640 | 0.4970 *** | 5.7580 | 0.1810 *** | 5.5440 |
2011 | 0.4360 *** | 3.9350 | 0.1580 *** | 5.4890 | 0.4910 *** | 5.6920 | 0.1770 *** | 5.4560 |
2012 | 0.4170 *** | 3.7760 | 0.1520 *** | 5.3300 | 0.4920 *** | 5.6950 | 0.1730 *** | 5.3510 |
2013 | 0.3990 *** | 3.6170 | 0.1460 *** | 5.1510 | 0.5000 *** | 5.7760 | 0.1690 *** | 5.2320 |
2014 | 0.3750 *** | 3.4160 | 0.1370 *** | 4.8740 | 0.5110 *** | 5.8880 | 0.1600 *** | 4.9960 |
2015 | 0.3630 *** | 3.3150 | 0.1290 *** | 4.6660 | 0.5180 *** | 5.9680 | 0.1530 *** | 4.8270 |
2016 | 0.3730 *** | 3.4090 | 0.1240 *** | 4.5171 | 0.5150 *** | 5.9530 | 0.1480 *** | 4.7070 |
2017 | 0.3970 *** | 3.6190 | 0.1230 *** | 4.5010 | 0.5020 *** | 5.8290 | 0.1480 *** | 4.6960 |
2018 | 0.3570 *** | 3.3040 | 0.1080 *** | 4.0940 | 0.4670 *** | 5.4870 | 0.1200 *** | 3.9990 |
2019 | 0.3571 *** | 3.3110 | 0.1080 *** | 4.1090 | 0.4610 *** | 5.4140 | 0.1190 *** | 3.9760 |
Test | p-Value | |
---|---|---|
LM spatial lag | 0.1650 | 0.6850 |
Robust LM spatial lag | 0.1810 | 0.6710 |
LM spatial error | 0.5660 | 0.4520 |
Robust LM spatial error | 0.5500 | 0.4590 |
LR spatial lag | 46.240 *** | 0.0000 |
LR spatial error | 83.9700 *** | 0.0000 |
Hausman chi2 | 77.3000 *** | 0.0000 |
Wald test | 1499.3563 *** | 0.0000 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Pooled Regression Model | Fixed-Effects Regression Model | Static Spatial Durbin Model | Dynamic Spatial Durbin Model (Time Lag) | Dynamic Spatial Durbin Model (Time-Space Lag) | |
0.00396 ** (0.00155) | 0.00176 ** (0.00088) | 0.00182 ** (0.00079) | 0.00060 (0.00052) | 0.00156 *** (0.00053) | |
0.00223 *** (0.00063) | −0.01828 *** (0.00199) | −0.01664 *** (0.00185) | −0.00148 *** (0.00025) | −0.00101 *** (0.00025) | |
−0.01528 *** (0.00267) | −0.02860 *** (0.00437) | −0.02987 *** (0.00390) | 0.01085 *** (0.00107) | 0.00427 *** (0.00108) | |
0.02878 *** (0.00179) | 0.01655 *** (0.00379) | 0.01742 *** (0.00407) | −0.02643 *** (0.00102) | −0.01218 *** (0.00103) | |
0.00009 *** (0.00002) | −0.00003 (0.00007) | −0.00010 (0.00006) | −0.00008 *** (0.00001) | −0.00004 *** (0.00001) | |
−0.01551 *** (0.00482) | 0.00737 ** (0.00309) | 0.00329 (0.00292) | 0.00409 *** (0.00158) | 0.00219 (0.00159) | |
−0.00005 *** (0.00002) | 0.00080 *** (0.00023) | 0.00108 *** (0.00022) | 0.00012 *** (0.00001) | 0.00007 *** (0.00001) | |
0.00208 (0.00209) | 0.01876 *** (0.00146) | 0.01158 *** (0.00147) | |||
2.39660 *** (0.02526) | 1.41647 *** (0.02621) | ||||
0.61438 *** (0.13705) | |||||
0.67575 *** (0.05644) | 0.26735 *** (0.06252) | 0.30633 ** (0.12378) | |||
310.00000 | 310.00000 | 310.00000 | 279.00000 | 279.00000 | |
0.88894 | 0.92808 | 0.61377 | 0.76800 | 0.80374 |
Variables | Short-Term | Long-Term | ||||
---|---|---|---|---|---|---|
Adjacent Distance Spatial Weight Matrix | Geographical Distance Spatial Weight Matrix | Nested Economic Geospatial Weight Matrix | Adjacent Distance Spatial Weight Matrix | Geographical Distance Spatial Weight Matrix | Nested Economic Geospatial Weight Matrix | |
0.01108 *** (0.00363) | 0.05603 *** (0.01981) | 0.05164 *** (0.01489) | 0.00915 *** (0.00293) | 0.01310 *** (0.00280) | 0.01617 *** (0.00306) | |
0.00495 *** (0.00192) | −0.02562 ** (0.01101) | −0.01872 ** (0.00877) | 0.00409 *** (0.00154) | −0.00598 *** (0.00184) | −0.00584 ** (0.00232) | |
−0.04546 *** (0.00929) | −0.18295 *** (0.05977) | −0.16620 *** (0.04569) | −0.03756 *** (0.00723) | −0.04265 *** (0.00569) | −0.05193 *** (0.00792) | |
0.03206 *** (0.00718) | 0.05915 ** (0.02422) | 0.03414 ** (0.01461) | 0.02647 *** (0.00557) | 0.01375 *** (0.00372) | 0.01064 *** (0.00368) | |
0.00005 (0.00006) | −0.00103 ** (0.00041) | −0.00115 *** (0.00040) | 0.00004 (0.00005) | −0.00024 *** (0.00006) | −0.00036 *** (0.00009) | |
−0.00241 (0.01020) | 0.12934 *** (0.04873) | 0.07688 ** (0.03606) | −0.00199 (0.00838) | 0.03028 *** (0.00772) | 0.02405 ** (0.00961) | |
0.00011 * (0.00007) | 0.00059 ** (0.00025) | 0.00029 ** (0.00012) | 0.00009 * (0.00006) | 0.00014 *** (0.00004) | 0.00009 *** (0.00003) | |
310.00000 | 310.00000 | 310.00000 | 310.00000 | 310.00000 | 310.00000 |
Variables | Model Transformation Test | Variable Transformation Test | Endogeneity Test | |
---|---|---|---|---|
(1) SAR Model | (2) SEM Model | (3) Dynamic Spatial Durbin Model | (4) 2SLS Estimation | |
0.00318 ** (0.00134) | 0.00447 *** (0.00142) | 0.00309 *** (0.00105) | ||
−0.00256 *** (0.00064) | ||||
−0.00949 *** (0.00189) | ||||
1.39564 *** (0.02512) | ||||
0.51365 *** (0.07051) | 0.12300 ** (0.06270) | |||
0.48326 *** (0.09334) | ||||
Yes | Yes | Yes | Yes | |
310.00000 | 310.00000 | 279.00000 | 310.00000 | |
0.87055 | 0.80516 | 0.94763 | 0.97972 | |
D–W–HEndogenous test | 4.00021 [0.0455] | |||
Kleibergen–Paap rk LM statistic | 76.81 [0.0000] | |||
Kleibergen–Paap rk Wald F statistic | 58.85 {19.93} | |||
Anderson–Rubin Wald statistic | 15.39 [0.0005 | |||
Sargen–Hansen statistic | 2.659 [0.1030] |
Variables | (1) | (2) | (3) |
---|---|---|---|
−0.00097 *** (0.00026) | |||
−0.00120 *** (0.00041) | |||
−0.00380 *** (0.00036) | |||
−0.00377 *** (0.00110) | |||
−0.01266 *** (0.00180) | |||
−0.02201 *** (0.00157) | |||
1.55856 *** (0.02697) | 1.65591 *** (0.02588) | 1.47874 *** (0.02689) | |
2.00517*** (0.13973) | |||
0.28222 *** (0.06602) | 0.27936 *** (0.06870) | 0.57710 *** (0.12446) | |
Yes | Yes | Yes | |
279.00000 | 279.00000 | 279.00000 | |
0.45805 | 0.96205 | 0.95019 |
Variables | (1) | (2) |
---|---|---|
Eastern Region | Western Region | |
0.01804 (0.01528) | 0.02354 *** (0.00535) | |
0.05344 (0.04161) | 0.05761 *** (0.01573) | |
−0.00099 (0.00112) | −0.00217 *** (0.00047) | |
1.44172 *** (0.07188) | 1.22098 *** (0.03602) | |
0.30812 *** (0.11839) | 0.13842 *** (0.02886) | |
0.85030 *** (0.26373) | 0.44810 *** (0.09133) | |
−0.02134 ** (0.00846) | −0.01322 *** (0.00257) | |
0.40622 ** (0.17840) | 1.85951 *** (0.21567) | |
Yes | Yes | |
99.00000 | 108.00000 | |
0.78104 | 0.07547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Wang, S.; Han, J.; Ren, Z.; Ma, T.; Xie, H. The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China. Sustainability 2024, 16, 1734. https://doi.org/10.3390/su16051734
Miao X, Wang S, Han J, Ren Z, Ma T, Xie H. The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China. Sustainability. 2024; 16(5):1734. https://doi.org/10.3390/su16051734
Chicago/Turabian StyleMiao, Xinru, Shaopeng Wang, Jiqin Han, Zhaoyi Ren, Teng Ma, and Henglang Xie. 2024. "The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China" Sustainability 16, no. 5: 1734. https://doi.org/10.3390/su16051734
APA StyleMiao, X., Wang, S., Han, J., Ren, Z., Ma, T., & Xie, H. (2024). The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China. Sustainability, 16(5), 1734. https://doi.org/10.3390/su16051734