Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. NEON Airborne LiDAR Data
2.2.2. GEDI Data
2.2.3. ICESat-2 Data
2.2.4. Landsat 9 Data
2.2.5. Auxiliary Data
2.3. Methods
2.3.1. Importance Analysis of Feature Variables
2.3.2. Construction of the Forest Canopy Height-Retrieval Model
2.4. Accuracy Assessment
3. Results
3.1. Utilizing GEDI L2A Product for Forest Canopy Height Retrieval
3.2. Utilizing the ICESat-2 ATL08 Product for Forest Canopy Height Retrieval
3.3. Utilizing the Random Forest Regression Model for Forest Canopy Height Retrieval
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A. Global carbon budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Meir, P.; Cox, P.; Grace, J. The influence of terrestrial ecosystems on climate. Trends Ecol. Evol. 2006, 21, 254–260. [Google Scholar] [CrossRef]
- Rustad, L.E. The response of terrestrial ecosystems to global climate change: Towards an integrated approach. Sci. Total Environ. 2008, 404, 222–235. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Liu, Q.; Ge, B.; Tang, B. A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems. Catena 2022, 208, 105762. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Gu, J.-D. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [Google Scholar] [CrossRef]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.-K.; Simard, M. High-resolution forest canopy height estimation in an African blue carbon ecosystem. Remote Sens. Ecol. Conserv. 2015, 1, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Ding, J.; Disney, M.; Bartholomeus, H.; Herold, M.; Papale, D.; Valentini, R. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101899. [Google Scholar] [CrossRef]
- Swinfield, T.; Lindsell, J.A.; Williams, J.V.; Harrison, R.D.; Agustiono; Habibi; Gemita, E.; Schönlieb, C.B.; Coomes, D.A. Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sens. 2019, 11, 928. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S. Estimating tree canopy height in densely forest-covered mountainous areas using Gedi spaceborne full-waveform data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-1-2022, 25–32. [Google Scholar] [CrossRef]
- Wang, Q.; Ni-Meister, W. Forest Canopy Height and Gaps from Multiangular BRDF, Assessed with Airborne LiDAR Data. Remote Sens. 2019, 11, 2566. [Google Scholar] [CrossRef]
- He, X.Y.; Ren, C.Y.; Chen, L.; Wang, Z.; Zheng, H. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques. Sci. Geogr. Sin 2018, 38, 997–1011. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Showstack, R. Landsat 9 Satellite Continues Half-Century of Earth Observations: Eyes in the sky serve as a valuable tool for stewardship. Biosci. J. 2022, 72, 226–232. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Gorelick, N.; Ilyushchenko, S. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sens. 2020, 12, 2840. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Wake, S.; Ramos-Izquierdo, L.A.; Eegholm, B.; Dogoda, P.; Denny, Z.; Hersh, M.; Mulloney, M.; Thomes, W.J.; Ott, M.N.; Jakeman, H. Optical system design and integration of the Global Ecosystem Dynamics Investigation Lidar. In Proceedings of the Infrared Remote Sensing and Instrumentation XXVII, San Diego, CA, USA, 12–14 August 2019; pp. 99–111. [Google Scholar]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.L.; Healey, S.P.; Ståhl, G.; Saarela, S.; Holm, S.; Andersen, H.-E.; Dubayah, R.O.; Duncanson, L.; Hancock, S.; Armston, J.; et al. Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation. Environ. Res. Lett. 2019, 14, 065007. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Coyle, D.B.; Paul, R.S.; Furqan, L.C.; Erich, F.; Demetrios, P. The Global Ecosystem Dynamics Investigation (GEDI) Lidar laser transmitter. In Proceedings of the Infrared Remote Sensing and Instrumentation XXVII, San Diego, CA, USA, 12–14 August 2019; p. 111280L. [Google Scholar]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Dhargay, S.; Lyell, C.S.; Brown, T.P.; Inbar, A.; Sheridan, G.J.; Lane, P.N.J. Performance of GEDI Space-Borne LiDAR for Quantifying Structural Variation in the Temperate Forests of South-Eastern Australia. Remote Sens. 2022, 14, 3615. [Google Scholar] [CrossRef]
- Lahssini, K.; Baghdadi, N.; le Maire, G.; Fayad, I. Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests. Remote Sens. 2022, 14, 6264. [Google Scholar] [CrossRef]
- Caughlin, T.T.; Rifai, S.W.; Graves, S.J.; Asner, G.P.; Bohlman, S.A. Integrating LiDAR-derived tree height and Landsat satellite reflectance to estimate forest regrowth in a tropical agricultural landscape. Remote Sens. Ecol. Conserv. 2016, 2, 190–203. [Google Scholar] [CrossRef]
- Ceccherini, G.; Girardello, M.; Beck, P.S.A.; Migliavacca, M.; Duveiller, G.; Dubois, G.; Avitabile, V.; Battistella, L.; Barredo, J.I.; Cescatti, A. Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Commun. Earth Environ. 2023, 4, 97. [Google Scholar] [CrossRef]
- Gu, C.; Clevers, J.G.P.W.; Liu, X.; Tian, X.; Li, Z.; Li, Z. Predicting forest height using the GOST, Landsat 7 ETM+, and airborne LiDAR for sloping terrains in the Greater Khingan Mountains of China. ISPRS-J. Photogramm. Remote Sens. 2018, 137, 97–111. [Google Scholar] [CrossRef]
- Qi, W.; Lee, S.-K.; Hancock, S.; Luthcke, S.; Tang, H.; Armston, J.; Dubayah, R. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sens. Environ. 2019, 221, 621–634. [Google Scholar] [CrossRef]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.C.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Tyukavina, A.; Baccini, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Houghton, R.A.; Krylov, A.M.; Turubanova, S.; Goetz, S.J. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 2015, 10, 074002. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Quiring, S.M.; Qin, R. Estimating canopy height change using machine learning by coupling WorldView-2 stereo imagery with Landsat-7 data. Int. J. Remote Sens. 2023, 44, 631–645. [Google Scholar] [CrossRef]
- Ren, C.; Jiang, H.; Xi, Y.; Liu, P.; Li, H. Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 375. [Google Scholar] [CrossRef]
- Xi, Z.; Xu, H.; Xing, Y.; Gong, W.; Chen, G.; Yang, S. Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sens. 2022, 14, 364. [Google Scholar] [CrossRef]
- Guan, X.; Yang, X.; Yu, Y.; Pan, Y.; Dong, H.; Yang, T. Canopy-Height and Stand-Age Estimation in Northeast China at Sub-Compartment Level Using Multi-Resource Remote Sensing Data. Remote Sens. 2023, 15, 3738. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, F.; Qiu, Z.; He, N.; Zhu, X.; Li, Y.; Xu, Y.; Lu, Z. Enhancing Forest Canopy Height Retrieval: Insights from Integrated GEDI and Landsat Data Analysis. Sustainability 2023, 15, 10434. [Google Scholar] [CrossRef]
- Raup, H.M. Some Problems in Ecological Theory and their Relation to Conservation. J. Anim. Ecol. 1964, 33, 19–28. [Google Scholar] [CrossRef]
- SanClements, M.; Lee, R.H.; Ayres, E.D.; Goodman, K.; Jones, M.; Durden, D.; Thibault, K.; Zulueta, R.; Roberti, J.; Lunch, C.; et al. Collaborating with NEON. Biosci. J. 2020, 70, 107. [Google Scholar] [CrossRef]
- Hutsler, T.; Pricope, N.G.; Gao, P.; Rother, M.T. Detecting Woody Plants in Southern Arizona Using Data from the National Ecological Observatory Network (NEON). Remote Sens. 2023, 15, 98. [Google Scholar] [CrossRef]
- Johnson, B.R.; Kuester, M.A.; Kampe, T.U.; Keller, M. National ecological observatory network (NEON) airborne remote measurements of vegetation canopy biochemistry and structure. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2079–2082. [Google Scholar]
- Kampe, T.; Johnson, B.; Kuester, M.; Keller, M. NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability VI, San Diego, CA, USA, 2 August 2009. [Google Scholar]
- Scholl, V.M.; Cattau, M.E.; Joseph, M.B.; Balch, J.K. Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification. Remote Sens. 2020, 12, 1414. [Google Scholar] [CrossRef]
- Wang, C.; Jia, D.; Lei, S.; Numata, I.; Tian, L. Accuracy Assessment and Impact Factor Analysis of GEDI Leaf Area Index Product in Temperate Forest. Remote Sens. 2023, 15, 1535. [Google Scholar] [CrossRef]
- NEON (National Ecological Observatory Network). Elevation—LiDAR (DP3.30024.001), RELEASE-2023. Available online: https://data.neonscience.org/data-products/DP3.30024.001/RELEASE-2023 (accessed on 12 October 2023).
- Rishmawi, K.; Huang, C.; Schleeweis, K.; Zhan, X. Integration of VIIRS Observations with GEDI-Lidar Measurements to Monitor Forest Structure Dynamics from 2013 to 2020 across the Conterminous United States. Remote Sens. 2022, 14, 2320. [Google Scholar] [CrossRef]
- Dubayah, R.; Armston, J.; Healey, S.P.; Bruening, J.M.; Patterson, P.L.; Kellner, J.R.; Duncanson, L.; Saarela, S.; Ståhl, G.; Yang, Z.; et al. GEDI launches a new era of biomass inference from space. Environ. Res. Lett. 2022, 17, 095001. [Google Scholar] [CrossRef]
- Oliveira, P.V.; Zhang, X.; Peterson, B.; Ometto, J.P. Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest. Sci. Remote Sens. 2023, 7, 100083. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Dang, Y.; Bashir, B.; Xie, B.; Huang, Z. Estimates of Forest Canopy Height Using a Combination of ICESat-2/ATLAS Data and Stereo-Photogrammetry. Remote Sens. 2020, 12, 3649. [Google Scholar] [CrossRef]
- Mulverhill, C.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A. Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products. Remote Sens. Environ. 2022, 271, 112919. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef]
- Gerardo, R.; de Lima, I.P. Comparing the Capability of Sentinel-2 and Landsat 9 Imagery for Mapping Water and Sandbars in the River Bed of the Lower Tagus River (Portugal). Remote Sens. 2023, 15, 1927. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- López-Serrano, P.M.; Cárdenas Domínguez, J.L.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. Forests 2020, 11, 11. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Salberg, A.-B.; Haarpaintner, J.; Aarsten, D.; Gobakken, T.; Næsset, E. Multi-sensor forest vegetation height mapping methods for Tanzania. Eur. J. Remote Sens. 2018, 51, 587–606. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Estimation of aboveground biomass of vegetation based on landsat 8 OLI images. Heliyon 2022, 8, e11099. [Google Scholar] [CrossRef]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Rodríguez, E.; Morris, C.S.; Belz, J.E. A Global Assessment of the SRTM Performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Pascual, C.; Cohen, W.; García-Abril, A.; Arroyo, L.A.; Valbuena, R.; Martí-Fernández, S.; Manzanera, J.A.; Hill, R.; Rosette, J.; Suárez, J. Mean height and variability of height derived from lidar data and Landsat images relationship. In Proceedings of the SilviLaser 2008, 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, Edinburgh, UK, 17–19 September 2008; pp. 517–525. [Google Scholar]
- Guerra-Hernández, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Neuenschwander, A.; Popescu, S.C.; Godinho, S. Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. GISci. Remote Sens. 2022, 59, 1509–1533. [Google Scholar] [CrossRef]
- Teoh, T.T.; Rong, Z. Regression. In Artificial Intelligence with Python; Teoh, T.T., Rong, Z., Eds.; Springer: Singapore, 2022; pp. 163–181. [Google Scholar]
- Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Bisong, E., Ed.; Apress: Berkeley, CA, USA, 2019; pp. 215–229. [Google Scholar]
- Malakouti, S.M.; Menhaj, M.B.; Suratgar, A.A. The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction. Clean. Eng. Technol. 2023, 15, 100664. [Google Scholar] [CrossRef]
- Liu, X.W.; Long, Z.L.; Zhang, W.; Yang, L.M. Key feature space for predicting the glass-forming ability of amorphous alloys revealed by gradient boosted decision trees model. J. Alloys Compd. 2022, 901, 163606. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Nie, S.; Zhu, X.; Xi, X.; Wang, J. Analysis of the influence of different algorithms of GEDI L2A on the accuracy of ground elevation and forest canopy height. J. Univ. Chin. Acad. Sci. 2021, 39, 502–511. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 2022, 268, 112760. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
NEON Airborne Lidar Instrument and Product Specifications | |||
---|---|---|---|
Laser wavelength | 1064 nm (near IR) | Elevation accuracy | 5–35 cm |
Laser power | 250 µJ | Derived products | DTM and CHM (in the format of 1 km by 1 km mosaic tiles) |
Laser repetition rate | 33–167 kHz | Product resolution | uniform grid (1 m × 1 m) |
footprint diameter | 0.25 m (at 1000 m flying height), 0.8 m in wide beam-divergence mode | Terrain parameters | elevation and slope |
Sampling density | 1–4 points per square meter | Vertical datum | GEOID12A |
Horizontal accuracy | 5–15 cm | Canopy parameters | canopy top height, relative height (RH), and canopy cover |
Parameters Name | Parameters Size | Parameters Name | Parameters Size |
---|---|---|---|
Track height | ~400 km | Footprint | 25 m |
Coverage | 51.6° N~51.6° S | Geolocation error | 8 m |
repetition rate | 242 Hz | Along-track distances | 60 m |
Pulse width | 15 ns | Across-track distances | 600 m |
Wavelength | 1064 nm | Product tested in this study | L2A (elevation and canopy heights) |
Algorithm Setting Group | Smoothing Width (Noise) | Smoothing Width (Signal) | Waveform Signal Start Threshold | Waveform Signal End Threshold |
---|---|---|---|---|
a1 | 6.5σ | 6.5σ | 3σ | 6σ |
a2 | 6.5σ | 3.5σ | 3σ | 3σ |
a3 | 6.5σ | 3.5σ | 3σ | 6σ |
a4 | 6.5σ | 6.5σ | 6σ | 6σ |
a5 | 6.5σ | 3.5σ | 3σ | 2σ |
a6 | 6.5σ | 3.5σ | 3σ | 4σ |
Data Type | Acquisition Time | Number of Documents |
---|---|---|
ICESat-2 ATL08 | 2022/01/01–2022/12/31 | 4 |
ICESat-2 ATL03 | 2022/01/01–2022/12/31 | 4 |
Band No. | Band | Band Range/µm | Spatial Resolution/m |
---|---|---|---|
B1 | Coastal | 0.43~0.45 | 30 |
B2 | Blue | 0.45~0.51 | 30 |
B3 | Gree | 0.53~0.59 | 30 |
B4 | Red | 0.64~0.67 | 30 |
B5 | NIR | 0.85~0.88 | 30 |
B6 | SWIR1 | 1.57~1.65 | 30 |
B7 | SWIR2 | 2.11~2.29 | 30 |
B8 | Pan | 0.50~0.68 | 15 |
B9 | Cirrus | 1.36~1.39 | 30 |
Type | Characteristic Variable | Description |
---|---|---|
GEDI L2A | RH25, RH50, RH60, RH75, RH85, RH90, RH98, and RH100 | GEDI extracted relative elevation (25th, 50th, 60th,75th, 85th, 90th, 98th, and 100th) |
ICESat-2 | RH25, RH50, RH60, RH75, RH85, RH90, RH98, and RH100 | ICESat-2 extracted relative elevation (25th, 50th, 60th, 75th, 85th, 90th, 98th, and 100th) |
Landsat 9 | B1, B2, B3, B4, B5, B6, and B7 | Landsat 9 bands 1, 2, 3, 4, 5, 6, and 7 |
B24 | ||
B74 | ||
B76 | ||
B345 | ||
EVI | ||
DVI | ||
SLAVI | ||
VI3 | ||
PVI | ||
NDVI | ||
RDVI | ||
ND43 | ||
ND67 | ||
PC1, PC2, and PC3 | The first to third bands of principal component analysis. | |
TCB | The tassel cap transforms the Brightness band. | |
TCG | The tassel cap transforms the green band. | |
TCW | The tassel cap transforms the wetness band. | |
MNF1, MNF2, MNF3, and MNF4 | Minimum noise fraction first to fourth band. | |
SRTM | elevation | Elevation extracted from DEM. |
slope | Slope extracted from DEM. | |
aspect | Aspect extracted from DEM. |
Model | Characteristic Variable | Number of Characteristic Variables |
---|---|---|
GEDI | rh98, rh100, rh90, rh85, rh25, and rh75 | 6 |
Landsat 9 | MNF2, B3, TCW, B74, B7, MNF3, B6, ND43, MNF4, B76, EVI, B1, B24, ND67, B2, B345, B4, pc3, and VI3 | 19 |
GEDI and Landsat 9 | rh98, rh100, MNF2, rh85, rh90, B3, MNF3, B74, MNF4, rh25, TCW, B24, EVI, B7, B76, B4 ND43, rh75, B345, and rh60 | 20 |
ICESat-2 | rh85, rh90, rh75, rh98, rh25, rh100, and rh60 | 7 |
Landsat 9 | B7, B3, MNF2, MNF4, MNF3, TCW, pc3, B74, ND43, B1, B6, B2, B76, B24, EVI, B4, pc2, ND67, VI3, B345, TCB, and SLAVI | 22 |
ICESat-2 and Landsat 9 | rh85, rh90, rh75, B3, MNF2, B7, rh98, rh60, rh100, B76, MNF3, rh25, TCW, MNF4, B24, B74, EVI, ND43, B4, B1, ND67, pc3, and rh50 | 23 |
DATA GROUP | Parameter | ||||
---|---|---|---|---|---|
n_estimators | max_depth | min_samples_split | min_samples_leaf | max_features | |
GEDI | 288 | 15 | 1 | 5 | 0.96 |
Landsat 9 | 312 | 17 | 2 | 6 | 0.89 |
GEDI and Landsat 9 | 300 | 15 | 1 | 6 | 0.97 |
ICESat-2 | 280 | 12 | 1 | 6 | 0.92 |
Landsat 9 | 310 | 16 | 2 | 7 | 0.89 |
ICESat-2 and Landsat 9 | 200 | 14 | 1 | 5 | 0.90 |
Relative Height (RH) | R | MAE/m | RMSE/m | rRMSE | N |
---|---|---|---|---|---|
RH90 | 0.74 | 4.37 | 6.16 | 28.21% | 5398 |
RH92 | 0.75 | 3.93 | 5.67 | 25.94% | 5398 |
RH94 | 0.77 | 3.55 | 5.24 | 23.98% | 5398 |
RH96 | 0.78 | 3.27 | 4.96 | 22.71% | 5398 |
RH98 | 0.78 | 3.22 | 4.94 | 22.59% | 5398 |
RH100 | 0.78 | 4.00 | 5.63 | 25.76% | 5398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Li, Y.; Luan, K.; Qiu, Z.; He, N.; Zhu, X.; Zou, Z. Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration. Sustainability 2024, 16, 1735. https://doi.org/10.3390/su16051735
Zhu W, Li Y, Luan K, Qiu Z, He N, Zhu X, Zou Z. Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration. Sustainability. 2024; 16(5):1735. https://doi.org/10.3390/su16051735
Chicago/Turabian StyleZhu, Weidong, Yaqin Li, Kuifeng Luan, Zhenge Qiu, Naiying He, Xiaolong Zhu, and Ziya Zou. 2024. "Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration" Sustainability 16, no. 5: 1735. https://doi.org/10.3390/su16051735
APA StyleZhu, W., Li, Y., Luan, K., Qiu, Z., He, N., Zhu, X., & Zou, Z. (2024). Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration. Sustainability, 16(5), 1735. https://doi.org/10.3390/su16051735