Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania
Abstract
:1. Introduction
2. Common Storage Insect Pests of Maize
3. Common Storage Insect Pests of Beans
4. Cereals and Legumes Storage Systems
5. Storage Pest Detection Methods
6. Management of Storage Insect Pests
6.1. Chemical Control
6.2. Botanicals
6.3. Long-Lasting Insecticide-Incorporated Netting (LLIN)
6.4. Insects Growth Regulator (IGR)
6.5. Cultural Control
6.6. Biological Control
6.7. Hermetic Storage
6.8. Inert Substances
6.9. Mass Trapping
6.10. Ionizing Radiation
7. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiobia, D.; Tumbo, S.D.; Cantillo, J.; Rohde, B.; Mallikarjunan, P.; Mankin, R. Characterization of sounds in maize produced by internally feeding insects: Investigations to develop inexpensive devices for detection of Prostephanus truncatus (Coleoptera: Bostrichidae) and Sitophilus zeamais (Coleoptera: Curculionidae) in small-scale storage facilities in sub-Saharan Africa. Fla. Entomol. 2015, 98, 405–409. [Google Scholar]
- Mutungi, C.; Tungu, J.; Amri, J.; Gaspar, A.; Abass, A. Nutritional benefits of improved post-harvest handling practices for maize and common beans in Northern Tanzania: A quantitative farm-level assessment. J. Stored Prod. Res. 2022, 95, 101918. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernández, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)–model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Castro-Guerrero, N.A.; Isidra-Arellano, M.C.; Mendoza-Cozatl, D.G.; Valdés-López, O. Common bean: A legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Front. Plant Sci. 2016, 7, 600. [Google Scholar] [CrossRef]
- Mesele, T.; Dibaba, K.; Mendesil, E. Farmers’ perceptions of Mexican bean weevil, Zabrotes subfasciatus (Boheman), and pest management practices in Southern Ethiopia. Adv. Agric. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Mutambuki, K.; Likhayo, P. Efficacy of different hermetic bag storage technologies against insect pests and aflatoxin incidence in stored maize grain. Bull. Entomol. Res. 2021, 111, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, L.C. Maize and the maize weevil: Advances and innovations in postharvest control of the pest. Food Qual. Saf. 2018, 2, 145–152. [Google Scholar] [CrossRef]
- Edson, S.A.; Akyoo, A.M. Implication of quality uncertainty on market exchange: The case of seed industry in Kilolo district, Tanzania. Emerald Open Res. 2021, 2, 31. [Google Scholar] [CrossRef]
- Mutungi, C.; Muthoni, F.; Bekunda, M.; Gaspar, A.; Kabula, E.; Abass, A. Physical quality of maize grain harvested and stored by smallholder farmers in the Northern highlands of Tanzania: Effects of harvesting and pre-storage handling practices in two marginally contrasting agro-locations. J. Stored Prod. Res. 2019, 84, 101517. [Google Scholar] [CrossRef]
- Workie, E.; Mackolil, J.; Nyika, J.; Ramadas, S. Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Curr. Res. Environ. Sustain. 2020, 2, 100014. [Google Scholar] [CrossRef]
- Keneni, G.; Bekele, E.; Getu, E.; Imtiaz, M.; Damte, T.; Mulatu, B.; Dagne, K. Breeding food legumes for resistance to storage insect pests: Potential and limitations. Sustainability 2011, 3, 1399–1415. [Google Scholar] [CrossRef]
- Endshaw, W.; Hiruy, B. The distribution, frequency of occurrence, and the status of stored faba bean insect pests in relation to food security in Farta District, North West Ethiopia. Cogent Food Agric. 2020, 6, 1832400. [Google Scholar] [CrossRef]
- Quellhorst, H.; Athanassiou, C.G.; Bruce, A.; Scully, E.D.; Morrison III, W.R. Temperature-mediated competition between the invasive larger grain borer (Coleoptera: Bostrichidae) and the cosmopolitan maize weevil (Coleoptera: Curculionidae). Environ. Entomol. 2020, 49, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef]
- Darma, S.; Darma, D.C. Food security management for Indonesia: The strategy during the Covid-19 pandemic. Manag. Dyn. Knowl. Econ. 2020, 8, 371. [Google Scholar]
- Maggo, D. Impact of COVID-19 on Smallholder Farmers–Insights from India. World Business Council for Sustainable Development (WBCSD). 2020. Available online: https://www.wbcsd.org/Overview/News-Insights/WBCSD-insights/Impact-of-COVID-19-on-smallholder-farmers-in-India (accessed on 20 June 2021).
- Mehra, R.; Kumar, H.; Kumar, N.; Kumar, S. Impact of COVID-19 Pandemic on Food Supply Chain (FSC) and Human Health. In Integrated Management-Standing up for a Sustainable World; Eureka Publications: West Wickham, UK, 2021; pp. 311–319. [Google Scholar]
- Ilmi, P.I.; Jhauharotul, M.; Eka, H.A. The Impact of Health Awareness, Food Safety Attention, and Attitude Factors towards Consumer Purchase Interest of Food Products Post-Rise of COVID-19. Russ. J. Agric. Socio-Econ. Sci. 2020, 122, 332. [Google Scholar] [CrossRef]
- Arthur, E.; Obeng-Akrofi, G.; Awafo, E.A.; Akowuah, J.O. Comparative assessment of three storage methods for preserving maize grain to enhance food security post COVID-19. Sci. Afr. 2023, 19, e01582. [Google Scholar] [CrossRef]
- Food & Agriculture Organization. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; Food & Agriculture Organization: Rome, Italy, 2022; Volume 2022. [Google Scholar]
- Adler, C.; Athanassiou, C.; Carvalho, M.O.; Emekci, M.; Gvozdenac, S.; Hamel, D.; Riudavets, J.; Stejskal, V.; Trdan, S.; Trematerra, P. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. J. Stored Prod. Res. 2022, 97, 101977. [Google Scholar] [CrossRef]
- Manu, N.; Opit, G.; Osekre, E.; Arthur, F.; Mbata, G.; Armstrong, P.; Danso, J.; McNeill, S.; Campbell, J. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J. Stored Prod. Res. 2019, 80, 10–20. [Google Scholar] [CrossRef]
- López-Castillo, L.M.; Silva-Fernández, S.E.; Winkler, R.; Bergvinson, D.J.; Arnason, J.T.; García-Lara, S. Postharvest insect resistance in maize. J. Stored Prod. Res. 2018, 77, 66–76. [Google Scholar] [CrossRef]
- Altunç, Y.E.; Agrafioti, P.; Lampiri, E.; Güncan, A.; Tsialtas, I.T.; Athanassiou, C.G. Population growth of Prostephanus truncatus and Sitophilus zeamais and infestation patterns in three maize hybrids. J. Stored Prod. Res. 2023, 101, 102091. [Google Scholar] [CrossRef]
- Nwaubani, S.I.; Otitodun, G.O.; Ajao, S.K.; Opit, G.P.; Ala, A.A.; Omobowale, M.O.; Ogwumike, J.C.; Abel, G.I.; Ogundare, M.O.; Braimah, J.A. Assessing efficacies of insect pest management methods for stored bagged maize preservation in storehouses located in Nigerian markets. J. Stored Prod. Res. 2020, 86, 101566. [Google Scholar] [CrossRef]
- Abate, T.; Ampofo, J.K.O. Insect pests of beans in Africa: Their ecology and management. Annu. Rev. Entomol. 1996, 41, 45–73. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar]
- Manandhar, A.; Milindi, P.; Shah, A. An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture 2018, 8, 57. [Google Scholar] [CrossRef]
- Nukenine, E. Stored product protection in Africa: Past, present and future. Jul.-Kühn-Arch. 2010, 26, 425. [Google Scholar]
- Zorya, S.; Morgan, N.; Diaz Rios, L.; Hodges, R.; Bennett, B.; Stathers, T.; Lamb, J. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Moreno, L.L.; Tuxill, J.; Moo, E.Y.; Reyes, L.A.; Alejo, J.C.; Jarvis, D.I. Traditional maize storage methods of Mayan farmers in Yucatan, Mexico: Implications for seed selection and crop diversity. Biodivers. Conserv. 2006, 15, 1771–1795. [Google Scholar] [CrossRef]
- Shengbin, L. Study on farm grain storage in China. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, São Paulo, Brazil, 15–18 October 2006; pp. 47–52. [Google Scholar]
- Dunkel, F. Underground and earth sheltered food storage: Historical, geographic, and economic considerations. Undergr. Space 1985, 9, 5–6. [Google Scholar]
- Nagnur, S.; Channal, G.; Channamma, N. Indigenous grain structures and methods of storage. Indian J. Tradit. Knowl. 2006, 5, 114–117. [Google Scholar]
- Obeng-Akrofi, G.; Maier, D.E.; White, W.S.; Akowuah, J.O.; Bartosik, R.; Cardoso, L. Effectiveness of hermetic bag storage technology to preserve physical quality attributes of shea nuts. J. Stored Prod. Res. 2023, 101, 102086. [Google Scholar] [CrossRef]
- Yewle, N.R.; Gupta, S.V.; Patil, B.N.; Mann, S.; Kandasamy, P. Hermetic SuperGrain bags for controlling storage losses caused by Callosobruchus maculatus Fabricius (Coleoptera: Bruchinae) in stored mung bean (Vigna radiata). Bull. Entomol. Res. 2023, 113, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Brumm, T.J.; Bern, C.J.; Webber, D.F. Hermetic storage of maize grain in repurposed food oil containers to control maize weevils. J. Stored Prod. Postharvest Res. 2021, 12, 42–46. [Google Scholar]
- Baoua, I.; Amadou, L.; Lowenberg-DeBoer, J.; Murdock, L. Side by side comparison of GrainPro and PICS bags for postharvest preservation of cowpea grain in Niger. J. Stored Prod. Res. 2013, 54, 13–16. [Google Scholar] [CrossRef]
- Covele, G.; Gulube, A.; Tivana, L.; Ribeiro-Barros, A.I.; Carvalho, M.O.; Ndayiragije, A.; Nguenha, R. Effectiveness of hermetic containers in controlling paddy rice (Oryza sativa L.) storage insect pests. J. Stored Prod. Res. 2020, 89, 101710. [Google Scholar] [CrossRef]
- Alemu, G.T.; Nigussie, Z.; Haregeweyn, N.; Berhanie, Z.; Wondimagegnehu, B.A.; Ayalew, Z.; Molla, D.; Okoyo, E.N.; Baributsa, D. Cost-benefit analysis of on-farm grain storage hermetic bags among small-scale maize growers in northwestern Ethiopia. Crop Prot. 2021, 143, 105478. [Google Scholar] [CrossRef]
- Opoku, B.; Osekre, E.A.; Opit, G.; Bosomtwe, A.; Bingham, G.V. Evaluation of Hermetic Storage Bags for the Preservation of Yellow Maize in Poultry Farms in Dormaa Ahenkro, Ghana. Insects 2023, 14, 141. [Google Scholar] [CrossRef]
- De Groote, H.; Gunaratna, N.S.; Fisher, M.; Kebebe, E.; Mmbando, F.; Friesen, D. The effectiveness of extension strategies for increasing the adoption of biofortified crops: The case of quality protein maize in East Africa. Food Secur. 2016, 8, 1101–1121. [Google Scholar] [CrossRef]
- Gitonga, Z.M.; De Groote, H.; Kassie, M.; Tefera, T. Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching. Food Policy 2013, 43, 44–55. [Google Scholar] [CrossRef]
- Bartosik, R.; Urcola, H.; Cardoso, L.; Maciel, G.; Busato, P. Silo-bag system for storage of grains, seeds and by-products: A review and research agenda. J. Stored Prod. Res. 2023, 100, 102061. [Google Scholar] [CrossRef]
- Navarro, S. The use of modified and controlled atmospheres for the disinfestation of stored products. J. Pest Sci. 2012, 85, 301–322. [Google Scholar] [CrossRef]
- Mulungu, L.S.; Ndilahomba, B.; Nyange, C.; Mwatawala, M.W.; Mwalilino, J.; Joseph, C.; Mgina, C.A. Efficacy of Chrysanthemum cinerariaefolium, Neorautanenia mitis and Gnidia kraussiana against larger grain borer (Prostephanus truncatus Horn) and maize weevil (Sitophilus zeamays Motschulsky) on maize (Zea mays L.) grain seeds. J. Entomol. 2011, 8, 81–87. [Google Scholar] [CrossRef]
- Paudyal, S.; Opit, G.P.; Arthur, F.H.; Bingham, G.V.; Payton, M.E.; Gautam, S.G.; Noden, B. Effectiveness of the ZeroFly® storage bag fabric against stored-product insects. J. Stored Prod. Res. 2017, 73, 87–97. [Google Scholar] [CrossRef]
- Baributsa, D.; Njoroge, A. The use and profitability of hermetic technologies for grain storage among smallholder farmers in eastern Kenya. J. Stored Prod. Res. 2020, 87, 101618. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.B.; Fischler, M.; Schneider, K.; Daudi, S.; Gaspar, A.; Rüst, J.; Kabula, E.; Ndunguru, G.; Madulu, D.; Msola, D. On-farm comparison of different postharvest storage technologies in a maize farming system of Tanzania Central Corridor. J. Stored Prod. Res. 2018, 77, 55–65. [Google Scholar] [CrossRef]
- Njoroge, A.; Affognon, H.; Richter, U.; Hensel, O.; Rohde, B.; Chen, D.; Mankin, R. Acoustic, pitfall trap, and visual surveys of stored product insect pests in Kenyan warehouses. Insects 2019, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Mankin, R.W.; Hagstrum, D.W.; Smith, M.T.; Roda, A.; Kairo, M.T. Perspective and promise: A century of insect acoustic detection and monitoring. Am. Entomol. 2011, 57, 30–44. [Google Scholar] [CrossRef]
- Mankin, R.; Hagstrum, D.; Guo, M.; Eliopoulos, P.; Njoroge, A. Automated applications of acoustics for stored product insect detection, monitoring, and management. Insects 2021, 12, 259. [Google Scholar] [CrossRef]
- Chen, C.; Liang, Y.; Zhou, L.; Tang, X.; Dai, M. An automatic inspection system for pest detection in granaries using YOLOv4. Comput. Electron. Agric. 2022, 201, 107302. [Google Scholar] [CrossRef]
- Chu, J.; Li, Y.; Feng, H.; Weng, X.; Ruan, Y. Research on Multi-Scale Pest Detection and Identification Method in Granary Based on Improved YOLOv5. Agriculture 2023, 13, 364. [Google Scholar] [CrossRef]
- Nyabako, T.; Mvumi, B.M.; Stathers, T.; Mlambo, S.; Mubayiwa, M. Predicting Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) populations and associated grain damage in smallholder farmers’ maize stores: A machine learning approach. J. Stored Prod. Res. 2020, 87, 101592. [Google Scholar] [CrossRef]
- Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.; Marini, F. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem. J. 2019, 145, 252–258. [Google Scholar] [CrossRef]
- Hashim, N.; Onwude, D.I.; Maringgal, B. Technological advances in postharvest management of food grains. In Research and Technological Advances in Food Sciences; Academic Press: Cambridge, MA, USA, 2022; pp. 371–406. [Google Scholar]
- Li, J.; Zhou, H.; Wang, Z.; Jia, Q. Multi-scale detection of stored-grain insects for intelligent monitoring. Comput. Electron. Agric. 2020, 168, 105114. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, Q.; Chen, J.; Zhao, G. Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chem. 2022, 396, 133706. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhong, W.; Pan, H. Identification of stored grain pests by modified residual network. Comput. Electron. Agric. 2021, 182, 105983. [Google Scholar] [CrossRef]
- Mesías-Ruiz, G.A.; Pérez-Ortiz, M.; Dorado, J.; de Castro, A.I.; Peña, J.M. Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review. Front. Plant Sci. 2023, 14, 1143326. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, P.; Song, X.; Wang, C.; Chen, J.; Wu, L. Research on granary pest detection based on SSD. Comput. Eng. Appl. 2020, 56, 214–218. [Google Scholar]
- Yu, J.; Zhai, F.; Liu, N.; Shen, Y.; Pan, Q. FESNet: Frequency-Enhanced Saliency Detection Network for Grain Pest Segmentation. Insects 2023, 14, 99. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Lv, Z.; Fan, Y.; Song, Y. Computer vision detection of foreign objects in coal processing using attention CNN. Eng. Appl. Artif. Intell. 2021, 102, 104242. [Google Scholar] [CrossRef]
- Channa, H.; Ricker-Gilbert, J.; Feleke, S.; Abdoulaye, T. Overcoming smallholder farmers’ post-harvest constraints through harvest loans and storage technology: Insights from a randomized controlled trial in Tanzania. J. Dev. Econ. 2022, 157, 102851. [Google Scholar] [CrossRef]
- Arthur, F.H.; Johnson, J.A.; Neven, L.G.; Hallman, G.J.; Follett, P.A. Insect pest management in postharvest ecosystems in the United States of America. Outlooks Pest Manag. 2009, 20, 279–284. [Google Scholar] [CrossRef]
- Gourgouta, M.; Rumbos, C.I.; Athanassiou, C.G. Residual toxicity of a commercial cypermethrin formulation on grains against four major storage beetles. J. Stored Prod. Res. 2019, 83, 103–109. [Google Scholar] [CrossRef]
- Paul, A.; Radhakrishnan, M.; Anandakumar, S.; Shanmugasundaram, S.; Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1125–1155. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef]
- Dong, X. Response of Stored Grain Insect Pests and Barley to Ozone Treatment. Ph.D. Thesis, Murdoch University, Perth, Australia, 2022. [Google Scholar]
- Ayub, A.; Srithilat, K.; Fatima, I.; Panduro-Tenazoa, N.M.; Ahmed, I.; Akhtar, M.U.; Shabbir, W.; Ahmad, K.; Muhammad, A. Arsenic in drinking water: Overview of removal strategies and role of chitosan biosorbent for its remediation. Environ. Sci. Pollut. Res. 2022, 29, 64312–64344. [Google Scholar] [CrossRef]
- Buenavista, R.M. Sorption Kinetics and Equilibrium Isotherms of Phosphine and Evaluation of Chlorine Dioxide Gas during Wheat Fumigation. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2022. [Google Scholar]
- Bhadriraju, S. Efficacy of chlorine dioxide gas against five stored-product insect species. Effic. Chlorine Dioxide Gas Against Five Stored-Prod. Insect Species. 2015, 111, 159–168. [Google Scholar]
- Aly, H.M.; Wahba, T.F.; Hassan, N.A. Pyroligneous acid derived from ficus benjamina wastes synergize deltamethrin against Sitophilus oryzae. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control 2022, 14, 47–54. [Google Scholar] [CrossRef]
- Bnina, E.B.; Hajlaoui, H.; Chaieb, I.; Said, M.B.; Jannet, H.B.; Daami-Remadi, M. Chemical composition, antimicrobial and insecticidal activities of the tunisian Citrus aurantium essential oils. Czech J. Food Sci. 2019, 37, 81–92. [Google Scholar] [CrossRef]
- Sola, P.; Mvumi, B.; Ogendo, J.; Mponda, O.; Kamanula, J.; Nyirenda, S.; Belmain, S.; Stevenson, P. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Bezabih, G.; Satheesh, N.; Workneh Fanta, S.; Wale, M.; Atlabachew, M. Reducing postharvest loss of stored grains using plant-based biopesticides: A review of past research efforts. Adv. Agric. 2022, 2022, 6946916. [Google Scholar] [CrossRef]
- Naimi, I.; Zefzoufi, M.; Bouamama, H.; M’hamed, T.B. Chemical composition and repellent effects of powders and essential oils of Artemisia absinthium, Melia azedarach, Trigonella foenum-graecum, and Peganum harmala on Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). Ind. Crops Prod. 2022, 182, 114817. [Google Scholar] [CrossRef]
- Tesfaye, A.; Jenber, A.J.; Mintesnot, M. Survey of storage insect pests and management of rice weevil, Sitophilus oryzae, using botanicals on sorghum (Sorghum bicolor L.) at Jawi District, Northwestern Ethiopia. Arch. Phytopathol. Plant Prot. 2021, 54, 2085–2100. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- da Silva Moura, E.; D’Antonino Faroni, L.R.; Fernandes Heleno, F.; Aparecida Zinato Rodrigues, A.; Figueiredo Prates, L.H.; Lopes Ribeiro de Queiroz, M.E. Optimal extraction of Ocimum basilicum essential oil by association of ultrasound and hydrodistillation and its potential as a biopesticide against a major stored grains pest. Molecules 2020, 25, 2781. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Jalali Sendi, J.; Setzer, W.N.; Changbunjong, T. Encapsulation of Eucalyptus largiflorens essential oil by mesoporous silicates for effective control of the cowpea weevil, Callosobruchus maculatus (Fabricius)(Coleoptera: Chrysomelidae). Molecules 2022, 27, 3531. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Bandani, A.R. Does timing of post-stressor exposure mating matter for parental effect? J. Stored Prod. Res. 2022, 99, 102021. [Google Scholar] [CrossRef]
- Loko, Y.L.E.; Medegan Fagla, S.; Kassa, P.; Ahouansou, C.A.; Toffa, J.; Glinma, B.; Dougnon, V.; Koukoui, O.; Djogbenou, S.L.; Tamò, M. Bioactivity of essential oils of Cymbopogon citratus (DC) Stapf and Cymbopogon nardus (L.) W. Watson from Benin against Dinoderus porcellus Lesne (Coleoptera: Bostrichidae) infesting yam chips. Int. J. Trop. Insect Sci. 2021, 41, 511–524. [Google Scholar] [CrossRef]
- Karabörklü, S.; Ayvaz, A. A comprehensive review of effective essential oil components in stored-product pest management. J. Plant Dis. Prot. 2023, 130, 449–481. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Bonacucina, G.; Nika, E.P.; Skourti, A.; Georgakopoulou, S.K.C.; Filintas, C.S.; Panariti, A.M.E.; Maggi, F.; Petrelli, R.; Ferrati, M. The Type of Grain Counts: Effectiveness of Three Essential Oil-Based Nanoemulsions against Sitophilus oryzae. Plants 2023, 12, 813. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Allali, A.; Saghrouchni, H.; Bourhia, M.; El Moussaoui, A.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.; Giesy, J.P. Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. Molecules 2022, 27, 2282. [Google Scholar] [CrossRef] [PubMed]
- Morrison III, W.R.; Wilkins, R.V.; Gerken, A.R.; Scheff, D.S.; Zhu, K.Y.; Arthur, F.H.; Campbell, J.F. Mobility of adult Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) after exposure to long-lasting insecticide-incorporated netting. J. Econ. Entomol. 2018, 111, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, R.V. Implementing Long-Lasting Insecticide Netting as a Tool for Diversifying Integrated Pest Management Programs of Stored Product Insects. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- Wilkins, R.V.; Zhu, K.Y.; Campbell, J.F.; Morrison III, W.R. Mobility and dispersal of two cosmopolitan stored-product insects are adversely affected by long-lasting insecticide netting in a life stage-dependent manner. J. Econ. Entomol. 2020, 113, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016, 68, 85–92. [Google Scholar] [CrossRef]
- Arthur, F.; Ghimire, M.; Myers, S.; Phillips, T. Evaluation of pyrethroid insecticides and insect growth regulators applied to different surfaces for control of Trogoderma granarium (Coleoptera: Dermestidae) the khapra beetle. J. Econ. Entomol. 2018, 111, 612–619. [Google Scholar] [CrossRef]
- Villalobos-Sambucaro, M.J.; Nouzova, M.; Ramirez, C.E.; Eugenia Alzugaray, M.; Fernandez-Lima, F.; Ronderos, J.R.; Noriega, F.G. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci. Rep. 2020, 10, 3091. [Google Scholar] [CrossRef]
- Oberlander, H.; Silhacek, D.L. Insect growth regulators. In Alternatives to Pesticides in Stored-Product IPM; Springer: Berlin/Heidelberg, Germany, 2000; pp. 147–163. [Google Scholar]
- Oberlander, H.; Silhacek, D.L.; Shaaya, E.; Ishaaya, I. Current status and future perspectives of the use of insect growth regulators for the control of stored product insects. J. Stored Prod. Res. 1997, 33, 1–6. [Google Scholar] [CrossRef]
- Pener, M.P.; Dhadialla, T.S. An overview of insect growth disruptors; applied aspects. Adv. Insect Physiol. 2012, 43, 1–162. [Google Scholar]
- Liu, S.S.; Arthur, F.H.; VanGundy, D.; Phillips, T.W. Combination of methoprene and controlled aeration to manage insects in stored wheat. Insects 2016, 7, 25. [Google Scholar] [CrossRef]
- Mondal, K.; Parween, S. Insect growth regulators and their potential in the management of stored-product insect pests. Integr. Pest Manag. Rev. 2000, 5, 255–295. [Google Scholar] [CrossRef]
- Arthur, F.; Morrison III, W.R. Methodology for assessing progeny production and grain damage on commodities treated with insecticides. Agronomy 2020, 10, 804. [Google Scholar] [CrossRef]
- Hamel, D.; Rozman, V.; Liška, A. Storage of Cereals in Warehouses with or without Pesticides. Insects 2020, 11, 846. [Google Scholar] [CrossRef]
- Yang, Y.; Wilson, L.T.; Arthur, F.H.; Wang, J.; Jia, C. Regional analysis of bin aeration as an alternative to insecticidal control for post-harvest management of Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Ecol. Model. 2017, 359, 165–181. [Google Scholar] [CrossRef]
- Aulicky, R.; Shah, J.A.; Kolar, V.; Li, Z.; Stejskal, V. Control of stored agro-commodity pests Sitophilus granarius and Callosobruchus chinensis by nitrogen hypoxic atmospheres: Laboratory and field validations. Agronomy 2022, 12, 2748. [Google Scholar] [CrossRef]
- Brilinger, D.; Wille, C.L.; da Rosa, J.M.; Franco, C.R.; Boff, M.I.C. Susceptibility of Brazilian maize landraces to the attack of Sitophilus zeamais (Coleoptera: Curculionidae). J. Stored Prod. Res. 2020, 88, 101677. [Google Scholar] [CrossRef]
- Mwololo, J.; Mugo, S.; Tefera, T.; Okori, P.; Munyiri, S.; Semagn, K.; Otim, M.; Beyene, Y. Resistance of tropical maize genotypes to the larger grain borer. J. Pest Sci. 2012, 85, 267–275. [Google Scholar] [CrossRef]
- Sserunjogi, M.; Bern, C.; Brumm, T.; Maier, D. Periodic disturbance time interval for suppression of the maize weevils, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) in stored maize (Zea mays L.). J. Stored Prod. Res. 2021, 94, 101875. [Google Scholar] [CrossRef]
- Borgemeister, C.; Holst, N.; Hodges, R.J. Biological control and other pest management options for larger grain borer Prostephanus truncatus. In Biological Control in IPM Systems in Africa; CABI Publishing: Wallingford, UK, 2003; pp. 311–328. [Google Scholar]
- Athanassiou, C.G.; Arthur, F.H.; Kavallieratos, N.G.; Throne, J.E. Efficacy of spinosad and methoprene, applied alone or in combination, against six stored-product insect species. J. Pest Sci. 2011, 84, 61–67. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Zikou, A.; Triantafillou, V.; Lagogiannis, I.; Eliopoulos, P.A. Interactions between Beauveria bassiana and Isaria fumosorosea and their hosts Sitophilus granarius (L.) and Sitophilus oryzae (L.)(Coleoptera: Curculionidae). Insects 2019, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Atta, B.; Rizwan, M.; Sabir, A.M.; Gogi, M.D.; Farooq, M.A.; Batta, Y.A. Efficacy of Entomopathogenic Fungi against Brown Planthopper Nilaparvata Lugens (Stål)(Homoptera: Delphacidae) under Controlled Conditions. Gesunde Pflanz. 2020, 72, 101–112. [Google Scholar] [CrossRef]
- Kavallieratos, N.; Athanassiou, C.; Michalaki, M.; Batta, Y.; Rigatos, H.; Pashalidou, F.; Balotis, G.; Tomanović, Ž.; Vayias, B. Effect of the combined use of Metarhizium anisopliae (Metschinkoff) Sorokin and diatomaceous earth for the control of three stored-product beetle species. Crop Prot. 2006, 25, 1087–1094. [Google Scholar] [CrossRef]
- Chigoverah, A.; Mvumi, B. Comparative efficacy of four hermetic bag brands against Prostephanus truncatus (Coleoptera: Bostrichidae) in Stored Maize Grain. J. Econ. Entomol. 2018, 111, 2467–2475. [Google Scholar] [CrossRef]
- Villers, P.; Navarro, S.; De Bruin, T. New applications of hermetic storage for grain storage and transport. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; pp. 446–451. [Google Scholar]
- Likhayo, P.; Bruce, A.Y.; Mutambuki, K.; Tefera, T.; Mueke, J. On-farm evaluation of hermetic technology against maize storage pests in Kenya. J. Econ. Entomol. 2016, 109, 1943–1950. [Google Scholar] [CrossRef]
- Baoua, I.; Amadou, L.; Ousmane, B.; Baributsa, D.; Murdock, L. PICS bags for post-harvest storage of maize grain in West Africa. J. Stored Prod. Res. 2014, 58, 20–28. [Google Scholar] [CrossRef]
- Kuyu, C.G.; Tola, Y.B.; Mohammed, A.; Mengesh, A.; Mpagalile, J.J. Evaluation of different grain storage technologies against storage insect pests over an extended storage time. J. Stored Prod. Res. 2022, 96, 101945. [Google Scholar] [CrossRef]
- Saeed, N.; Wakil, W.; Farooq, M.; Shakeel, M.; Arain, M.S.; Shakeel, Q. Evaluating the combination of Metarhizium anisopliae and an enhanced form of diatomaceous earth (Grain-Guard) for the environmentally friendly control of stored grain pests. Environ. Monit. Assess. 2020, 192, 1–9. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.; Abdelgaleil, S.A. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020, 88, 101663. [Google Scholar] [CrossRef]
- Agrafioti, P.; Faliagka, S.; Lampiri, E.; Orth, M.; Pätzel, M.; Katsoulas, N.; Athanassiou, C.G. Evaluation of silica-coated insect proof nets for the control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials 2020, 10, 1658. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C.; Tsekos, G.T. Influence of different non-grain commodities on the population growth of Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 2019, 81, 31–39. [Google Scholar] [CrossRef]
- Fields, P.; Xie, Y.; Hou, X. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. J. Stored Prod. Res. 2001, 37, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, W.E.; Ma, M. Pheromones for monitoring and control of stored-product insects. Annu. Rev. Entomol. 1985, 30, 257–272. [Google Scholar] [CrossRef]
- Savoldelli, S.; Trematerra, P. Mass-trapping, mating-disruption and attracticide methods for managing stored-product insects: Success stories and research needs. Stewart Postharvest Rev. 2011, 7, 1–8. [Google Scholar]
- Dissanayaka, D.; Sammani, A.; Wijayaratne, L. Aggregation pheromone 4, 8-dimethyldecanal and kairomone affect the orientation of Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae) adults. J. Stored Prod. Res. 2018, 79, 144–149. [Google Scholar] [CrossRef]
- Fargo, W.; Epperly, D.; Cuperus, G.; Clary, B.; Noyes, R. Effect of temperature and duration of trapping on four stored grain insect species. J. Econ. Entomol. 1989, 82, 970–973. [Google Scholar] [CrossRef]
- Hallman, G.J. Control of stored product pests by ionizing radiation. J. Stored Prod. Res. 2013, 52, 36–41. [Google Scholar] [CrossRef]
- Hassan, R.S.; Mahmoud, E.A.; Sileem, T.M.; Sayed, W.A. Evaluation of fast neutron irradiation as a new control method against the Indian meal moth, Plodia interpunctella (Hübner). J. Radiat. Res. Appl. Sci. 2019, 12, 38–44. [Google Scholar] [CrossRef]
- Hou, L.; Johnson, J.A.; Wang, S. Radio frequency heating for postharvest control of pests in agricultural products: A review. Postharvest Biol. Technol. 2016, 113, 106–118. [Google Scholar] [CrossRef]
- Muniswamy, K.; Sugumar, A.; Yarrakula, S.; Manickam, L.; DV, C. Effect of ozone fumigation on controlling common storage pest Tribolium castaneum (Herbst) in proso millet during storage. Ozone Sci. Eng. 2023, 45, 543–559. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, K.; Zhu, X.; Bai, Y.; Yang, W.; Li, C. Role of modified atmosphere in pest control and mechanism of its effect on insects. Front. Physiol. 2019, 10, 206. [Google Scholar] [CrossRef]
- Li, B.; Subramanyam, B. Toxicity of chlorine dioxide gas to phosphine-susceptible and-resistant adults of five stored-product insect species: Influence of temperature and food during gas exposure. J. Econ. Entomol. 2018, 111, 1947–1957. [Google Scholar]
- Soujanya, P.L.; Sekhar, J.; Kumar, P.; Sunil, N.; Prasad, C.V.; Mallavadhani, U. Potentiality of botanical agents for the management of post harvest insects of maize: A review. J. Food Sci. Technol. 2016, 53, 2169–2184. [Google Scholar] [CrossRef]
- Mackled, M.I.; El-Hefny, M.; Bin-Jumah, M.; Wahba, T.F.; Allam, A.A. Assessment of the toxicity of natural oils from Mentha piperita, Pinus roxburghii, and Rosa spp. against three stored product insects. Processes 2019, 7, 861. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; da Silva Rolim, G.; Coelho, R.P.; Santos, M.H.; de Souza Tavares, W.; Zanuncio, J.C.; Serrão, J.E. Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop Prot. 2020, 137, 105299. [Google Scholar] [CrossRef]
- Radünz, A.; Radünz, M.; Bizollo, A.; Tramontin, M.; Radünz, L.; Mariot, M.; Tempel-Stumpf, E.; Calisto, J.; Zaniol, F.; Albeny-Simões, D. Insecticidal and repellent activity of native and exotic lemongrass on Maize weevil. Braz. J. Biol. 2022, 84, e252990. [Google Scholar] [CrossRef] [PubMed]
- Ahsaei, S.M.; Rodriguez-Rojo, S.; Salgado, M.; Cocero, M.J.; Talebi-Jahromi, K.; Amoabediny, G. Insecticidal activity of spray dried microencapsulated essential oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop Prot. 2020, 128, 104996. [Google Scholar] [CrossRef]
- Oyedeji, A.; Okunowo, W.; Osuntoki, A.; Olabode, T.; Ayo-Folorunso, F. Insecticidal and biochemical activity of essential oil from Citrus sinensis peel and constituents on Callosobrunchus maculatus and Sitophilus zeamais. Pestic. Biochem. Physiol. 2020, 168, 104643. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, J.; Jevremović, S.; Kostić, I.; Kostić, M.; Vuleta, A.; Manitašević Jovanović, S.; Šešlija Jovanović, D. Toxic, oviposition deterrent and oxidative stress effects of Thymus vulgaris essential oil against Acanthoscelides obtectus. Insects 2020, 11, 563. [Google Scholar] [CrossRef]
- Hamilton, K.; White, N.D.; Jian, F.; Fields, P.G. Hemp (Cannabis sativa) seed for reproduction of stored-product insects. J. Stored Prod. Res. 2021, 92, 101787. [Google Scholar] [CrossRef]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res. 2007, 43, 123–128. [Google Scholar] [CrossRef]
- Kiran, S.; Prakash, B. Assessment of toxicity, antifeedant activity, and biochemical responses in stored-grain insects exposed to lethal and sublethal doses of Gaultheria procumbens L. essential oil. J. Agric. Food Chem. 2015, 63, 10518–10524. [Google Scholar]
- Kim, S.-W.; Lee, H.-R.; Jang, M.-J.; Jung, C.-S.; Park, I.-K. Fumigant toxicity of Lamiaceae plant essential oils and blends of their constituents against adult rice weevil Sitophilus oryzae. Molecules 2016, 21, 361. [Google Scholar] [CrossRef]
- Kiran, S.; Kujur, A.; Patel, L.; Ramalakshmi, K.; Prakash, B. Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oil against insect pest of legume seeds. Pestic. Biochem. Physiol. 2017, 139, 17–23. [Google Scholar]
- de Lira Pimentel, C.S.; de Lima Albuquerque, B.N.; da Rocha, S.K.L.; Dutra, K.A.; Silva, D.G.R.; dos Santos, F.H.G.; Vieira, G.J.d.S.G.; dos Santos Oliveira, H.V.; Paiva, P.M.G.; Napoleão, T.H. Insecticidal potential of essential oil from inflorescences of Etlingera elatior and its major constituents against Sitophilus zeamais. Ind. Crops Prod. 2023, 203, 117154. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.-T.; Feng, Y.-X.; Zhang, D.; Guo, S.-S.; Pang, X.; Geng, Z.-F.; Xi, C.; Du, S.-S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Jaiswal, G. Evaluation of biological activities of Piper nigrum oil against Tribolium castaneum. Bull. Insectology 2007, 60, 57. [Google Scholar]
- Sang, Y.; Wang, P.; Liu, J.; Hao, Y.; Wang, X. Chemical composition of essential oils from three Rhododendron species and their repellent, insecticidal and fumigant activities. Chem. Biodivers. 2022, 19, e202200740. [Google Scholar] [CrossRef]
- Pang, X.; Feng, Y.-X.; Qi, X.-J.; Wang, Y.; Almaz, B.; Xi, C.; Du, S.-S. Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environ. Sci. Pollut. Res. 2020, 27, 7618–7627. [Google Scholar] [CrossRef]
- Araújo, A.; Oliveira, J.V.d.; França, S.M.; Navarro, D.M.; Dutra, K.d.A. Toxicity and repellency of essential oils in the management of Sitophilus zeamais. Rev. Bras. De Eng. Agrícola E Ambient. 2019, 23, 372–377. [Google Scholar] [CrossRef]
- Fogang, H.P.D.; Womeni, H.M.; Piombo, G.; Barouh, N.; Tapondjou, L.A. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say)(Coleoptera: Bruchidae). J. Food Prot. 2012, 75, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Nattudurai, G.; Baskar, K.; Paulraj, M.G.; Islam, V.I.H.; Ignacimuthu, S.; Duraipandiyan, V. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environ. Sci. Pollut. Res. 2017, 24, 1619–1629. [Google Scholar] [CrossRef]
- Mahdi, K.-R.; Behnam, A.-B. Fumigant toxicity and repellency effect of orange leaves Citrus sinensis (L.) Essential Oil on Rhyzopertha dominica and Lasioderma serricorne. J. Essent. Oil Bear. Plants 2018, 21, 577–582. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Cao, J.; Pang, X.; Zhang, Z.; Chen, Z.; Zhou, Y.; Geng, Z.; Sang, Y.; Du, S. Toxic and Repellent Effects of Volatile Phenylpropenes from Asarum heterotropoides on Lasioderma serricorne and Liposcelis bostrychophila. Molecules 2018, 23, 2131. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Dai, J.; Zhu, L. Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind. Crops Prod. 2019, 128, 29–37. [Google Scholar] [CrossRef]
- Liu, Z.; Ho, S. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J. Stored Prod. Res. 1999, 35, 317–328. [Google Scholar] [CrossRef]
- Tunç, İ.; Berger, B.; Erler, F.; Dağlı, F. Ovicidal activity of essential oils from five plants against two stored-product insects. J. Stored Prod. Res. 2000, 36, 161–168. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Aggarwal, K.K.; Kumar, S. Insecticidal and ovicidal activity of the essential oil of Anethum sowa Kurz against Callosobruchus maculatus F.(Coleoptera: Bruchidae). Int. J. Trop. Insect Sci. 2001, 21, 61–66. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Karamanoli, K.I.; Stamopoulos, D.C.; Menkissoglu-Spiroudi, U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. Former. Pestic. Sci. 2004, 60, 514–520. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of essential oils of Lippia alba (Mill.) NE Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. J. Sci. Food Agric. 2011, 91, 2277–2283. [Google Scholar]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Chanotiya, C.; Dubey, N.K. Antifungal, antiaflatoxigenic, and insecticidal efficacy of spearmint (Mentha spicata L.) essential oil. Int. Biodeterior. Biodegrad. 2014, 89, 29–36. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Dubey, N. Assessment of Essential Oil of Acorus calamus L. and its Major Constituent β-Asarone in Post Harvest Management of Callosobruchus chinensis L. J. Essent. Oil Bear. Plants 2016, 19, 542–552. [Google Scholar] [CrossRef]
- Silvestre, W.; Livinalli, N.; Baldasso, C.; Tessaro, I. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, J.; Kini, R.; Ho, S. Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J. Stored Prod. Res. 1997, 33, 289–298. [Google Scholar] [CrossRef]
- Fathi, A.; Shakarami, J. Larvicidal effects of essential oils of five species of Eucalyptus against Tribolium confusum (du Val) and T. castaneum (Herbest). Int. J. Agric. Crop Sci. (IJACS) 2014, 7, 220–224. [Google Scholar]
- Wang, Y.; Zhang, L.-T.; Feng, Y.-X.; Guo, S.-S.; Pang, X.; Zhang, D.; Geng, Z.-F.; Du, S.-S. Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environ. Sci. Pollut. Res. 2019, 26, 24988–24997. [Google Scholar] [CrossRef]
- Abdullahi, A.A. Bioactivities of Hyptissuaveolens and Tephrosiavogelii Leaves Extracts on Prostephanus truncatus. Master’s Thesis, Kwara State University, Malete, Nigeria, 2021. [Google Scholar]
- Ngwenyama, P.; Mvumi, B.M.; Stathers, T.E.; Nyanga, L.K.; Siziba, S. How different hermetic bag brands and maize varieties affect grain damage and loss during smallholder farmer storage. Crop Prot. 2022, 153, 105861. [Google Scholar] [CrossRef]
- Bergvinson, D.; García-Lara, S. Synergistic effects of insect-resistant maize and Teretrius nigrescens on the reduction of grain losses caused by Prostephanus truncatus (Horn.). J. Stored Prod. Res. 2011, 47, 95–100. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Nika, E.P.; Ali, A.; Yaseen, T.; Asrar, M. Two are better than one: The combinations of Beauveria bassiana, diatomaceous earth, and indoxacarb as effective wheat protectants. Environ. Sci. Pollut. Res. 2023, 30, 41864–41877. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Arthur, F.H. Cool down–warm up: Differential responses of stored product insects after gradual temperature changes. Insects 2020, 11, 158. [Google Scholar] [CrossRef]
- Ak, K. Efficacy of entomopathogenic fungi against the stored-grain pests, Sitophilus granarius L. and S. oryzae L.(Coleoptera: Curculionidae). Egypt. J. Biol. Pest Control 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Mesele, T.; Dibaba, K.; Garbaba, C.A.; Mendesil, E. Effectiveness of different storage structures for the management of Mexican bean weevil, Zabrotes subfasciatus (Boheman)(Coleoptera: Bruchidae) on stored common bean, Phaseolus vulgaris L. (Fabaceae). J. Stored Prod. Res. 2022, 96, 101928. [Google Scholar] [CrossRef]
- Patil, H.; Shejale, K.P.; Jabaraj, R.; Shah, N.; Kumar, G. Disinfestation of red flour beetle (Tribolium castaneum) present in almonds (Prunus dulcis) using microwave heating and evaluation of quality and shelf life of almonds. J. Stored Prod. Res. 2020, 87, 101616. [Google Scholar] [CrossRef]
Method | Product Common Names | Insect Pest | Insect Stage | Mode of Action | Crops | References |
---|---|---|---|---|---|---|
Chemical | Deltamethrin, Pirimiphos-methyl + permethrin, fenitrothion + fenvalerate, | P. truncatus, Sitophilus sp. and Tribolium castaneum | Larval and adult | Toxicity | Maize | [68] |
Cypermethrin | Sitophilus oryzae (L.), Oryzaephilus surinamensis (L.), Rhyzopertha dominica (F.) and Prostephanus truncates | Larval and adult | Toxicity | Maize | [69] | |
Fumigants (phosphine, sulfuryl fluoride, ethyl formate, methyl bromide, carbonyl sulfide, propylene oxide and allyl isothiocyanate). | All storage insect pests | Egg, Larval, Pupa and adult | Toxicity | Maize and Beans | [70] | |
Ozone gas (O3) | Tribolium castaneum, Oryzaephilus surinamensis Sitophilus zeamais, Rhyzopertha dominica and Sitophilus oryzae | Egg, Larval, Pupa and adult | Toxicity | Maize | [131,132] | |
Chlorine dioxide | Tribolium castaneum, Rhyzopertha dominica, Oryzaephilus surinamensis, Sitophilus zeamais and Sitophilus oryzae. | Adult and Larva | Toxicity | Maize | [133] | |
Botanicals | Mentha piperita, Pinus roxburghii and Rosa spp. | S. zeamais and S. oryzae | Larva and Adult | Maize | [134,135] | |
Cymbopogon citratus | Sitophilus granarius | Adult | Toxicity | Maize | [136,137] | |
Rosmarinus officinalis and Zataria multiflora | Tribolium confusum. | Adult | Toxicity | Maize | [138] | |
Citrus sinensis peel | Sitophilus zeamais | Adult | Toxicity | Maize | [139] | |
Thymus vulgaris | Acanthoscelides obtectus | Adult | Toxicity, Oviposition deterrent and Oxidative | Beans | [140] | |
Cannabis sativa | Cryptolestes ferrugineus, Rhyzopertha dominica, Sitophilus oryzae, Cryptolestes turcicus, Tribolium confusum and Stegobium paniceum | Adult | Toxicity | Maize | [141] | |
Artemisia sieberi | S. oryzae, T. castaneum and R. dominica | Larva and adult | Toxicity | Maize | [83,142] | |
Gomortega keule and Laurelia sempervirens | A. obtectus | Larva | Toxicity | Beans | [83] | |
Rosmarinus officinalis | S. oryzae and O. surinamensis | Larva and adult | Toxicity | Maize | [143] | |
Eucalyptus lehmannii and E. astringens | T. Castaneum and R. dominica | Larva and adult | Toxicity | Maize | [83] | |
Hyssopus officinalis, Origanum majorana and Thymus zygis | S. oryzae | Larva and adult | Toxicity | Maize | [144] | |
Boswellia carterii | C. chinensis and C. maculatus | Larva and adult | Toxicity | Beans | [145] | |
Lippia javonica | S. zeamais | Larva and adult | Toxicity | Maize | [146] | |
Evodia lenticellata | T. castaneum, L. serricorne and L. bostrychophila | Larva and adult | Toxicity | Maize | [147] | |
Cinnamomum zeylanicum and Syzygium aromaticum | S. granarius | Larva and adult | Toxicity | Maize | [136] | |
Melissa officinalis | T. castaneum | Larva and adult | Toxicity | Maize | [148] | |
Ostericum viridiflorum | T. castaneum | Larva and adult | Toxicity | Maize | [149] | |
Mentha piperita | T. castaneum, L. serricorne and L. bostrychophila | Larva and adult | Toxicity | Maize | [150] | |
Lippia origanoides, Tagetes lucida, Rosmarinus officinalis, Cananga odorata, Eucalyptus citriodora and Cymbopogon citratus | S. zeamais | Larva and adult | Toxicity | Maize | [151] | |
Zanthoxylum Xanthoxyloides | A. obtectus | Larva and adult | Toxicity | Beans | [152] | |
Atalantia monophylla and | S. oryzae, | Larva and adult | Toxicity | Maize | [153] | |
Citrus sinensis | R. dominica and L. serricorne | Larva and adult | Toxicity | Maize | [154] | |
Asarum heterotropoides | L. serricorne and L. bostrychophila | Larva and adult | Toxicity | Maize | [155] | |
Artemisia brachyloba | T. castaneum | Larva and adult | Toxicity | Maize | [156] | |
Evodia rutaecarpa | S. oryzae and T. castaneum | Larva and adult | Toxicity | Maize | [157] | |
Tagetus terniflora, Cymbopogon citratus and Elionurus muticus | S. oryzae | Larva and adult | Toxicity | Maize | [83] | |
Gaultheria procumbens | S. oryzae and R. dominica | Larva and adult | Toxicity | Maize | [143] | |
Pimpinella anisum, Cuminum cyminum, Eucalyptus camaldulensis, Origanum syriacum and Rosmarinus officinalis. | T. confusum | eggs | Toxicity | Maize | [158] | |
Anethum sowa | C. maculatus | Adults | Oviposition deterrency | Beans | [159] | |
Lavandula hybrida, Rosmarinus officinalis and Eucalyptus globulus. | A. obtectus | Adults | Oviposition deterrency | Beans | [160] | |
Lippia alba and Callistemon lanceolatus | C. lanceolatus C. chinensis | Adult | Oviposition deterrency | Beans | [161] | |
Mentha spicata | C. chinensis | Adults | Oviposition deterrency | Beans | [162] | |
Acorus calamus | C. chinensis | Adults | Ovicidal | Beans | [163] | |
Boswellia carterii | C. chinensis and C. maculatus | Eggs, larva and adult. | Larvicidal, Ovicidal and Oviposition deterrents | Beans | [145] | |
Atalantia monophylla | C. maculatus | Eggs | Ovicidal activity | Beans | [153] | |
Vanillosmopsis arborea | C. maculatus | Adults | Oviposition deterrency | Beans | [164] | |
Lippia sp., L. somulensis, L. grandifolia, L. wilmsii, L. dauensis and L. javanica. | S. zeamais | Larva | Larvicidal | Maize | [83] | |
Myristica fragrans | T. castaneum | larva | Larvicidal | Maize | [165] | |
Piper nigrum | T. castaneum | larvae | Larvicidal | Maize | [148] | |
Eucalyptus camaldulensis, E. viminalis, E. microtheca, E. grandis and E. sargentii | T. confusum and T. castaneum | larvae | Larvicidal | Maize | [166] | |
Cuminum cyminum | C. chinensis and S. oryzae | larvae | Larvicidal | Maize | [83] | |
Crithimum maritimum | O. surinamensis, S. granarius and S. oryzae | larvae | Larvicidal | Maize | [83] | |
Zanthoxylum planispinum | Tribolium castaneum, Lasioderma serricorne, and Liposcelis bostrychophila | Adult | Contact toxicity and repellent | Maize | [167] | |
Long-lasting Insecticide-incorporated Netting (LLIN) | LLIN | Tribolium castaneum, T. variabile and Rhyzopertha dominica, | Adult and larva | Reduced movement and dispersal | Maize | [93] |
Insect Growth Regulator (IGR) | Methoprene | Rhyzopertha dominica, Tribolium castaneum and Sitotroga cerealella | larva | Affect development, reproduction and behavior | Maize | [94] |
Combined methods | methoprene + controlled aeration | Plodia interpunctella, Tribolium castaneum, Cryptolestes ferrugineus and Rhyzopertha dominica. | Larva | Affect development, reproduction and behavior | Maize | [100] |
Wood vinegar + deltermethrin | Sitophilus oryzae | Larva and adult | Toxicity | Maize | [77] | |
Hypoxic nitrogen + Silo | S. granaries | All stages | Toxicity | Maize | [105] | |
Spinosad + diatomaceous earth + Trichoderma harzianum | Sitophilus oryzae | All stages | Toxicity | Maize | [120] | |
crystalline silica + abamectin | P. truncatus | Adult and larva | Toxicity | Maize | [168] | |
Hermetic bag + varieties | Sitophilus zeamais, Sitotroga cerealella, Tribolium castaneum and Cryptolestes spp | Adults | Reduced population | Maize | [169] | |
Resistant varieties + Teretrius nigrescens | P. truncatus | Adult and larva | Reduced population | Maize | [170] | |
Metarhizium anisopliae + diatomaceous earth (DE) | Rhyzopertha dominica, Sitophilus oryzae and Tribolium confusum, L. paeta, C. ferrugineus and T. castaneum | Larva and adult | Toxicity | Maize | [119] | |
Beauveria bassiana + diatomaceous earth + abamectin | T. castaneum | Larva | Toxicity | Wheat | [171] | |
Cultural methods | Removal of infested residues | Most primary storage insect pests like S. zeamais and P. truncatus | All stages | Reduced population | Maize and Beans | [110,172] |
Increase in aeration airflow rate | Sitophilus spp. and Rhyzopertha dominica | Adult | Reduced populations. | Maize | [104] | |
Grains petiodic disturbance | Sitophilus spp. and Acanthoscelides obtectus | Adults | Reduced populations | Maize and Beans | [108] | |
Resistance varieties | P. truncatus | Adults and larva | Reduced population | Maize | [107] | |
Biological Control | Teretrius nigrescens | P. truncatus | Adult | Predation | Maize | [109] |
Theocolax elegans | Sitophilus spp., Rhyzopertha dominica, Stegobium paniceum and Sitotroga cerealella | larva | Predation | Maize | [110] | |
Beauveria bassiana + Isaria fumosorosea | Sitophilus sp. | Larva and adult | Parasitism | Maize | [111] | |
M. anisopliae + I. fumosorosea | S. granarius and S. oryzae | Larva and adult | Parasitism | Maize | [173] | |
Hermitic storage | Metal silo and Super Grain IV-R bags | All storage insects | All stages | Asphyxiation | Maize | [116] |
PICS bags | P. Truncatus, S. zeamais and Zabrotes subfasciatus | All stages | Asphyxiation | Maize and Beans | [117,174] | |
Zerofly bags | Polypropylene + deltamethrin | S. oryzae and T. castaneum | Larva and adults | Toxicity | Maize | [6,47] |
Mass trapping | 4,8-dimethyldecanal and kairomone | Tribolium castaneum | Adult | Attraction | Maize | [126] |
Ionizing Radiation | neutron irradiation | Plodia interpunctella | Adult | Toxicity | Maize | [129] |
radiofrequency heating | Various storage insects | All stages | Toxicity | Maize and Beans | [130] | |
microwave heating | Tribolium castaneum | Adult | Toxicity | Maize | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidege, M.Y.; Venkataramana, P.B.; Ndakidemi, P.A. Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania. Sustainability 2024, 16, 1767. https://doi.org/10.3390/su16051767
Chidege MY, Venkataramana PB, Ndakidemi PA. Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania. Sustainability. 2024; 16(5):1767. https://doi.org/10.3390/su16051767
Chicago/Turabian StyleChidege, Maneno Y., Pavithravani B. Venkataramana, and Patrick A. Ndakidemi. 2024. "Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania" Sustainability 16, no. 5: 1767. https://doi.org/10.3390/su16051767
APA StyleChidege, M. Y., Venkataramana, P. B., & Ndakidemi, P. A. (2024). Enhancing Food Grains Storage Systems through Insect Pest Detection and Control Measures for Maize and Beans: Ensuring Food Security Post-COVID-19 Tanzania. Sustainability, 16(5), 1767. https://doi.org/10.3390/su16051767